

08547ffirs.qxd 10/24/07 4:05 PM Page ii

mental ray® for Maya®,

3ds Max® and XSI®

08547ffirs.qxd 10/24/07 4:05 PM Page i

08547ffirs.qxd 10/24/07 4:05 PM Page ii

mental ray® for Maya®,

3ds Max® and XSI®

A 3 D A R T I S T ’ S G U I D E T O R E N D E R I N G

B O A Z L I V N Y

W I L E Y P U B L I S H I N G , I N C .

08547ffirs.qxd 10/24/07 4:05 PM Page iii

A c q u i s i t i o n s E d i t o r : Mariann Barsolo

D e v e l o p m e n t E d i t o r : Jim Compton

T e c h n i c a l E d i t o r : Keith Reicher and Geordie Martinez

P r o d u c t i o n E d i t o r : Christine O’Connor

C o p y E d i t o r s : Judy Flynn & Kim Wimpsett

P r o d u c t i o n M a n a g e r : Tim Tate

V i c e P r e s i d e n t a n d E x e c u t i v e G r o u p P u b l i s h e r : Richard Swadley

V i c e P r e s i d e n t a n d E x e c u t i v e P u b l i s h e r : Joseph B. Wikert

V i c e P r e s i d e n t a n d P u b l i s h e r : Neil Edde

M e d i a A s s o c i a t e P r o j e c t M a n a g e r : Laura Atkinson

M e d i a A s s i s t a n t P r o d u c e r : Kate Jenkins

M e d i a Q u a l i t y A s s u r a n c e : Kit Malone

C o m p o s i t o r : Happenstance Type-O-Rama

P r o o f r e a d e r : Candace English

I n d e x e r : Ted Laux

A n n i v e r s a r y L o g o D e s i g n : Richard Pacifico

C o v e r D e s i g n e r : Ryan Sneed

C o v e r I m a g e : Boaz Livny

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-00854-6

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States

Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate

per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.

Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,

Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the

accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation warranties of

fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice and strategies

contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional services. If professional assistance is required, the services of a competent professional

person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an organiza-

tion or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author

or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers

should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and

when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care Depart-

ment within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic

books.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or

its affiliates, in the United States and other countries, and may not be used without written permission. mental ray is a registered trade-

mark of Mental Images. Maya and 3ds Max are registered trademarks of Autodesk, Inc. XSI is a registered trademark of Avid Tech-

nologies, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any

product or vendor mentioned in this book.

10 9 8 7 6 5 4 3 2 1

08547ffirs.qxd 10/24/07 4:05 PM Page iv

Dear Reader

Thank you for choosing mental Ray for Maya, 3ds Max and XSI: A 3D Artist’s Guide

to Rendering. This book is part of a family of premium-quality Sybex books, all written

by outstanding authors who combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to pro-

ducing consistently exceptional books. With each of our titles we’re working hard to set

a new standard for the industry. From the paper we print on, to the authors we work

with, our goal is to bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your

comments and get your feedback on how we’re doing. Feel free to let me know what you

think about this or any other Sybex book by sending me an email at nedde@wiley.com,

or if you think you’ve found a technical error in this book, please visit http://

sybex.custhelp.com. Customer feedback is critical to our efforts at Sybex.

Best regards,

Neil Edde

Vice President and Publisher

Sybex, an Imprint of Wiley

08547ffirs.qxd 10/24/07 4:05 PM Page v

Dedication

To Jolie, Bill, Mom, Dad, Abigail, my family, friends, and students.

08547ffirs.qxd 10/24/07 4:05 PM Page vi

Acknowledgements

My thanks to the outstanding editorial, production, and compositing staff at

Sybex and John Wiley & Sons, including acquisitions editor Mariann Barsolo and devel-

opment editor Jim Compton, whose patience and support have been key to the produc-

tion of this book. I would also like to thank production editors Christine O’Connor and

Martine Dardignac, technical editors Keith Reicher and Geordie Martinez, copy editors

Judy Flynn and Kim Wimpsett, and proofreader Candace English. ■ Special thanks to

Sameer Shah, Yorie Kumalasari, and Santosh Sailesh Gunaseelan, who first unknowingly

provided me with support and motivation for writing this book, then helped me prepare

the educational support materials, and finally provided critique for chapters as well as

images for the color gallery. I would also like to thank Patrick Walsh from Walsh Family

Media and Dale Carman from Reel FX for their contributions to the color gallery. ■ Spe-

cial thanks to www.RenderRocket.com, an online render farm that made their fantastic ren-

der services available for rendering the high-resolution cover image and some of the

color gallery’s images. They customized their services for my purposes so I can easily man-

age my projects and use custom plug-in shaders, and they provided constant technical

support. ■ A very special thanks to my dearest Jolie, who encouraged and supported this

ambitious project, and to Bill and my mom, who both motivated and pushed me to write

this book. Without your support and encouragement, I would have never done it. To

Gordon Skadberg, thank you for your support and constant interest in this book, provid-

ing me with help in explaining some of the more complex mathematical concepts presented

in this book, and proofing them for accuracy.

08547ffirs.qxd 10/24/07 4:05 PM Page vii

About the Author

Boaz Livny is a lighting and shading artist, consultant, writer, and educator

in New York, New York. Passionate about photography, a field that he explored for years

before entering the digital world of 3D, he currently specializes in lighting and rendering,

focusing on the photography aspect of 3D imaging, but is experienced in working the

entire pipeline. He began his experience with 3D working for TV stations using 3ds Max

and After Effects. During that time he also worked as a 3ds Max demonstrator for a Kinetix

(the company that created 3ds Max) representative abroad. Eventually he made the transi-

tion to Softimage and then Maya, providing services for the film, TV, and architecture

industries, giving him experience with all the host applications covered in this book.

From his New York studio, Vision Animations, Inc., he provides regular services, con-

sultancy, and freelance support to clients and studios. Currently he is a primary consultant

for the animated feature film The Cool Beans: Humbucket Caper from Walsh Family Media.

He is a professor of master’s-level courses at NYU’s Center for Advanced Digital Applica-

tions (CADA) and bachelor’s-level courses at the NYU Digital Communications and Media,

McGhee division. Boaz regularly writes articles demonstrating advanced mental ray and

Nuke techniques for HDRI 3D magazine, from DMG publishing. He also contributed

chapters to Mastering Maya 7 and Mastering Maya 8.5, both from Wiley.

08547ffirs.qxd 10/24/07 4:05 PM Page viii

Introduction ■ xv

Chapter 1 ■ Introduction to mental ray 1

Chapter 2 ■ Rendering Algorithms 29

Chapter 3 ■ mental ray Output 61

Chapter 4 ■ Camera Fundamentals 131

Chapter 5 ■ Quality Control 163

Chapter 6 ■ Lights and Soft Shadows 197

Chapter 7 ■ Shadow Algorithms 227

Chapter 8 ■ Motion Blur 259

Chapter 9 ■ The Fundamentals of Light and Shading Models 283

Chapter 10 ■ mental ray Shaders and Shader Trees 345

Chapter 11 ■ mental ray Textures and Projections 409

Chapter 12 ■ Indirect Illumination 473

Chapter 13 ■ Final Gather and Ambient Occlusion 549

Chapter 14 ■ Subsurface Scattering 633

Appendix ■ About the Companion CD 715

Index ■ 719

C O N T E N T S A T A G L A N C E

08547ffirs.qxd 10/24/07 4:05 PM Page ix

08547ffirs.qxd 10/24/07 4:05 PM Page x

Introduction xv

Chapter 1 ■ Introduction to mental ray 1

What Is mental ray? 2

Why Use mental ray? 4

The Structure of mental ray 6

mental ray Integration 14

Command-Line Rendering and the
Stand-Alone Renderer 21

mental ray Shaders and Shader Libraries 25

Indirect Illumination 27

Chapter 2 ■ Rendering Algorithms 29

Introduction to Synthetic Lighting 30

Rendering under the Hood 31

mental ray Rendering Algorithms 33

Scanline Rendering in Depth 36

Raytrace Rendering in Depth 41

Hardware Rendering 52

Chapter 3 ■ mental ray Output 61

mental ray Data Types 62

The Frame Buffer 65

Frame Buffer Options 74

mental ray Cameras 104

Output Statements 123

Contents

08547ftoc.qxd 10/24/07 4:06 PM Page xi

Chapter 4 ■ Camera Fundamentals 131

Camera Basics and Aspect Ratios 132

Camera Lenses 138

Host Application Settings 144

Chapter 5 ■ Quality Control 163

Sampling and Filtering in Host Applications 164

Raytrace Acceleration 185

Diagnostic and BSP Fine-Tuning 191

Chapter 6 ■ Lights and Soft Shadows 197

mental ray Lights 198

Area Lights 201

Host Application Settings 213

Light Profiles 221

Chapter 7 ■ Shadow Algorithms 227

Shadow Algorithms 228

Raytrace Shadows 231

Depth-Based Shadows 235

Stand-Alone and Host Settings 251

Chapter 8 ■ Motion Blur 259

mental ray Motion Blur 260

Motion-Blur Options 260

Motion-Blur Render Algorithms 269

Host Settings 273

Chapter 9 ■ The Fundamentals of Light
and Shading Models 283

The Fundamentals of Light 284

Light Transport and Shading Models 308

mental ray Shaders 323

08547ftoc.qxd 10/24/07 4:06 PM Page xii

Chapter 10 ■ mental ray Shaders
and Shader Trees 345

Installing Custom Shaders 346

DGS and Dielectric Shading Models 352

Glossy Reflection and Refraction Shaders 375

Brushed Metals with the Glossy
and Anisotropic Shaders 390

The Architectural (mia) Material 407

Chapter 11 ■ mental ray Textures
and Projections 409

Texture Space and Projections 410

mental ray Bump Mapping 415

mental ray Projection and
Remapping Shaders 417

Host Application Settings 452

Memory Mapping, Pyramid Images,
and Image Filtering 461

Chapter 12 ■ Indirect Illumination 473

mental ray Indirect Illumination 474

Photon Shaders and Photon-Casting Lights 481

Indirect Illumination Options
and Fine-Tuning 494

Participating Media (PM) Effects 523

Chapter 13 ■ Final Gather and
Ambient Occlusion 549

Final Gather Fundamentals 550

Final Gather Options and Techniques 567

Advanced Final Gather Techniques 596

Ambient Occlusion 622

08547ftoc.qxd 10/24/07 4:06 PM Page xiii

Chapter 14 ■ Subsurface Scattering 633

Advanced Shading Models 634

Nonphysical Subsurface Scattering 638

An Advanced Shader Tree 675

Physical Subsurface Scattering 678

Appendix ■ About the Companion CD 715

Index 719

08547ftoc.qxd 10/24/07 4:06 PM Page xiv

Introduction

Welcome to mental ray for Maya, 3ds Max, and XSI: A 3D Artist’s Guide to Ren-

dering, which provides an in-depth look at lighting and rendering techniques with mental

ray. The book focuses on rendering technologies with mental ray, and how mental ray is

implemented in each host application: Maya, XSI, and 3ds Max.

However, this is much more than a book about mental ray. It’s a book on rendering

technologies and techniques that just happen to be demonstrated with mental ray. The

topics covered in this book provide essential background on light and camera fundamen-

tals, as well as rendering technologies and techniques used with any advanced rendering

software, be it V-Ray, Brazil, Final Render, RenderMan, or, of course, mental ray.

This definitive artist’s guide provides several in-depth explanations about mental ray

technologies and how they function, as well as camera, lighting, and shading principles. It

shows you how these technologies can be used in each host application, along with advanced

techniques. For example, you’ll learn how to create complex shader trees in each host

application with mental ray shaders. Because rendering is the final stage of 3D production—

taking several 3D assets and converting them into an image—you will learn a great deal

about 3D in general in addition to rendering.

The two primary motivations for the content and structure of this book are based on

my personal experiences studying rendering technologies (PRMan and mental ray) and my

perspective on how rendering and real-world photography intertwine. The latter refers to

the fact that the sole purpose of rendering and 3D is to capture still images or animation

in a synthetic environment as if they were actually photographed. For that purpose, the

book explores my definition of photorealism—the process of taking images so that the

environment appears natural and consistent with the content, including the lighting,

shading, and photographic characteristics (depth of field, field of view, lens distortion, and

so on). That environment, however, needn’t be confined to the realism of a car commercial;

it can be crazy characters in imaginary worlds.

Over the years I have found the search for valuable in-depth explanations of rendering

with mental ray and the technology to be frustrating. In particular, I wanted to know more

about how things really function behind the scenes so that I can use that knowledge to

improve my workflow in 3D. CG may be a creative field, but unlike drawing, it requires a

08547flast.qxd 10/24/07 4:07 PM Page xv

lot of technical know-how to accomplish coherent and well-prepared 3D scenes for

rendering. Thus, fundamental to the book’s structure is that each chapter takes a topic

and reviews it in great detail with mental ray from the technical to the creative, constantly

providing insight on a per-host basis for Maya, XSI, and 3ds Max.

The book is aimed at helping you become more confident in creating your art within a

complex and technical environment. It encourages you to further research the advanced

topics, be more observant of your surroundings, and become more knowledgeable about

how to use mental ray or any other renderer to implement phenomena you observe.

What You Will Learn from This Book
Several tutorials on lighting and shading are available in books and on the Web. There are

also several technical tutorials and books on rendering for shader writers and programmers.

These are both attempts to deal with the same topic from different perspectives. This book

is intended to bridge that gap, providing you with detailed explanations of how rendering

algorithms function—whether for raytracing, shader construction, light simulations, or

camera work—by providing technical insight into how they function, as well as how to

use them creatively to improve your rendering practices. In today’s CG marketplace, you

need to both have creative skills and understand your tools in depth.

You will learn all about rendering technologies, including the underlying fundamentals

of scanline and raytrace rendering. An introduction to optical physics and the nature of

light will help you better understand shading and lighting in 3D, and you’ll learn about

cameras and photography, high dynamic range (HDR) imaging, advanced lighting and

indirect lighting technologies and techniques, and shading tools and techniques. With

respect to shading practices, these are some of the topics included:

• Basic and advanced shading models

• Custom shaders from online resources

• Environment, volume, and lens shaders

• Complex shader trees

• Texture mapping and texture coordinates

• Advanced raytrace shaders and physical shaders

• Subsurface-scattering shaders

• Natural material creation

xvi ■ Introduction

08547flast.qxd 10/24/07 4:07 PM Page xvi

Most important, many of us take for granted the simple process of using cameras,

assuming we already know how to use them and understand their nature. That assumes

we can start taking our own photographs in 3D and they will look professional. However,

you must master the art of photography so you can bridge the gap between real-world

photography and 3D. There is much to be said about light and cameras, their fundamental

character, and how to use them in 3D. The goal is, then, to take that knowledge and apply

it in 3D so that the images we capture look more aesthetic and real. This book will help you

bridge that gap, constantly referring to real-world observations and how you can mimic

them in 3D using mental ray or any other renderer.

Who Should Read This Book
This book is for anyone who is interested in learning about 3D software and wants to

better understand the fundamental and advanced concepts behind generating images in

3D, including learning more about common terms. The focus is on mental ray lighting,

shading, and rendering using Maya, XSI, or 3ds Max. This book is an essential tool for any

3D artist who is studying these topics for the first time or just wants to learn more about

them. If you are already familiar with mental ray rendering, the book will help you have a

more complete understanding of the tools and techniques used.

Every chapter demonstrates how a feature is implemented in mental ray and then shows

how the mental ray functions are accessible in each host application. The demonstrations

provide detailed explanations on a per-host basis so that intermediate to advanced users

can learn about mental ray’s technologies and apply that knowledge using their preferred

host application. Thus, it’s also a great book for users who are familiar with mental ray

and are migrating from one 3D application to another; for example, if you’re a Maya user

who wants to learn more about XSI, the book’s coverage of the same topics in both host

applications lets you easily compare the differences while learning the nuances of mental

ray with XSI and its interface. In all cases, the book can help you in filling gaps with respect

to mental ray practices and how well they are implemented in each host application.

For beginners, the book covers all the host application paths for settings in the tutorials

so that you can easily follow along. Furthermore, the first few chapters will give any begin-

ner or advanced user a thorough review of 3D rendering programs and how they operate.

However, many of the tutorials, although easy to follow, require that you are comfortable

with your software of choice. You need to already know how to use cameras, lights, and

Introduction ■ xvii

08547flast.qxd 10/24/07 4:07 PM Page xvii

shaders and execute renders in your host—for example applying shaders or projecting

textures. This book then gets into those topics in more detail so you can use them more

effectively and knowledgeably.

How to Use This Book
mental ray for Maya, 3ds Max and XSI: A 3D Artist’s Guide to Rendering begins with an

overview of the technology and ends with advanced shading and lighting techniques,

exposing you to fundamental and advanced rendering, cameras, lighting, shading, indirect

lighting, and subsurface scattering with mental ray, in that order. Ample cross-references

allow you to approach any chapter that strikes your fancy and find relevant references for

terms that are discussed in other chapters.

The book is intended to be used in two ways:

• I recommend you read through it at least once. It has been written in a way that you

can read it on the road, on a couch, in bed, or at any place where you don’t have a

computer. Each chapter describes mental ray concepts in detail, as well as the mental

ray options. Then at the computer, you can review the designated areas that deal

with per-host settings and tutorials for Maya, XSI, and 3ds Max. In this way, you

understand a topic in detail before approaching it on the computer. After reading it

once, you will become familiar with mental ray as well as all the secrets, tips, and

notes provided in various places throughout the book. You can then use the book

as a reference when you need a recap of all the intricacies of a given topic.

• For your continuing work, the book will also serve as a must-have reference so that

while working with, for example, Final Gather, you can open Chapter 14 and find

explanations for all the Final Gather options and techniques. You can easily jump to

any chapter and learn a great deal about a topic without reading previous chapters.

Each host application has its own terminology for referencing the different settings. In

Maya we use attributes, with XSI properties, and in 3ds Max parameters. Also with mental

ray, these are referred to as options. Whenever you see any of these words, they are used

interchangeably based on the application being referenced, or the mental ray option.

I recommend you definitely read Chapters 1 through 3, 5, 10, and 12 if you don’t want to read

the book from start to end.

xviii ■ Introduction

08547flast.qxd 10/24/07 4:07 PM Page xviii

Finally, with respect to color, most of the figures in the book don’t require color. Those

that do are provided on the companion CD for each chapter. Figures that require seeing

color are also placed in the book’s color gallery so that you don’t need to use the CD on a

regular basis.

Reading the Book

The book focuses on mental ray the mental ray options for scene settings, special effects,

and shaders. The integration of mental ray with Maya is applied in a way that most options

(attributers) are labeled using mental ray conventional names. Thus, I use Maya’s UI more

often to display the mental ray options and discuss them in detail, for consistency with

mental ray naming conventions. The same options are always further discussed in each

host application, identifying their unique names, as well as the differences in how they are

implemented, when applicable. Because the Maya UI appears a lot throughout the book, it

is important to note that this is not a Maya book, but a mental ray book that tries to stick

with mental ray naming conventions and then identify them in hosts within the discussion

or in specific host-application sections.

Furthermore, the integration of mental ray differs in each host, providing different

options and features that may not be available in each host. Thus, occasionally the book

focuses on any of the hosts, showing their compatibility with a specific feature that may

not be integrated in other hosts. On that topic there are two points worth noting:

1. You don’t have to read those host-specific sections; however they will further your

understanding as to mental ray capabilities.

2. Learning what you don’t have makes it possible for you to seek alternative means for

implementing those options, either by installing custom shaders, by using stand-alone

mental ray where you can specify any feature, or by implementing custom output

code or plug-ins in your preferred application, opening the door to additional features

that you may not have known about without looking at the “bigger picture” that is

mental ray.

If you don’t fully comprehend a tutorial or topic discussed on a per-host basis, read the other

host tutorials that may help you better understand that feature in your host.

Introduction ■ xix

08547flast.qxd 10/24/07 4:07 PM Page xix

How This Book Is Organized
The book is organized as follows:

Chapter 1, “Introduction to mental ray,” introduces all things mental ray. It presents

the mental images (.mi) file format and the mental ray stand-alone renderer, as well

as how mental ray integrates with each host application. It covers the different fields

that mental ray caters to and the advantages it provides. Throughout the chapter you

will become familiar with important terminology, technologies, and the structure of

mental ray as well as per-host command-line rendering and batch rendering.

Chapter 2, “Rendering Algorithms,” introduces the fundamentals of scanline, ray-

trace, and hardware rendering using mental ray. These fundamentals apply to all

rendering software. You will learn how each render algorithm functions and become

familiar with their relevant mental ray options, as well as how they are implemented

in each host application. The explanations on the render algorithms and how they

function are true to any advanced render software.

Chapter 3, “mental ray Output,” teaches you all you need to know about mental ray

frame buffers, their bit depth, and output formats. It covers important topics related

to output settings, such as gamma correction and premultiplication. The topics are

aimed at preparing images as final renders or for compositing passes in applications

such as Nuke, Fusion, or Shake. The chapter begins to look at mental ray camera lens,

volume, environment, and output shaders, as well as how you can implement them in

host applications, including rendering passes and mental ray’s multipass options.

Chapter 4, “Camera Fundamentals,” continues the technical introduction to mental

ray cameras. It looks at real-world cameras, how they function, and their photo-

graphic characteristics. You will learn how real cameras can be simulated in 3D with

camera lens shaders and the mental ray camera options. The chapter is an extensive

overview of the fundamentals of cameras regardless of mental ray.

Chapter 5, “Quality Control,” explores several quality control algorithms and their

options in depth. You will learn how to remove flickering, moiré patterns, and

banding artifacts, as well as how to optimize the render for better performance. The

chapter covers in detail sampling and anti-aliasing using mental ray’s scanline, ray-

trace, and rasterizer render algorithms. Topics covered include sampling, filtering,

xx ■ Introduction

08547flast.qxd 10/24/07 4:07 PM Page xx

render diagnostics, and raytrace acceleration (BSP, Large BSP, and Grid). Each topic

is explained in detail with mental ray options that are then further examined on a

per-host basis.

Chapter 6, “Lights and Soft Shadows,” looks at using light shaders, photometric

lights, area lights, and raytrace shadows with mental ray. The chapter covers topics

such as soft lighting and distance-based shadows. It looks in depth at the different

light shader options, as well as using photometric light profile files and external tools

to view light profiles. You will see how mental ray shaders can be used in each host

application, as well as how they are implemented with host-specific lights.

Chapter 7, “Shadow Algorithms,” builds on the light shaders presented in Chapter 6,

looking in detail at shadow map shadows, detail shadows, and raytrace shadow algo-

rithms. The chapter covers the technical aspects of controlling shadows in CG, pre-

senting all the mental ray options, and how they are implemented with each host

application.

Chapter 8, “Motion Blur,” continues the discussion of cameras, covering fundamen-

tal concepts related to real cameras and motion blur. You will learn how motion blur

is simulated with mental ray cameras and the different effects camera components

have on motion blur, such as the shutter. The chapter examines motion blur with

scanline, raytrace, and the rasterizer render algorithms, examining how you may

accelerate motion-blur rendering. At the end of the chapter a sidebar introduces you

to using mental ray motion vectors with compositing.

Chapter 9, “The Fundamentals of Light and Shading Models,” is probably the most

important chapter of this book. It is an essential introduction to all the following

chapters, so it can be considered as the first chapter on indirect lighting and advanced

shading techniques. In it you will learn about the characteristics of light in detail. The

chapter introduces you to geometric optics, radiometry, photometry, high dynamic

range imaging, and tone-mapping, including how all those topics are used in 3D. Then

you will move on to CG shading models and how they are implemented in 3D and with

mental ray base shaders. You will learn how lights and shaders define a surface’s

material character in depth and how mental ray materials are constructed, including

their implementation in host applications. The purpose of the chapter is to provide a

bridge between real-world surface and light characteristics and how to simulate those

characteristics with shaders.

Introduction ■ xxi

08547flast.qxd 10/24/07 4:07 PM Page xxi

Chapter 10, “mental ray Shaders and Shader Trees,” builds on the in-depth introduc-

tion to shaders and further examines how advanced shaders and shader trees are

constructed with mental ray shaders. The chapter presents online sources for custom

shaders along with installation guidance for these shaders in each host application.

The chapter then proceeds to review mental ray physics shaders, glossy shaders, and

the architectural material. In each host you will look at a complex shader tree for

brushed metal using several component and complex shaders to generate the effect of

brushed metal with anisotropic highlights and reflections. Through this tutorial you

will learn a great deal about several mental ray and host-specific shaders.

Chapter 11, “mental ray Textures and Projections,” is an important chapter for all

3D users. It reviews texture space and projections, looking at how UV coordinates are

defined on surfaces. The same concepts apply to various principles in 3D, such as sur-

face or texture rotation and translation. In this chapter you will learn how coordi-

nates are extracted from surfaces as well as how they are controlled with a transform

matrix. You will learn about the math behind the scenes enough to understand how

texture placement and vector shaders function, followed by examples using mental

ray shaders and host-specific shaders in host applications. The chapter also covers

bump mapping, normal maps, texture memory–mapped images, image filtering, and

pyramid images.

Chapter 12, “Indirect illumination,” is an in-depth look at mental ray indirect illumi-

nation algorithms. Building on the fundamentals discussed in Chapter 10, this

chapter looks at the tools and techniques for using global illumination and caustics.

The chapter also covers participating media (PM) effects, which render atmospheric

particles that interact with light, and how PM effects are used with global illumination

and caustics.

Chapter 13, “Final Gather and Ambient Occlusion,” covers an additional set of tools

for indirect illumination. Final Gather is a hybrid of indirect illumination that deals

with improving indirect light simulations with more detail and better environment

sampling; the effect of the environment on the scene, particularly when using high

dynamic range images or lighting. The chapter covers the mental ray physical sun,

sky, and tone-mapping shaders, and how they are used with Final Gather. You will

also learn about panoramic HDR images, their types, and how they are created with

host applications and edited with external tools, such as HDR Shop. The chapter

xxii ■ Introduction

08547flast.qxd 10/24/07 4:07 PM Page xxii

presents additional software for generating HDR environments. Finally, the chapter

reviews the mental ray ambient occlusion shaders and how they are used with Final

Gather, as well as how they can be used for rendering diffuse, reflective, and environ-

ment sampling passes for compositing.

Chapter 14, “Subsurface Scattering,” shows how this effect can be implemented with

mental ray using a combination of component shaders that fake the internal scatter-

ing of light or can be realistically simulated with an advanced physical shader. Both

topics are examined in detail with examples using mental ray shaders in each host

application. The chapter presents several external resources for learning more about

subsurface scattering and acquiring the scatter properties of real-world surfaces. This

chapter also presents the bidirectional surface scattering distribution function (BSSRDF)

shading models with information on how they compare with the mental ray subsur-

face shaders. As a side topic, this chapter presents normal bump maps using one of

the subsurface component shaders.

Hardware and Software Considerations

The book is about mental ray, which is the same regardless of the platform you choose

to use, whether that’s Windows, Linux, or OS X. In Chapter 1 of this book, you’ll find

instructions for executing batch renders from a command line or a shell, depending on

the platform. Each chapter presents mental ray command-line commands or mental

image file options for the option block. These are the same regardless of the platform.

With respect to the type of computer you need, most of this book was written on a

laptop that has Maya, XSI, and 3ds Max installed. Even most of the figures for print (high

resolution) were rendered on the laptop. Each option was thoroughly compared in each

host to identify their nuances while rendering on the laptop so that I can safely say you

don’t need a supercomputer to get through the study phase. For generating complex scenes

and rendering indirect lighting, you will want to use a computer with a relatively updated

processor, preferably a dual processor or dual-core processor, and at least 2GB of RAM

with a good graphics/video card from NVIDIA, ATI, 3D Labs, and so on, that has at least

128MB of memory. All these manufacturers produce low- to high-end products for com-

puter-aided design (CAD). With respect to workstations, if you are unfamiliar with select-

ing a system that is right for you, Boxx computers provide well-prepared workstations

customized for any host application and purpose (rendering, animation, and so on). I

also recommend HP, which has a solid line of affordable to expensive workstations.

Introduction ■ xxiii

08547flast.qxd 10/24/07 4:07 PM Page xxiii

R E N D E R F A R M S V E R S U S Y O U R M A C H I N E S

An additional hardware consideration relates to the approach you take for managing

high-end renders. If you work from a production studio, or have your own studio, gener-

ating production-quality images at HD resolutions using, for example, Final Gather and

motion blur requires more than a workstation to complete rendering within a reasonable

time. For that purpose you should consider using the mental ray stand-alone renderer, or

use mental ray satellite (distributed rendering) across several computers (see Chapter 1).

If you don’t have the computer resources, or don’t want to tie up your system with ren-

ders, you can outsource renders to render farms. For example, the cover image was ren-

dered at HD 1080 (1920×1080 resolution), 300 DPI and with Final Gather and motion

blur—too much for my workstation to handle.

Within the time span of one day, the online service www.RenderRocket.com provided me

with FTP access and support so that I could set up my project and render it on their farm.

The following day the image was complete, as opposed to a four-to-five-day render time

on my 64-bit dual dual-core system with 8GB of RAM. Point is, my system is powerful,

but sometimes you will need the extra help to get productions complete in a timely fash-

ion, which plays an important role in building up your own service as well as keeping your

machines productive. You should invest money in machines that allow creating art, which

is different from machines designated for rendering. For example, for production you

need good graphic cards with average dual-core machines and about 2 to 4GB or RAM,

but not the several processors that are required for rendering. Those processors on an

artist machine are wasted, as they are not used during creation, only rendering.

M A Y A A N D 3 D S M A X U S E R S

Both these applications offer their own renderer and shaders. The book focuses on using

the mental ray components and shaders in each host, but occasionally reviews host-spe-

cific techniques and shaders, as required. In both cases most of the host-specific shaders

and functionalities are supported with mental ray. With 3ds max a lot of the advanced

lighting (for radiosity) parameters are not supported by mental ray, such as some of the

exposure control parameters. You will see in Chapter 1 how to read mental ray output,

which typically identifies (with errors) the functions that are not supported. Also the help

files will tell you which items are supported.

X S I U S E R S

XSI has duplicate settings in three instances. You have the render region and render

settings, which utilize the same settings for different purposes (viewport preview vs.

xxiv ■ Introduction

08547flast.qxd 10/24/07 4:07 PM Page xxiv

final output). In this book I never refer to render regions, since they are the same as the

global render properties. Just note that if you use a rendered region to fine-tune proper-

ties, be sure those properties are copied or manually implemented in the Render Options

window. In addition, you have the Render Manager properties window and Render

Options and Passes property windows, which offer a different approach to managing

the same settings for rendering. In Chapter 1 a sidebar discusses the differences between

these windows. Throughout the book, it is irrelevant which of the windows (Render

Manager or Render Options) you use when specifying properties. The paths are the

same in both windows.

T R I A L S O F T W A R E

A great way to learn 3D is to experiment with trial versions. For each host application, you

can obtain a free learning edition for noncommercial use or a trial version as follows:

• Maya has a Personal Learning Edition (Maya PLE) software that you can download

from the Autodesk website (www.autodesk.com). Maya PLE is a special version of Maya

that gives you free access to Maya Complete for noncommercial use.

• 3ds Max has a 30-day trial version that you can download from the Autodesk website

(www.autodesk.com).

• With XSI you can get the Academic Edition of Softimage XSI 6 Advanced. It provides

you with an academic license for XSI Advanced, including all the features of the pro-

fessional version, with no limitations. However, you can not use it for paid work.

You can download it at http://softimage.com/education/educationalpricing.aspx.

The Book’s CD

The companion CD of this book is organized into folders by chapter, and each chapter has

a folder for each host application (when relevant). In the host application folders you can

find scene files. You’ll find source images (textures) that apply to all host applications and

figures in the chapter’s root directory. You can copy them to your hard drive into a project

directory for each host.

The CD provides the following:

• Images of figures that you need to view in color or in fine detail.

• Relevant movie clips mentioned in some of the chapters.

• Host-specific scene files, mostly for complex shading networks, including examples

of some networks that are not covered in the book.

Introduction ■ xxv

08547flast.qxd 10/24/07 4:07 PM Page xxv

• Articles on relevant topics I’ve written for the HDRI 3D magazine, from DMG Pub-

lishing. For example, there’s an article on texture-baking, a topic I could not cover in

the book. Although it’s a Maya article, the same principles apply in each host applica-

tion. Another article covers compositing passes using Nuke, a compositing software

developed at D2 software (Digital Domain) and now owned by The Foundry.

• Free high-dynamic-range panoramic images for environmental lighting with Final

Gather or as a source for environment reflections. These are in the HDR Images

folder.

• A collection of light profile files for photometric lighting, covered in Chapter 6.

A bonus chapter on surface approximation methods with mental ray; “SurfaceApprox-

imationMethods” PDF file in the Chapters folder. This additional chapter introduces you

to the tessellation process that converts 3D surfaces into polygons during rendering.

Contact the Author

You can contact the author at www.3darts.org. You can also email him at Boaz@3darts.org.

xxvi ■ Introduction

08547flast.qxd 10/24/07 4:07 PM Page xxvi

Introduction to mental ray

mental ray, a robust and independent rendering package, is well integrated

within several 3D applications—Autodesk Maya, Autodesk 3ds Max, and Softimage|XSI, for

example—as plug-in software. As a plug-in application for these host programs, mental ray

specializes in generating photorealistic images, with an unsurpassed ability to re-create

natural phenomena. As you’ll see, it can also be used for creating nonphotorealistic con-

tour renderings (NPRs). mental ray’s photorealistic capabilities derive from an extensive

set of tools that perform advanced camera, light, surface, and volume shading simulations.

These simulations and the realistic renderings they allow lend themselves to various appli-

cations: architectural design, motion picture animation and visual effects, high-end televi-

sion commercials, automotive and industrial design, and games. In a nutshell, mental ray

provides outstanding render quality and an unsurpassed set of tools that cope with complex

rendering challenges such as indirect illumination, volumetric lighting, memory handling

and optimization, cross-platform network rendering, flicker reduction, and much more.

This chapter is an overview of mental ray, introducing the key terms and concepts that

you’ll examine in detail throughout this book. It provides a detailed introduction to what

goes on in a mental images (.mi) file, not because I expect you to create such files by hand-

coding but because understanding mental ray’s functionality and settings lends to a better

understanding of its features from within each host application. The chapter covers the

following topics:

■ What Is mental ray?

■ Why Use mental ray?

■ The Structure of mental ray

■ mental ray Integration

■ Command-Line Rendering and the Stand-Alone Renderer

■ mental ray Shaders and Shader Libraries

■ Indirect Illumination

C H A P T E R 1

08547c01.qxd 10/24/07 4:09 PM Page 1

What Is mental ray?
The main focus of the mental ray product technologies is the generation of photorealistic

images, a process that requires complex computations using physics to simulate the way

light behaves and interacts with surfaces. Light physicists have long been in pursuit of the

definition of light, particularly for demystifying the photoelectric effect, which describes the

reflection of light from surfaces and its physical characteristics and nature. Computer

graphics (CG) software developers are particularly interested in applying the knowledge of

lighting and its interaction within an environment, as well as its perception by the human

eye, into shading and lighting models within their applications. This might explain why

shading models developed by different scientists have inherited their names within our 3D

applications. The Lambert shading model, for example, is the same in every application

and provides the base model for all diffuse shading models; it is then extended to provide

enhanced shading characteristics such as with a Blinn, Phong, Oren-Nayar, or any other

shader. You will learn more about light and CG shading models in Chapter 10, “CG Shad-

ing Models and Light Primer.”

mental ray is a product from a rich line of specialized tools developed by mental images

GmbH, a company based in Germany. Most users, however, access mental ray primarily

through OEM partners such as AutoDesk, Avid, and others. These partners offer mental

ray both as an integrated render plug-in within their software with support for satellite

rendering (also known as distributed rendering), and as a stand-alone renderer (sold

separately).

mental ray Scene Description Language
At its core, mental ray is a fully functional 3D package that enables you to describe a scene

consisting of geometric forms, surface materials, lights, environment shaders, and a cam-

era using the mental images scene description language. For describing such scenes, men-

tal ray does not provide its own user interface. Thus, you can simply describe a scene

using plain text and a text editor, resulting in a rendered image upon execution. This

sort of text file, known as a mental images file, is then executed from the command line

simply by entering the default mental ray render command ray followed by a filename:

ray myfile.mi

Because of the efficiency and control it provides, this approach has many useful benefits

for production houses that have the development resources, but not as many for the inde-

pendent artist or smaller CG or CAD shop. Without a UI, mental ray is not very intuitive

to use. These users normally would not consider purchasing a stand-alone render program;

they are more likely to consider a package such as XSI, Maya, or 3ds Max, which provide a

full set of tools and a user-friendly graphical interface. Artists with strong programming

skills (and sometimes a computer science degree) can use the mental ray stand-alone

2 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 2

package to further customize rendering as well as design several additional features; for

example, using the C or C++ programming language, they can design custom shaders that

can then be added to the mental ray shader libraries. This obviously requires familiarity

with the scene description language, C or C++, and mental ray shader libraries and their

implementation.

Most of this book assumes you are using mental ray from within a host, but it also refers

to using stand-alone mental ray where appropriate. mental ray options are labeled differ-

ently within each package. I will always refer to mental ray options as they are implemented

(labeled) in mental ray and then demonstrate how to access those same options from

within the different packages. With mental ray, render options are defined within a mental

ray .mi file’s options block. The options block options can then further be overridden on

the command line with stand-alone rendering using similar syntax for options found in

the options block. In most cases, syntax presented in this book refers to command-line

commands that may be used to override option block options. When an option is unavail-

able as a command-line command, the options block syntax is presented. Non–options

block options, such as internal options for lights and shadows, are presented in their rele-

vant context. These options and their syntax and execution become clearer as you read

through this chapter.

Host Translators
When using mental ray through a host application, it is not necessary to be familiar with the

mental images scene description language. In fact, no knowledge of any mental ray pro-

grammable features is required in order to take full advantage of mental ray. During the

render, the host application will automatically translate the scene into a mental images for-

mat that is then rendered with mental ray. (For example, when a render is executed in Maya,

we can see the command line progress feedback, shown in Figure 1.1, indicate that the cur-

rent frame is first being translated prior to indicating any render progress.) Hence, mental

ray can render an image directly from within these host applications without any need for

you to manually provide any programmable settings or help with the translation process.

This sort of mental ray integration from within host packages provides access to most

mental ray features. It is what makes mental ray a practical tool for the CG artist, eliminat-

ing the need for advanced technical skills and allowing you to focus on your art. The inte-

gration of mental ray within OEM partner packages that will be discussed throughout this

chapter is achieved through a structural component known as the host translator program

deals with translation, supporting mental ray features within host applications. Thus, the

translator program interfaces between the host application and mental ray while executing

renders, exporting .mi files, or calculating mental ray specific maps such as photon maps,

final gather maps, and light maps. For now, let’s discuss some of the requirements and

what is mental ray? ■ 3

Figure 1.1

This feedback on
the Maya command
line indicates that
the Maya scene is
being translated
for rendering with
mental ray.

08547c01.qxd 10/24/07 4:09 PM Page 3

goals of industry professionals from a wide variety of professions, as well as how mental

ray caters to their needs.

Why Use mental ray?
Professionals in the various fields that use mental ray have different purposes in generating

images, and those differences are reflected in the ways they work with the software and how

they customize their production pipeline. The different approaches may range from a simple

out-of-the-box rendering to advanced customized tools developed in-house, such as with

Sony Image Works, Industrial Light & Magic, and other large-scale production houses.

Architectural and Industrial CAD
With architectural or industrial CAD rendering, usually a focus on establishing realism

based on physically correct calculations is imperative. Architecture professionals are par-

ticularly interested in drawing a realistic image that represents an environment’s appear-

ance at a particular time of day or with a specific type of artificial lighting. This may require

using light profiles (provided by light manufacturers) that specify the exact light intensity

and falloff characteristics of a particular light source. mental ray then adds to these light

models additional abilities to simulate light bounce within that environment; this is known

as the indirect illumination of surfaces by reflected light. (You can learn more about

indirect illumination later in this chapter and in Chapter 12.)

Industrial designers usually aren’t concerned with simulating specific lighting condi-

tions, so they have the creative freedom to seek a more aesthetic lighting scenario over a

physically correct one. Their rendering focuses on generating realistic characteristics for

surfaces and their interaction with light. They need to simulate realistically how surfaces

reflect and transmit light. For example, chrome surfaces, aluminum, “heavy” metal,

plastic, brushed metals, translucent surfaces, and glass of varying thickness and type all

interact differently with light.

Chapters 10 tand 11 will guide you through several approaches for creating complex

surface shaders and custom effects. In both architectural and industrial design, render

times can be quite long, but this is not normally a serious obstacle. These fields in many

cases may require rendering only a relatively small sequence of frames for print, a high-

end commercial, or a video presentation.

Entertainment
mental ray’s photorealistic capabilities are equally important in the entertainment indus-

try, but the sheer number of frames to be generated means that another component needs

to be considered: time. While beautifully rendered CG images may greatly increase a film’s

appeal, they must also be generated in a timely manner. For this reason, film productions

usually prefer to avoid using mental ray’s powerful raytracing abilities whenever possible

(see Chapters 2 and 5, “Rendering Algorithms and Quality Control,”), and they expect a

4 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 4

fast turnaround in the production pipeline. In the entertainment industry, mental ray plays

two different roles: one as a primary renderer for entire productions and the other as an

additional renderer providing high-end realistic visual effects shots that emphasize realism.

For feature animated films, currently the norm is to use a RenderMan-compliant ren-

derer, typically Pixar’s PRMan, which provides a scalable and fast scanline renderer as well

as a powerful raytracer when needed. However, some projects use more than one renderer

in a production pipeline and divide the work among different studios that each assemble

specific shots using their tools of choice. Typically, films that combine live action with 3D

use mental ray more often than feature animations do. Some familiar feature films that have

used mental ray in part or in full are The Wild, The Matrix Revolutions, The Matrix Reloaded,

Star Wars: Episode II, The Hulk, Terminator 3, Fight Club, Panic Room, Blade Trinity, The

Cell, The Day After Tomorrow, and Walking with Dinosaurs.

When simulated photorealism is used in films, it’s is usually to create props or scenes

that it would be too costly to build, such as spacecraft. But it also allows shots that other-

wise would be impossible or too expensive to shoot. In some cases, mental ray is used to

clone an environment or character into CG, enabling the director to obtain nonstandard

camera shots. For example, in the Motion Pictures gallery on www.mentalimages.com, you’ll

find some images from Panic Room, a nonfuturistic film that at first glance does not appear

to be loaded with special effects or 3D. It takes place in a New York City townhouse where

everything appears to be real. However, it uses several shots that probably would have been

impossible or at least very difficult to manually construct within a set. mental ray was used

to render a replicate environment of the townhouse so that the nonstandard camera motions

through the house could be shot. This sort of integration between real life and 3D requires

a great deal of realism. Its goal is to prevent the viewer from distinguishing between real

shots and CG-enhanced shots.

Games
In computer games, which are constantly evolving and offering more “realistic” experiences,

the emphasis on complex, instantaneous interaction has always put high-end rendering

out of reach. Enhanced CG requires complex shading models and lighting such as simu-

lating indirect lighting. Games do not consist of images prerendered using mental ray or

any other renderer; they run on a game engine that renders in real time. This real-time

display is enabled using technologies that access and control hardware, through OpenGL

or DirectX, and based on the hardware abilities such as with NVIDIA, 3DLabs, ATI, and

other manufacturers’ boards. The games industry bridges the technical gap by using men-

tal ray’s light baking options. Light baking is the process of converting surface shading and

lighting from mental ray into texture maps that can then be applied to models. Thus, baked

texture-map files may include surface-shading properties and their influence from direct

and indirect lighting. In essence, textures can represent a global illumination (see the section

“Indirect Illumination” later in this chapter) render that provides the indirect diffused

why use mental ray? ■ 5

08547c01.qxd 10/24/07 4:09 PM Page 5

light bounce within an environment, providing for more appealing texture maps for game

environments and characters. You will learn techniques and considerations for light bak-

ing in Chapter 14, “Light Maps (Baking) and Complex Shaders.”

The Structure of mental ray
In the following sections, you will learn more about mental ray rendering procedures, as

well as its integration with other applications. The goal is to provide a solid understanding

of mental ray technologies and abilities so that when you’re evaluating rendering technolo-

gies, you will be able to weigh one advantage against another. Being more familiar with the

core technology and its algorithms will enable you to make a better decision for your ren-

dering approach.

A mental ray file, regardless of whether it was generated within a host application or

was custom-made, typically includes information on the spatial arrangement of objects,

their physical characteristics within a given coordinate space (object space, camera space,

world space), and their influences from a variety of shaders. When rendering, mental ray

transfers data by sampling shader color values, typically from surface points within the file

(the 3D scene). These color values are then passed into a 2D frame buffer, which acts as a

storage container for the different rendered data. Frame buffers typically store the four

standard color channels that represent an image, RGBA. The R, G, and B channels each

represent a different additive primary color (red, green, and blue) and A represents the

alpha masking channel. Image data is always stored within frame buffers until the render

process has completed and the frame buffer is ready to be written to a file on disk.

Photorealistic rendering requires a lot of processing, so mental ray is structured in a

form that maximizes performance during rendering. In Chapter 2, you will learn more

about the different rendering algorithms mental ray uses, which include different algo-

rithms for scanline rendering, raytrace rendering, and hardware rendering.

Modularity
An important aspect of mental ray’s structure is modularity. That is, mental ray is divided

into several separate modules that act as software components. Each module is essentially

plugged in to mental ray and is responsible for providing very specific tasks. For example,

the image (IMG) module will load, write, or convert images to memory mapped images (see

Chapter 11, “mental ray Shaders and Shader Trees”) during the render or when prompted

to do so with the mental ray imf_copy utility (described in the section “mental ray Compo-

nents and Application Files” later in this chapter). For example, you may use the imf_copy

mental ray also supports several other custom channels that will be discussed within the

book (in Chapter 3, “mental ray Output”), such as the Z-depth channel and motion vectors.

6 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 6

utility to convert image types, creating memory-mapped images by utilizing functions

from the IMG module. Hence these modules, which are at the core structure of mental ray,

are in fact “plug-in units,” which, when combined, form a larger, more-flexible system with

improved capabilities.

Another aspect of modularization is that all mental ray shaders are provided as external

plug-in programs designed for very specific tasks. These external shader libraries provide a

great deal of flexibility in developing custom tools and shaders, not just for programmers,

but for artists as well. For example, it is fairly simple and straightforward for artists to

append new shaders or shader libraries to mental ray, just as you can download and import

shaders into XSI, Maya, or 3ds Max. With mental ray, a new shader can be implemented

so that it is always available simply by adding its declaration file into the shader libraries

and linking it to mental ray. Shader libraries can be found in mental ray’s root directory

for each package, as discussed in the section “mental ray Shaders and Shader Libraries” later

in the chapter. With respect to modularity, shaders open the door to an ongoing develop-

ment process, which not only adds new shaders through a shader library, but primarily

leads to finding new and creative ways for blending several shaders into one complex shader

tree, forming a more robust material shader for surfaces or any other special effects.

On-Demand Execution and the Geometry Cache
When a render is executed, mental ray constructs a scene database, which is stored within

the geometry cache and contains all the relevant information mental ray currently requires

for executing the render. In essence, mental ray manages the cache in a way that allows

for information to be loaded and unloaded into the database while maintaining efficient

memory handling. Beginning with mental ray 3.x, the scene information is loaded into the

database on demand. Briefly, here’s how mental ray’s render management process works.

mental ray 3.x divides a render task into different render jobs, which are structured

based on some form of dependency so that they may be executed in the most efficient way.

In previous versions (2.x), mental ray would execute the render in consecutive phases. For

example, all the geometry would first be loaded into the cache and then tessellated before

a following phase could commence.

mental ray 3.x and later seek to optimize data flow with on-demand execution of jobs.

Thus, jobs are executed when needed rather than in a predetermined order. A job can

execute any type of task, such as tessellation, raytracing, calculating light maps, managing

Tessellation refers to all geometry—be it NURBS, polygons, or subdivision surfaces—in the

scene that must be converted (tessellated) into polygonal triangles before rendering the

geometry. This task has two primary phases: first loading the geometry into memory so the

renderer is aware of its existence, and then tessellating it into triangles.

the structure of mental ray ■ 7

08547c01.qxd 10/24/07 4:09 PM Page 7

texture data, rendering portions of the frame, and so forth, all based on the job status and

data flow. This means that memory can be handled more effectively. Essentially, during

rendering, most of the data that is being provided by the geometry cache to ongoing jobs

is stored in memory and within the machine limits. Note that the cache can store all types

of information, which may include spatial positioning, geometric tessellation data, texture

maps, photon maps, Final Gather points, and any other data it may require for rendering.

As the cache grows, the memory usage increases gradually until the machine limit or a

specified limit is reached. If the limit is reached, mental ray will dump certain information

from the cache to enable an ongoing render. This job-based model helps mental ray 3.x

improve memory handling and optimization.

Enabling Message Logging and Verbosity Levels

mental ray provides message logs that are output into the console window when rendering

so that you can track the rendering progress as well as retreive render statistics on the

“quality” of the render, which helps troubleshoot or further optimize a render. You can

control what information is displayed by enabling different levels of verbosity by using the

mental ray verbose command either from within a host application or on the command

line. When using a command-line renderer, you enable verbosity by specifying the -v

(flag) and a verbosity level, as seen here for mental ray stand-alone rendering, Maya, XSI

(-verbose), and 3ds Max command-line rendering. The topic of command-line rendering

is discussed further in the section “Using the Host Application’s Command Line” later in

this chapter.

C O M M A N D - L I N E C O D E S O U R C E A P P L I C A T I O N

ray -v 5 myfile.mi mental ray stand-alone

render -r mr -v 5 myfile.mb Maya command line

xsi -r -verbose “prog” -scene fileName.scn XSI command line

3dsmaxcmd -v:5 “scenes\anim.max” 3ds Max command line

The message log can be viewed in different places depending on the host application that is

executing the render. When using the mental ray stand-alone renderer or command-line ren-

dering, the message log appears in the console window, which you’ll see in Figure 1.5 in the

next section. There are seven levels of verbosity; each level builds on the previous level, intro-

ducing more information into the output console. In general, default verbosity is set to level 2,

and when enabled (verbosity specified without including a specific level) it defaults at level 5.

For most troubleshooting, and as a general method to keep track of render progress, verbose

levels 4 and 5 are useful. The following table describes the different levels of verbosity:

V E R B O S I T Y L E V E L M E S S A G E S L O G G E D

0 No messages

1 Fatal errors

2 Non-fatal errors

8 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 8

V E R B O S I T Y L E V E L M E S S A G E S L O G G E D

3 Warning messages

4 Informational messages

5 Progress messages

6 Debugging messages

7 Verbose debugging messages

Follow the steps presented for each host application to enable verbosity:

Maya

1. From the top menu bar navigate from Render ➔ Batch Render or Render Current Frame

and select the options box to reveal their attribute windows, as seen in Figure 1.2 for

batch rendering. Both have similar settings with a difference in purpose. The Render

Current Frame executes a render in the Render View, and the Batch Render is used

for executing animation sequences.

2. From under Verbosity Level dropdown list you can specify the message

level as seen in Figure 1.2, where Progress Messages are highlighted.

Maya offers verbose levels 0 through 6.

3. When rendering using the Render Current Frame attribute (or icon

shortcut), Windows users will see the output displayed in the Maya

Output Window; OS X users will see it within a console window. (OS X

users, note that you need to run Maya from the Maya console for this to

function correctly.)

4. When rendering using the Batch Render attribute the verbosity output is saved in the

Maya Render Log text file. The file is located under the user\My Documents\maya

directory. Note that in this mode the verbosity is not visible during the render in the

Maya Output window.

XSI

1. Navigate from the top main menu or the Render toolbar (on the left side) to Render ➔

Render Manager ➔ mental ray tab (from the left column) ➔ mental ray Render Options

rollout ➔ Diagnostics tab as seen in Figure 1.3. When per pass mental ray options are

in effect use the Current Pass ➔ mental ray Render Options, as further discussed in the

sidebar “The Render manager in XSI 6.0”.

2. You will see a list of verbosity levels under Logged Messages.

In previous versions of Maya (8.0 and lower), verbosity options are located under the Render

Settings window ➔ mental ray tab ➔ Translation rollout.

the structure of mental ray ■ 9

Figure 1.2

Enabling verbose
message output
from Maya. You’ll
see the resulting
messages in the
Maya Output win-
dow, the Maya con-
sole (OS X), or in the
Script Editor.

08547c01.qxd 10/24/07 4:09 PM Page 9

3. Enabling Progress messages as shown in Figure 1.3 will enable level 5 verbosity. XSI

verbose messages offer levels 2 through 7.

4. When rendering within XSI, you can see the verbosity output within the Script Editor

window.

3ds Max

1. From the Main Menu bar, navigate to Rendering ➔ mental ray Message Window.

2. This window, as shown in Figure 1.4, enables both specifying verbosity levels and

viewing the output results (mental ray progress) while rendering.

3. By specifying Information, you enable verbosity level 4. 3ds Max offers levels 2

(Open on Error), 6 (Debug), 5 (Progress), and 4 (Information) at the bottom

portion of the mental ray Messages window. The top portion of the window also

specifies information regarding the number of CPUs and threads that are being

used during the render.

4. From under the Main menu bar Customize, select Preferences… to reveal the Pref-

erence Settings window. Under the mental ray tab ➔ Write Message to File parameter

enables specifying an output log file that stores the verbosity messages as plain text,

based on the parameters defined under the mental ray Messages window. The Append

to File will enable adding these messages into an existing log, rather then overwrit-

ing the file.

With all these host applications, using the command-line renderer allows you to specify any

verbosity level, even if it does not appear within the host UI.

Figure 1.3

Enabling verbose
message output

from XSI. You’ll
see the resulting
messages in the

Script Editor.

10 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 10

T H E R E N D E R M A N A G E R I N X S I 6 . 0

The Render Manager window provides a more effective way to organize XSI passes and scene options. Essentially, the

underlying concept is that settings are generally specified globally affecting all scene passes, however, you can then fur-

ther apply independent per pass settings (overrides) when required. I will usually avoid any reference to scene (global) or

per pass (local) options unless specifically required, as in both cases the mental ray options have the same relevance, just

the context of pass or scene may differ. The concepts of passes and output are discussed in more detail in Chapter 3.

Consider that if you navigate in the Render Manger window to the Current Pass (in the left column) ➔ Pass mental ray ➔

mental ray Render Options rollout, the same mental ray options appear, which are tied with the global mental ray render

options found under the mental ray tab (from the left column). Detaching this dependency is applied by pressing the Make

Local to Current Pass option under Current Pass ➔ mental ray Render Options ➔ Rendering tab, which breaks the automatic

linkage between global mental ray options (in the left column) and the current pass mental ray options. In both cases all

the options are equivalent only with a difference in purpose, which is per pass, or globally for the scene. Once detached

clearly the per pass options take effect.

In addition, the Current Pass ➔ Pass Output tab also has a global dependency driven by the Scene tab (on the left col-

umn). It too can be disconnected by specifying different options under the Current Pass ➔ Pass Output ➔ Output tab. For

example, if you look under the Scene tab, notice that the Scene Globals➔ Scene Renderer dropdown list is set to mental ray,

defining mental ray as the current scene renderer. If you look under Current Pass ➔ Output ➔ Pass Renderer dropdown list,

notice that Use Scene Render Options is specified as a default, deriving the scene renderer from the previous (global) scene

parameter. Thus you can always override this local option specifying the hardware renderer, or specifically specifying mental

ray (if it differs from the scene global option). The same is true for the remaining options found under the Pass Output tab.

Notice that when you begin to enable per pass options their relevant properties appear, enabling you to specify per pass

overrides.

Figure 1.4

Enabling verbose
message output
from 3ds Max. The
mental ray Messages
window allows you
to both set the ver-
bosity level and see
the output during
rendering.

the structure of mental ray ■ 11

08547c01.qxd 10/24/07 4:09 PM Page 11

An Example of On-Demand Execution

Now that you understand how to output messages during rendering, let’s look at what

they tell you about on-demand job execution. Figure 1.5 illustrates part of the message

log for a render using verbosity level 5. I’ve added labels and highlighting so that you can

follow the discussion.

The first highlighted line reads as follows:

JOB 0.15 progr: 44.5% rendered on Wiley.15

All lines are formatted in a similar way, providing information from various mental ray

modules and jobs. From left to right, the line tells us that the module JOB (a general indi-

cation of the render progress of a specific job, or render task, unique to mental ray 3.x and

up) is currently operating on the following machines and threads. The machine reference

is the first number (0) followed by a decimal point and the thread number (15). Machine 0

indicates the client machine that initiated the render, the machine that is currently being

used to submit the render. The following message deals with the type of message this line

is providing and its verbosity level, hence a progress (level 5) message, which is then fol-

lowed by a plain-English description for the current information. The description confirms

that mental ray has completed 44.5 percent of the rendering on this machine (0 - Wiley)

using thread number 15, which is clearly a progress message on the status of a particular

job, hence a level-5 verbosity message.

A

B

Figure 1.5

mental ray’s
message log in

the console window.
Here you can iden-

tify the render
progress as well as

troubleshoot
problematic

renders.

12 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 12

In section A of Figure 1.5, the highlighted text reads as follows:

IMG 0.7 progr: opening texture F:path…, for reading

This line tells us that the IMG module is providing the progress message and that this

module is currently loading a texture file into memory. The messages in section B begin

as follows:

GAPM 0.5 info: created 16 tesselation jobs from object...

This line indicates that the GAPM module, which deals with geometry approximation, is

creating new tessellation jobs. Note that 50.0 percent of the render has already completed

and mental ray is still initializing new tessellation jobs during the render. This should pro-

vide some insight into how mental ray actually utilizes the on-demand rendering process

in practice. That is, geometry will be calculated only when needed rather than as prerequi-

site for rendering.

Because mental ray (3.x and up) executes only on-demand jobs, it does not need to

tessellate an entire scene, only the elements that are required by the jobs. This essentially

enables mental ray to ignore geometry that is not needed for a particular frame, even if it

exists within the scene. Only geometry that is needed for a given frame will be tessellated.

Further, if geometry is no longer needed, mental ray can clear it from cache, freeing up

space for new geometry based on demand. Of course, this approach also has disadvantages:

If the memory limit is exceeded, mental ray may dump the cache of geometry that will be

needed in a subsequent frame, or even within that same frame (the later is unlikely). If

geometry is removed from the cache, then that geometry will need to be recalculated the

next time it needs to be used, such as in a subsequent frame. This sort of memory-dump

behavior may be required for extremely “heavy” scenes or machines with a low memory

capacity. On the other hand, if mental ray recognizes that the geometry will be needed in

subsequent frames or by other jobs, it will try to keep it in the cache as long as there is suf-

ficient memory to support completing other ongoing jobs. Essentially, any type of data

may be loaded or removed from the geometry cache, based on mental ray’s ability to

determine the best workflow for rendering. Thus, mental ray efficiently divides the scene

into small jobs that optimize render times and improve memory handling, trying to fol-

low the most efficient path while increasing memory gradually in a stable manner.

Images loaded into memory, whether texture files, light maps, or any other image

file data, have a significant impact on memory usage. Notice that Figure 1.5 displays

two RAM PF Usage indicators showing how the memory usage increased after loading

in additional images between 40 percent and 50 percent of the render completion. mental

ray tries to improve image handling in different ways. For example, additional boosts

in performance are provided by mental ray’s ability to consider partial Shadow maps

that can be quite large in file size. (You’ll learn more about shadow maps in Chapter 7,

“Shadow Algorithms.”)

the structure of mental ray ■ 13

08547c01.qxd 10/24/07 4:09 PM Page 13

Dividing a rendering task into jobs also helps mental ray maximize performance by

taking advantage of multiple processors on a single machine (thread parallelism). With

multiple machines, network parallelism enables mental ray to use all the available proces-

sors over a network of multiprocessor machines to execute jobs. This significantly increases

the ability to process large frames and data. For example, a traditional nonparallel render

would render a frame on each processor, separate from the other frames. With parallelism,

one frame can be computed over several processors and networked machines. Hence, net-

work rendering can take advantage of mental ray’s abilities to divide a render into jobs

and effectively distribute them over the network, efficiently handling the flow of data.

mental ray 3.2 and above also supports Intel’s Hyper-Threading, when it’s available.

mental ray Integration
This book focuses on using mental ray as it’s integrated with three of the most widely used

packages: Autodesk (Maya and 3ds Max) and Avid (XSI).

XSI has always incorporated mental ray, which is its default software renderer and

currently the only software renderer that ships with it. Maya and 3ds Max both added

integration with mental ray as their users came to need an alternative rendering solution.

For users, this seamless integration appears simple and straightforward; behind the scenes,

however, is a complex integration based on ongoing technical development. The function-

ality that bridges between packages is quite complex, and the integration methods may

differ between packages.

Currently, the best integration is within XSI, which is designed to render solely with

mental ray. One of my favorite features about XSI, which is absolutely invaluable, is its

ability to continuously update a rendered region regardless of the components that are

being changed. Thus, XSI allows every change within the rendered region—including

raytracing, global render settings such as sampling or diagnostics, and even indirect illu-

mination features—to be updated, all interactively and while you view the rendered result.

On the other hand, Maya’s Interactive Photorealistic Rendering (IPR) view and 3ds Max

Active Shade view both have limited abilities to display updates while you tweak mental

ray–specific features; for example, neither software package supports displaying render

settings or raytracing features, such as reflections, refractions, ambient occlusion, and

indirect illumination simulations, among other mental ray–specific features.

Some mental ray functionalities and shaders exist only in one package or are better

implemented in one package than in another. Examples include Maya’s unique phenome-

non shaders and comprehensive export settings (for .mi files), XSI’s shader wizard that

supports implementing new mental ray shaders, and 3ds Max’s great implementation for

mental ray’s multipass rendering feature, which deals with saving separate mental ray

sampling files and then merging them together (see Chapter 3).

14 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 14

The complex integration between host applications and mental ray is accessed through

the mental ray application programming interface (API). This not only enables software

developers to access all of mental ray’s features; it also enhances their ability to further

customize tools that integrate mental ray with their own application. This way, they pro-

vide a graphical user interface based on the different mental ray functions (modules) with

support for controlling mental ray settings from within their host application (XSI, Maya,

3ds Max). Maya and XSI also provide their own mental ray stand-alone versions with their

packages. Each package provides extended access to the host’s customized integration and

any plug-in tools they may have customized, such as shader libraries.

Typically, when you render a scene using mental ray, a translator program (discussed

earlier under “Host Translators”), is used to translate the host application’s scene descrip-

tion into the mental images scene description for rendering. Each package has its own scene

description language as its backbone, which means that scene files from Maya, XSI, and

3ds Max are all translated into equivalent mental images (ASCII or binary) files, which can

then be saved as an .mi file (mental images file) and rendered with the stand-alone mental

ray renderer. Alternatively, host applications can execute renders directly from within their

applications through the use of the mental ray API and the translator application.

Exporting an .mi File
The following steps can be taken to export an .mi file from host applications; note that they

all offer similar settings, with Maya offering the most-robust settings for customizing the

translator export. Figures 1.6, 1.7, and 1.8 show the different export settings from within

each application.

M A Y A

1. Navigate from the top main menu to File ➔ Export All (or Export Selection if you just

want to export a specific element).

2. From within the Export All Options window, select mentalRay from the File Type

drop-down menu, as shown in Figure 1.6.

3. Notice that when the Export Selected Items Only check box (not seen in the figure) is

checked, several additional settings appear, which enable controlling and customiz-

ing the translation process from Maya to an .mi file. Maya offers options to export

specific features such as geometry that can then be externally linked into an .mi file

(on-demand geometry) during rendering, or exporting mental ray shading networks

as Phenomenon shaders (see the section “mental ray Shaders and Shader Libraries”

later in this chapter).

4. After selecting the features you would like to export, you simply execute the com-

mand by clicking the Apply button from the lower portion of the window.

mental ray integration ■ 15

08547c01.qxd 10/24/07 4:09 PM Page 15

X S I

1. Navigate from the top main menu or under the Render toolbar (on the left side) to

Render ➔ Render Manager.

2. From the mental ray tab (or the Current Pass tab) reveal the mental ray Render

Options ➔ mi Archives tab. As with all host applications, a number of features appear

for controlling how these settings are exported, as seen in Figure 1.7. Notice that with

XSI, you have an option to override the scene globals using the equivalent Current

Pass options, as discussed under “The Render Manger in XSI 6.0” sidebar.

3. In the Render Manager window under Current Pass ➔ Pass Output tab ➔ Archive, the

Scene Archiving property (when enabled) exports frames incrementally within an .mi

file, a topic further discussed in the following “Incremental Frames” section.

4. After specifying the required settings, navigate from the main menu bar or the Render

toolbar to Export ➔ Current Pass (or any of the other options) to initiate the export.

The files will be saved into the current projects “Render_Pictures” directory.

3 D S M A X

1. From the main toolbar, select the Rendering ➔ Render… (F8) window, which opens

the Render Scene: mental ray Renderer window.

Figure 1.7

The XSI-to-mental-ray export options found
under the mental ray Render Options ➔ mi
Archives for a given pass, or globally for a
scene.

Figure 1.6

The Maya-to-mental-ray export dialog window (par-
tial display). Here you control how Maya converts to
mental ray .mi file formats.

16 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 16

2. In the Render Scene: mental ray Renderer window, reveal the Processing tab ➔ Transla-

tor Options rollout options. Within the Translator Options is an Export to .mi File

section with some relevant settings, as seen in Figure 1.8.

3. When the Export on Render check box is enabled, an .mi file rather than an

image is created when you render. After, after enabling this check box, click

Render (as you would for initiating any render) to export the .mi file. The

file will appear in the Render Output folder in your 3ds Max directory.

Commonalties between All Hosts

As with most mental ray features, there are several commonalities between these applica-

tions, and in this case they specify formatting options for exporting .mi files. All three

applications derive most render options from their render settings as defined by the user.

With Maya and 3ds Max, these would be the render settings you specify within the mental

ray–specific render settings in each application and the Common render settings tab.

Some typical settings that are derived from the render settings into the exported .mi

files relate to sequence frame length for animations as well as quality control settings.

With Maya and XSI, these settings are also based on the current render pass (XSI) or the

current render layer (Maya).

I N C R E M E N T A L F R A M E S

mental ray 3.x and up integrated a new approach with respect to describing animation

within .mi files. This new approach refers to defining only changes that occur from one

frame to the next, hence describing an incremental change. With this approach, rather

than geometry or any other feature being described on a per-frame basis, only changes

from the preceding frame need to be provided. Note that each package provides an option

to export mental ray both on per-file basis (a file per frame) and as a single file that incor-

porates this new incremental approach. In 3ds Max, there is an Incremental (Single File)

attribute, within XSI there is the same Scene Archiving property, and Maya outputs incre-

mentally by excluding the Output File Per Frame option. Hence all three packages provide

the same function in similar ways, and all describe incremental frames using the same

mental images scene description structure.

The benefit of using incremental frames lends to optimizing rendering performance,

as well as making .mi files more readable, by reducing the amount of clutter found

within repeatedly redefined frames. For example, consider a camera traveling through an

To see an example of this, export a sequence of about 10 frames from your application of

choice and then examine the .mi file within a text editor. Try different settings from the

export options and note how they influence the export.

mental ray integration ■ 17

Figure 1.8

The 3ds Max Trans-
lator Options rollout
for exporting .mi
files from within
3ds Max

08547c01.qxd 10/24/07 4:09 PM Page 17

environment that requires only the camera’s spatial position for each frame to change, in

which case only the camera would appear in the incremental statements within the .mi file.

A S C I I V S . B I N A R Y E X P O R T

Each host application also offers ASCII or binary export options for .mi files. Thus mental

ray files can either be ASCII (plain text files) or binary files. ASCII-encoded files are human-

readable text files, and each character (of any type) is represented by 1 byte. Thus, with

ASCII-encoded files, there is a one-to-one mapping between characters and bytes. Binary

files support compression, particularly of vector data, in a form that provides more charac-

ters to be represented by fewer bytes; hence the file can be smaller and not as user-friendly.

Typically for editing .mi files, you would take advantage of the ASCII export features.

Additional export features from these host applications relate to geometry tessellation, file

linking, and declarations, among other features, which change how the host applications

export .mi files.

mental ray Components and Application Files
As integrated into host software, mental ray consists of three main components: applica-

tion files, shader libraries, and shader declaration files. These files are always stored within

the root directory of each application. They include most of the base files that ship with

mental ray, as well as additional files provided by the different OEM partners.

The additional files that each application provides are primarily the host’s custom

shader libraries, which describe host specific shaders found within that application.

With XSI, as it is solely based on mental ray, these are actually custom shaders developed

specifically for rendering with mental ray. In general, shader libraries provide for three

main functions: converting application-based shaders to mental ray, integrating new

custom shaders within the application, and loading the mental ray base shader libraries

into the application. (You’ll learn more about shaders in mental ray later in this chapter

and in Chapters 10 and 11.) In Maya or 3ds Max, for example, their software native (not

mental ray–specific) shaders can be found within the extended mental ray shader libraries

(mayabase.mi and 3dsmax8.mi, respectively) and are used to translate already existing

“native” shading models into models that mental ray can support and render, hence inte-

grating these shaders with mental ray rendering. The Paint phenomenon shader library,

however, is a collection of mental ray–specific custom shaders that deal specifically with

vehicle shading and have been integrated into Maya, providing new mental ray custom

shaders that are not part of the mental ray base shader libraries or XSI, and 3ds Max,

native (host specific) shaders.

Tables 1.1–1.5 summarize the different types of files typically included with host appli-

cations, and Table 1.6 shows their directory locations for mental ray source files.

18 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 18

A P P L I C A T I O N S D E F I N I T I O N

ray mental ray renderer (the mental ray executable file is labeled differently
in host specific stand-alone versions.)

imf_disp Image display utility. Type imf_disp into a command line console win-
dow to open this utility. Note that you may need to specify the utility’s
directory location; you can then use it to view mental ray–supported
image formats.

imf_copy Image copying and conversion utility. Used to convert to different
image formats and to mental ray memory-mapped images (.map). Type
imf_copy into the command line and then execute to see a list of sup-
ported flags and help.

imf_info Provides image-related info.

imf_diff A comparison utility for comparing images.

mkmishader Used for writing shaders; creates C-based shader skeletons.

fg_copy A utility that handles merging several Final Gather maps and is
extremely useful at reducing Final Gather flickering. More on this in
Chapter 13, “Final Gathering and Ambient Occlusion.”

Note that XSI and Maya use different versions of the ray render command with their respective stand-alone versions. XSI

uses the ray3 command and Maya uses the mentalrayrender command.

D E C L A R A T I O N F I L E S H A D E R L I B R A R Y

base.mi base.dll or base.so

physics.mi physics.dll or physics.so

contour.mi contour.dll or contour.so

subsurface.mi Subsurface.dll or subsurface.so

architectural.mi architectural.dll or architectural.so

paint.mi paint.dll or paint.so

With respect to the OS platform, shaders are Dynamic Shared Object (DSO) files on Unix-based systems and Dynamic

Link Libraries (DLLs) on Windows-based systems.

D E C L A R A T I O N F I L E S H A D E R L I B R A R Y

mayabase.mi mayabase.dll

mayahair.mi mayahair.dll

surfaceSampler.mi surfaceSampler.dll

D E C L A R A T I O N F I L E S H A D E R L I B R A R Y

sibase.mi Sibase.dll

motionblur.mi motionblur.dll

softimage.mi Softimage.dll

softimage.mi2 Softimage.dll

legacy.mi Legacy.dll

In XSI an some base and custom shaders exist, which are not ecessarily exposed in the UI. You can find the SPDL files used

to declare these (unexposed) shaders within the different directories found in the installation path under; Softimage\

XSI_6.0\Application\phenolib\spdl, for example, the mibase folder. The SPDL files can then be used to install unexposed

shaders using the Plug-in Manager window, a topic further discussed in Chapter 10.

Table 1.4

Custom Shader
Declaration and
Library Files
Included with XSI

Table 1.3

Custom Shader
Declaration and
Library Files Included
with Maya

Table 1.2

Shader Declaration
and Shader Library
Files Typically
Included with Host
Applications

Table 1.1

Base Application
Files Typically
Included with
Maya and XSI

mental ray integration ■ 19

08547c01.qxd 10/24/07 4:09 PM Page 19

D E C L A R A T I O N F I L E S H A D E R L I B R A R Y

3dsmax8.mi 3dsmax8.dll

3dsmaxhair.mi 3dsmaxhair.dll

physics_phen.mi Physics_phen.dll

lume.mi2 lume.dll

A P P L I C A T I O N W I N D O W S D I R E C T O R Y

Maya C:\Program Files\Alias\Maya7.0\mentalray

XSI C:\Softimage\XSI_5.0\Application\rsrc

3ds Max C:\Program Files\Autodesk\3ds Max 9\mentalray\
shaders_standard

Typically, an include folder contains all the shader declaration files and an additional lib folder includes the .dll or .so

shader libraries. Also note that C:\ simply represents the root drive; your actual drive may be different.

The mental ray Initialization File (.rayrc)
Each application uses an additional file, named rayrc (or some variant), that defines and

links mental ray shader libraries and also sets mental ray environment variables. The rayrc

file is essential for mental ray’s integration with these applications. It can be found within

the same mental ray directories that include shader declaration files and libraries:

A P P L I C A T I O N R A Y R C D I R E C T O R Y R A Y R C F I L E

Maya Alias\Maya7.0\mentalray\ maya.rayrc

XSI Softimage\XSI_5.0\Application\rsrc\ ray3rc

3ds Max Autodesk\3ds Max 9\mentalray\ rayrc

The rayrc file is loaded when your application loads. It provides your application

and mental ray with shader declarations and links to shader libraries so that you may

render mental ray shaders from within these applications. Any additional shader or shader

library that you would like to add to your application must first be declared and linked

through this rayrc file. The following is a portion of the maya.rayrc file that deals with

linking shader libraries and shader declaration files when Maya is started:

Copyright 1986-2003 by mental images GmbH & Co.KG, Fasanenstr. 81,

D-10623

Berlin, Germany. All rights reserved.

registry “{MRMAYA_START}”

link “{MAYABASE}/lib/base.{DSO}”

link “{MAYABASE}/lib/physics.{DSO}”

link “{MAYABASE}/lib/mayabase.{DSO}”

link “{MAYABASE}/lib/contour.{DSO}”

link “{MAYABASE}/lib/subsurface.{DSO}”

link “{MAYABASE}/lib/paint.{DSO}”

Table 1.6

Directory Locations
for mental ray

Source Files

Table 1.5

Custom Shader
Declaration and

Library Files
Included with

3ds Max

20 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 20

link “{MAYABASE}/lib/mi_openexr.{DSO}”

link “{MAYABASE}/lib/mayahair.{DSO}”

mi “{MAYABASE}/include/mayabase.mi”

mi “{MAYABASE}/include/base.mi”

mi “{MAYABASE}/include/physics.mi”

mi “{MAYABASE}/include/contour.mi”

mi “{MAYABASE}/include/subsurface.mi”

mi “{MAYABASE}/include/paint.mi”

mi “{MAYABASE}/include/mayahair.mi”

echo “mental ray for Maya - startup done”

end registry

$lookup “{MRMAYA_START}”

Each .mi file listed within the rayrc file consists of shader declarations in plain text,

using the mental images scene description language. The link statements are used to con-

nect these declarations with the compiled shaders from their respective shader libraries.

You can learn more about this integration in the section “mental ray Shaders and Shader

Libraries” later in this chapter.

Command-Line Rendering and the
Stand-Alone Renderer
Another powerful feature mental ray offers is a stand-alone renderer. In general, large

productions or smaller high-end specialist production houses can get more from mental

ray by using the stand-alone renderer for troubleshooting. They use it primarily for taking

advantage of additional mental ray features that are not fully incorporated in host software

packages and instead of, or as a means to develop render farms without a need to install

host applications on render nodes (making it more cost-effective). mental ray has several

features for fine-tuning renders and dealing with problems such as memory or flickering

that can be improved while using the full power of mental ray, the stand-alone version.

With the stand-alone renderer, most mental ray rendering options can be enabled, changed,

or disabled directly by using override command-line commands while executing renders.

For example, suppose you are rendering a Maya scene with the mental ray stand-alone

With Maya 8, Maya 8 and 3ds Max 9 it will suffice to place new shader DLLs and .mi declara-

tion files within the correct directories. There is no longer a need to add them to the rayrc

file because those directoriesare searched for any available shader libraries and appended

automatically. In Maya use the mentalray\include and lib folders, and with 3ds Max use the

shaders_autoload\include and shaders folders. With XSI shaders are typically installed using

.xsiaddon files that are unpacked into the user add-on paths. The topic of custom shaders

and installation is discussed in detail in Chapter 11.

command-line rendering and the stand-alone renderer ■ 21

08547c01.qxd 10/24/07 4:09 PM Page 21

renderer. After the host scene has been converted to an .mi file, you recognize that you

need higher sampling values or more raytracing rays. You can just type in the appropriate

flags and resend the render; you won’t have to load the Maya UI, apply the changes, then

resave and render the scene. In general for shader writers and technical directors, it is eas-

ier to write custom code that controls mental ray than to develop a plug-in for a host. For

some, creating custom tools for rendering specific tasks may be easier with the stand-alone

version rather than a host application.

Using the Host Application’s Command Line
We have already covered the two main options for rendering with mental ray, one from

within the host application and the other externally with the stand-alone renderer, in

previous sections in this chapter. The stand-alone renderer obviously requires an .mi file

and cannot render the host’s native file format without translation. Another option for

rendering is using the host application’s command-line utilities. This means you can still

use command-line rendering, but through the host’s application and not with the mental

ray stand-alone renderer. This sort of command-line rendering does not support using an

.mi file, since it works exactly the same as within the host application. Thus, a Maya, XSI,

or 3ds Max command-line render will use either an .mb or .ma (Maya), .scn (XSI), or .max

(3ds Max) binary or ASCII file as a source file. Thus, rendering through these host com-

mand-line utilities, still requires that the host application utilize its translator to provide a

mental images renderable file.

Some advantages of using command-line rendering are reducing memory the full host

application normally requires when the UI is enabled, specifying batch render scripts that

perform several render operations consecutively, and quickly specifying different render

setting overrides. With respect to command-line overrides, you can use these overrides

(flags) only within the limits of the host’s supported flags. With Maya and 3ds Max, the

available mental ray flags are very limited; hence their command-line utilities don’t sup-

port the entire range of flags that exist with the stand-alone renderer. Each application

provides an extensive set of flags for its native renderer, including common settings such

as frame range, resolution, aspect ratios, and so forth, as well as some extended flags

specifically for mental ray. XSI, as mental ray is its native renderer, supports the widest

range of mental ray–specific command-line flags. Another point for consideration is that

some shops develop in-house tools for their pipeline using Java, Perl, Python, or another

programming language; these tools can then automatically construct and execute com-

mand-line (or shell) renders on a network by piping code for execution, provided the

command-line utility they access supports the settings they wish to override.

Currently, customized stand-alone packages are provided for Maya and XSI. 3ds Max requires

you use the mental images stand-alone package.

22 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 22

In general, it is always better to render from a command-line utility rather than from

within a package. Aside from reducing the amount of memory used on your machine, you

gain the ability to list several renders within a command-line render script file known as a

batch render script, discussed in the section “Batch Rendering.” Command-line rendering

can be executed directly in a command prompt window in Windows (or a shell in Unix-

based systems) by typing the commands discussed in the next sections for each host appli-

cation. Note that the path to the render utility with XSI and 3ds Max must be specified as

part of the syntax; alternatively, if you navigate to that directory in advance, you can then

execute the render without specifying the path. Let’s look at an example of a command-

line render using each host.

Command-Line Render Execution

On Windows systems, to open the command prompt, simply choose Run from the Start

menu. You are then prompted for a program to execute. Type cmd into the text line and

click OK to execute. The command-prompt window will open, typically in your default

directory. With XSI and 3ds Max, you then need to either navigate to the directory

where the render utility is located or specify that directory with the render command (see

examples later). In addition, with all hosts you must specify the directory for the scene file

that you wish to render or navigate to that directory and execute the command there,

which then does not require you to specify a full path.

Note that you can change a directory in the command prompt by copying and pasting

the directory using the chdir command-prompt command. For example, for the 3ds Max

directory, enter the following:

chdir “C:\Program Files\Autodesk\3ds Max 9\”

Once the directory is set, in most cases you can then specify relative paths for the scene

and image files from the current location. You will see the render command in the XSI and

3ds Max batch render script examples on the book CD; the following sections show how

to use it with each host.

M A Y A

With Maya, the command can be entered in any command prompt directory without

specifying a path for the Maya render utility; however, you must specify a path for the

scene file or navigate to that directory in advance. The following line can then be used to

execute a render:

render -r mr -v 5 -s 1 -e 10 -b 1 “…path\fileName.mb”

This line, read from left to right, has the following meaning: render starts a Maya ren-

der, and the -r mr flag specifies that mental ray should be used (mr for mental ray, sw for

software, etc.). Verbosity is specified with the -v 5 flag, equivalent to level-5 progress

messages. -s 1, -e 10, and -b 1 specify start frame, end frame, and step increment frame,

respectively. The path and filename are indicated at the end. If you type render -r mr

command-line rendering and the stand-alone renderer ■ 23

08547c01.qxd 10/24/07 4:09 PM Page 23

-help the -help flag provides a list of mental ray command line options you can review.

Later, we’ll look at using this command within a batch script.

X S I

With XSI, the command can be entered in any command prompt directory as long as you

specify the full path, as in this example:

C:\Softimage\XSI_6.0\Application\bin\xsi -r

You can also use just the xsi command if you navigate to that directory before execut-

ing the command, or alternatively you can use the XSI-specific command prompt. You

can find the XSI command-prompt under the Softimage program folder through your Start

menu. In any case, you must specify a path for the scene file or navigate to that directory

in advance. The following line can then be used to execute a render:

xsi -r -s 1,5,1 -verbose “prog” -scene “…path\fileName.scn”

This line reads from left to right as follows: xsi means start an XSI render, and the -r

flag specifies rendering. Note that if you just type xsi and execute, the XSI application will

launch. The -s flag is an abbreviated flag specifying the start, end, and step frames with

comma-separated values. Verbosity -verbose “prog” specifies an output of level-5 progress

messages, and the filename is indicated at the end. In general, the filename should be spec-

ified with a full or relative path, especially when using a script. If you type xsi -r -h the -h

(help) flag provides a list of command line options you can review.

3 D S M A X

With 3ds Max, the command entered in the command prompt must specify the full path

to the render command; for example, on most Windows machines the path would be as

follows:

C:\Program Files\Autodesk\3ds Max 9\3dsmaxcmd -?

The -? flag is a help flag that will list all the options for command line rendering. You

can also use just the 3dsmaxcmd command if you navigate to that directory before executing

the command. You can find that command in the the root 3dsMax directory. The follow-

ing line is then used to execute a render from the 3ds Max 9 directory:

3dsmaxcmd -frames:0-10 -v:5 “scenes\filename.max”

This line reads from left to right as follows: 3dsmaxcmd means start a 3ds Max render.

The -sframes:0-10 flag specifies the render frame range. Verbosity -v:5 specifies an output

of level-5 progress messages, and the filename is indicated at the end. In general, the filename

should be specified with a full or relative path, especially when using a script.

Batch Rendering
You can open a simple text file and list several lines (as seen in the following code), which

will then enable batch rendering. As one render job completes, the next one can be executed.

This sort of render list can be saved as an executable file. Within such a render script file,

24 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 24

you may specify mental ray stand-alone renders or host command-line utility rendering.

The following examples demonstrate an XSI command-line render script that renders sep-

arate files with different frames for each file.

Note that with XSI, you can only batch render continuously when using the XSI Batch

render utility. I omitted the full paths, hence the three dots in the path directory. Note that

with XSI (and 3ds Max), I first indicate a change directory (chdir) command so that the

command prompt initiates from the correct directory, where the xsibatch.exe utility

exists; without that, it will not find the utility:

chdir “C:\Softimage\XSI_6.0\Application\bin\”

xsibatch -r -s 1,10,1 -scene C:\...\fileName1.scn

xsibatch -r -s 10,20,1 -scene C:\...\fileName2.scn

xsibatch -r -s 20,30,1 -scene C:\...\fileName3.scn

pause

The pause command is another command-prompt command that keeps the command

prompt open after rendering has completed so you may review render statistics; otherwise,

once the render completes, the command prompt closes automatically. If you specify within

the host to save verbosity output to a file, as demonstrated earlier under “Enabling Mes-

sage Logging and Verbosity Levels”, then you don't really need to use the pause command

If you type such a script into a simple text document, such as a Notepad document in

Windows, you can save the script as a BAT (.bat) executable file simply by typing the

name in quotes when prompted to save, as seen in Figure 1.9. For now, whether you are

using Maya, XSI, or 3ds Max, I have provided batch-render scripts (for Windows systems)

for each application in the Chapter 1 directory on the companion CD. Open these files

and examine them; they should help you quickly and easily set up

your own batch-render scripts. Note that you must adjust directo-

ries and filenames to match your system and files.

If you’re using a Unix-based system (OSX or Linux), you can use the same syntax in a

standard text file, but you must convert the file into an executable file through the termi-

nal by executing the chmod a+x command.

mental ray Shaders and Shader Libraries
Shaders are the fundamental building blocks of rendering software. As you probably know

from other applications, a shader is a program that determines the surface characteristics

of an object in a 3D drawing. But mental ray shaders are far more than the typical surface

shaders we commonly think of. There are material shaders, light shaders, geometric shaders,

texture shaders, camera lenses, and more. You will learn a great deal about mental ray and

its shader capabilities throughout this book. The mental ray shader libraries include an

extensive collection of base and custom shaders. They include common shaders, like the

familiar Blinn, Phong, Lambertian, and Anisotropic shaders, as well as the typical texture-

placement shaders and light shaders that are commonly found within 3D packages.

mental ray shaders and shader libraries ■ 25

Figure 1.9

Saving this plain
text file as a BAT
file creates an exe-
cutable file that can
be used to submit a
render list to either
a host command-
line render utility
or the stand-alone
renderer.

08547c01.qxd 10/24/07 4:09 PM Page 25

Keeping these functions in external libraries enables software developers and mental ray

users to easily integrate new custom shaders and shader libraries.

Shader libraries are collections of C- or C++-based shaders that have been compiled

for mental ray and can be described as plug-in programs for mental ray. These libraries

may include a cluster of shaders that handle numerous specific tasks. The declaration files

describe these shaders and their options using the mental images scene description lan-

guage. In essence, to use a shader you must effectively declare it within the mental ray .mi

file. The mental images declaration files (.mi) essentially transfer shader information from

these declaration files into the mental ray file. Once declared, they know how to interact

with their counterparts from within the shader libraries. So you may think of these decla-

ration files as your interface into the shader libraries.

Most mental ray shaders perform very specific functions. This approach lends itself to

modularization and custom shader development. Because each shader is designed to handle

a very particular task, shaders are not interdependent and can be used in various ways. For

example, if you use a base illumination shader such as a Blinn, you can then connect it to a

sample compositing reflection shader that provides reflections. Because the mental ray Blinn

shader does not include a reflection shader, it can take advantage of a new and improved

reflection, as you will see in Chapter 11. In contrast, if you used a host’s Blinn shader,

a reflection shader would already be part of its functionality and you could use only that

built-in feature. Stripping down shaders to their base functionalities gives the developer

more control in creating complex custom effects and reduces unnecessary duplication. In

our example, the developer would need to write only the new reflection shader rather than

a whole new Blinn shader, which obviously requires more work and provides less flexibility.

The key concept behind this modular approach is to enable a flexible procedural approach

for designing custom effects, combining multiple shaders in a way that provides for more-

complex effects and more flexibility as well as a speedier development process.

Shaders provided by the 3D host applications are usually far more robust than a simple

shader. Hence, some of these applications have already provided some sort of proce-

dural shader tree based on several “simple” mental ray shaders. These shader trees are hid-

den from the user and typically combined by using mental ray’s Phenomenon technology.

Phenomena
Shaders can be combined and interact with any other type of shader. For example, you

may use a geometric shader to define a volume in the scene and then, using a variety of

other shaders, apply a complex volumetric effect, or you could use several shaders to

create a complex surface-shading effect such as subsurface scattering for skin. These

shader graphs may be combined using several base mental ray shaders from the mental ray

libraries (base.mi, physics.mi, subsurface.mi) that may include illumination shaders,

light maps, sample compositing shaders, photonic shaders, environmental shaders, and

26 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 26

essentially any type of shader. The process of compiling individual shaders into one of

these compounds may be tedious and redundant. To spare you this effort, mental ray

allows you to create a Phenomenon shader.

Phenomena are shader trees compiled from several other shaders, forming a complex

effect. Once you have named and exported the Phenomenon, this new shader can be linked

through the rayrc file (see ” The mental ray Initialization File (.rayrc)” earlier in this chapter).

The shader will then become available as a single node within each application. The entire

shader tree remains hidden from the user so that the user has access to a single shader inter-

face that essentially controls several embedded shaders from within the Phenomenon shader

tree. The developer can create an interface for the new Phenomenon shader either within

these applications or by editing the .mi file. Essentially, the creator decides what settings

should become available from within the tree and manually links them to the shader interface.

Note that a phenomenon shader does not require a compiled shader library, as it is

based on existing shaders. Thus only a declaration file is required that provides access to

the shaders settings as well as the shader libraries that were used to derive this new shader.

In production this tool can become very useful to streamline redundant shader trees and

simplify the general process.

Indirect Illumination
mental ray is packed with tools to simulate the realistic interaction of indirect light with

surfaces. As light reflects, it hits and “bounces” from one surface to the next. This explains

why, although you most likely wouldn’t have a light fixture under your desk, light that hits

the floor would bounce and illuminat the entire region beneath the desk. This light inter-

action carries light energy and color from one surface to the next—a phenomenon known

as color bleeding. To generate indirect illumination, mental ray uses a Photon Map that

describes the contribution of indirect light on surfaces. Raytracing, in this case, is the process

of emitting light photons from a light source and tracking its behavior throughout the

scene. This sort of indirect illumination is used with the following mental ray features:

Global illumination is mental ray’s primary indirect lighting feature; it calculates the
indirect light bounce of diffused light. Diffused light in CG refers to the diffused
color contribution from material shaders.

Caustic light, a subset of global illumination, represents the light behavior for surface
reflections and refractions. As light reflects or refracts through surfaces, it typically
magnifies in intensity and appears to focus or spread out based on surface character-
istics. By using global illumination and caustics, you can simulate a wide range of
light characteristics, which include diffuse, glossy, and specular light reflections.
These light characteristics are discussed in detail in Chapter 10 “The Fundamentals
of Light and Shading Models.”

indirect illumination ■ 27

08547c01.qxd 10/24/07 4:09 PM Page 27

Participating Media refers to light scattering from particles suspended in air. This
term is used to describe particles that participate in the illumination within a
defined region. This is yet another powerful feature mental ray offers to simulate
non-geometric effects that influence lighting. Typically, suspended particles of dust
or smoke contribute by reflecting and absorbing light within a scene. This also has
an effect on shadowing and direct lighting in the scene, as would any geometry
that blocks or reflects light. You’ll learn about participating media in Chapter 12,
“Indirect Illumination.”

Sub-surface scattering refers to the transmission of photons through translucent
surfaces. Typically, this refers to skin, jade, wax, plastic, and several other types
of surface where scattered light within the surface may become visible. mental ray
enables calculating this sort of effect with a physical shader from the subsurface.mi
shader library, which scatters photons within a surface. A second approach to
simulating sub-surface scattering does not use photons to calculate sub-surface
scattering but instead utilizes a complex shader that simulates the light influence
across a surface based on lightmaps as well as certain parameters defined within
the shader.

Final Gather is an additional feature that calculates indirect illumination, but unlike
those just listed, it does not use photons to calculate its effect. The name refers to
the “final gathering” of light influence in a scene. Final Gather is evaluated after
global illumination (if enabled) has been calculated and before the render com-
mences. This feature is based on casting rays into the scene from a hemispherical
point on a surface and evaluating the total influence of light on that point, from the
surrounding objects. This enables you to simulate the effect of light being occluded
between surfaces in close proximity as well as simulate the influence from different
light intensities derived from a high dynamic range (HDR) image.

Chapters 10 through 15 demonstrate and explain all of these features in great detail.

You will first learn how light interacts in real life and then how that is translated and re-

created using these indirect lighting algorithms. A solid understanding of light and surface

behaviors will enhance your ability to control and predict the results of such simulations.

28 ■ chapter 1: Introduction to mental ray

08547c01.qxd 10/24/07 4:09 PM Page 28

Rendering Algorithms

This chapter presents a detailed overview of the three rendering algorithms

available with mental ray—the default scanline rendering, raytracing, and hardware

rendering—and how they are used together and separately. The goal of this chapter is to

help you better understand the fundamental rendering processes and the various consid-

erations that will influence the decisions you make in preparing to render.

You’ll learn about the differences between scanline, raytrace, and hardware rendering

and their implementation and options in mental ray’s host applications. Mastering this

material is essential in order to optimize rendering, for the sake of both time and quality.

The decisions behind an optimized render combine the “right” render settings for fast

renders with the right approach for the development and execution of an entire shot

sequence. Considerations such as geometric model resolution (triangle counts), texture

formats and resolutions (image file size), special effects, and render passes all contribute to

a successful project that leverages good scene construction to achieve render coherency.

The chapter covers the following:

■ Introduction to Synthetic Lighting

■ Rendering under the Hood

■ mental ray Render Algorithms

■ Scanline Rendering in Depth

■ Raytrace Rendering in Depth

■ Hardware Rendering

C H A P T E R 2

08547c02.qxd 10/24/07 4:12 PM Page 29

Introduction to Synthetic Lighting
As we begin exploring rendering algorithms, it’s important to remember that the ultimate

goal of rendering a computer-generated image is to create realistic, finished surfaces by

simulating the behavior of light in the real world. In CG, the process of surface shading is

based on two main components: light shaders (lights) and their interaction with the sur-

faces’ material shaders. However, as real light is far more complex than CG light, even the

most basic light phenomena can become rather complex to re-create, such as high dynamic

range (HDR) lighting, a topic covered in detail throughout this book. In CG, different

rendering algorithms and complex shading models are used in an attempt to resolve these

real-world complex shading challenges, providing more realism in 3D renders. Complex

behavior can be partially accounted for by using techniques that rely on advanced raytrac-

ing algorithms such as indirect illumination rendering using HDR images, a topic covered

in Chapters 12 and 13.

The main difference between synthetic 3D image generation and real-world observation

is that in real life, light travels outward from a light source into the environment, interact-

ing with surfaces both in its direct light path and in indirect light paths to define form,

regardless of the viewer or recording device. Thus, in real-world conditions we instinctively

think of light paths as initiating from a light source and traveling throughout the environ-

ment, reflecting light from different objects, and eventually reaching the eye, a camera’s

digital sensor, or film. In the realm of 3D rendering, we can perceive the environment as

being defined by following eye paths from the camera’s perspective into the scene, regard-

less of the algorithm. Each observation begins by theoretically following an eye’s observation

path from the camera position into the scene and examining the different color attributes

for surfaces that collide within that path, such as texture, color, light, fog, and shadow

influences. Thus, in the artificial world of 3D synthetic imagery, the relationship between

the light source and the viewer is reversed. The procedures used to evaluate these “eye rays”

differ between the render algorithms; scanline and hardware rendering don’t actually follow

any real “eye rays,” (rather, they use other methods for evaluating the eye path), whereas

raytracing simulates eye paths by evaluating triangle intersection along a given path through

the scene, which is a more expensive form of rendering. These algorithms are all discussed

in detail in the following sections and in Chapter 5, “Quality Control.”

Our understanding of real-world lighting and photography significantly influences our

approach to rendering practices, image formats, and output displays. Throughout this

book we’ll explore the topic of synthetic imaging and simulating real-world conditions

using CG shading and lighting techniques. In Chapter 4, “Camera Fundamentals” and

Chapter 9, “The Fundamentals of Light and Shading Models” you will learn more about

the physics of light and cameras and their relevance to CG shading, photography, output

formats, and even HDR images. The more you know about cameras and light, the more

inspiration for your art you will find in even the simplest natural phenomena.

30 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 30

Rendering under the Hood
Rendering is the process of rasterizing 3D vector graphic information into 2D pixel graph-

ics to create a raster image. To generate a raster image from 3D, the software must sample

color values in 3D, optionally apply additional color processing, and then determine a

final color value for each pixel. Basically, a raster image data type contains grayscale values

for each pixel that are then interpreted as color channels within image viewers, such as the

typical RGB channels. Rasterizing is typically referred to as the process of converting vec-

tor data into 2D non-vector data, just as vector-based applications you may be familiar

with such as Adobe Illustrator or Macromedia Freehand do when you export vector data

to a raster format, such as a TIF image.

In 3D rendering, there are two very different approaches: one is software-based render-

ing (both scanline and raytrace algorithms), and the other is hardware-based rendering

using one of the two common 3D APIs—OpenGL and Direct3D—to utilize the computer’s

graphic processing unit (GPU) while rendering. Software rendering evaluates the scene

pixel values sample by sample (even on sub-pixel levels) by utilizing scanline rendering

and raytracing based on the scene’s sampling levels and other related settings, further

discussed in Chapter 5.

The other approach, which also uses scanlines (see the section “Scanline Rendering in

Depth” later in this chapter), renders based on the hardware abilities, sending visible ver-

tices to the GPU for geometry assembly and shading. Hardware rendering doesn’t use the

mental ray scene database (as discussed in Chapter 1); instead, it works with one triangle

at a time, interpreting its related settings in “real time” but (unlike software rendering) not

reading any information from scene database entries. Thus hardware rendering doesn’t need

to know about the entire scene and its settings; instead, the GPU works triangle by triangle

to process and fill up all the resolution-dependent pixels. Although mental ray supports

passing triangles for hardware rendering to the GPU, it is mostly a software-renderer inde-

pendent of the GPU hardware. This chapter focuses on mental ray’s software rendering

methods and briefly introduces hardware rendering concepts and mental ray’s integration

with hardware. Software-based scanline rendering is the most commonly used algorithm

with most rendering applications, and references here to “rendering” are to that method

except where noted otherwise. All three methods are discussed in the following sections.

Sampling and Filtering
mental ray uses several approaches to measure a pixel’s color value. These measurements

are important because, as you’ll see, different surface color properties are engaged by

different color values and intensities. The methods of measuring the color values differ

between the different render algorithms, but they all share one common denominator:

sampling. Figure 2.1 demonstrates the typical software-rendering sampling process. Typi-

cally, evaluating a surface point consists of sampling color measurements from within the

rendering under the hood ■ 31

08547c02.qxd 10/24/07 4:12 PM Page 31

3D scene (label E) based on the camera’s field of view (label A) that correspond to the

frame buffers (label B) pixel in question (label C). The same pixel can then be sampled

more than once (sub-pixel sampling), as demonstrated with the arrows (label D) that are

sampling the scene entities (label E) for the given pixel (label C).

Sampling is not necessarily restricted to the target pixel size with software rendering,

and sampling values don’t necessarily represent a final pixel value, on a per sample basis,

but rather a step toward finding that final pixel value by interpolating (blending color values)

a series of samples. Hence, sampling can occur on a sub-pixel level (super sampling), and

vice versa, several pixels can be contained within one sample (infra sampling). In the case

of several pixels within one sample, essentially only one sample is taken; this provides a

color value for n×n pixels, resulting in obviously lower quality and faster render times.

This method is a means for quick preview rendering.

A

B

C

D

E

Figure 2.1

The relationship
between the

camera, frame
buffer, sub-pixel

sampling, and
3D scene

It’s imperative to understand that one pixel uses a single color value to represent several ele-

ments from within the scene (all contained within that pixel). Knowing how that value is cal-

culated can help you control render quality, reduce flickering, and control render efficiency.

The ability to sample pixels on a sub-pixel level greatly improves the interpolation of the final

color result for each pixel and is a way of working outside the pixel’s limitations.

32 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 32

Aside from sampling, additional sample interpolation and sample filtering can be

applied to provide the best possible color value for each pixel. Filtering methods are aimed

at filtering samples into pixel colors in the frame buffer, improving how samples integrate

with their neighboring samples before they reach the frame buffer.

Frame Buffers and Output
After sampling and filtering have completed, these values are stored as raster data within a

frame buffer, which holds that information until it has completed rendering and is ready

to be saved into an image file on disk. Before the image is written to disk, the frame buffer

may also transfer that data to additional per-pixel postprocessing effects such as glows or

blurring effects, to mention but a few.

Figure 2.1 illustrates the relationship between the camera, frame buffer, sampling, and

3D scene. In this case, as discussed earlier, the figure illustrates more samples taken than

pixels. The Figure also illustrates the concept that one pixel within the frame buffer may

represent several polygons within the scene.

mental ray Rendering Algorithms
There are three primary rendering algorithms that may be used with mental ray, along

with different options within each primary algorithm. As mentioned, these algorithms

are mostly software-based solutions because we are dealing with software-based rendering

software:

• Scanline rendering, which encompasses three different scanline algorithms

• The default scanline render algorithm, which is software-based

• The rasterizer, previously known as Rapid Motion, which is also software-based

• OpenGL accelerated rendering, which is software-based with hardware assistance

• Raytrace rendering, which is software-based

• Hardware rendering, which is hardware-based with software assistance

The following sections focus on the software-based solutions and their differences,

then hardware rendering is revisited at the end of the chapter.

Although the product name implies that mental ray specializes in raytracing, scanline

rendering algorithms are equally important and equally widely used. In fact, the software

itself, as it evaluates a scene for rendering, determines which algorithm to use based on your

You’ll learn more about frame buffers and their output options in Chapter 3, “mental ray Output.”

In Chapter 5, you will learn how to control sampling, filtering, and other quality-related settings.

mental ray rendering algorithms ■ 33

08547c02.qxd 10/24/07 4:12 PM Page 33

input. The renderer is responsible for evaluating surface shader color values, atmospherics,

and much more, and with each task mental ray will decide how to best interpret the surface

based on the specified render settings provided by the user and placed within the mental

images scene options block within an .mi file. The renderer can then decide whether to use

raytracing or scanline rendering and in which form, as well as several other options that

correlate directly to mental ray’s render abilities, some of which can be seen here in a small

excerpt from the options block of an XSI-to-mental-image file conversion:

options “Render Options”

…

shadow on

trace on > enable raytracing rendering

scanline on > enable scanline rendering

hardware off > disable hardware rendering (default)

filter box 1.000000 1.000000

face both

trace depth 2 2 4

samples -1 2

samples collect 4

contrast 0.2 0.2 0.2 0.2

motion off

task size 0

caustic off > Advanced ray trace features…

globillum off > Advanced ray trace features…

finalgather off > Advanced ray trace features…

output on

…

end options

The different mental ray render algorithms may collaborate and render together, or

they may be used as sole render algorithms. That is, mental ray may use only raytracing or

only scanline rendering, or it may use both scanline and raytracing together. It may or

may not use hardware rendering to boost software performance. Alternately, you may

specify a render that is hardware-based, and thus mental ray will insist on using the GPU

for hardware-supported features, such as basic shading and rendering, falling back on

mental ray settings are defined within the options block inside .mi files. These options typi-

cally control the different render settings, which also can be overridden on the command

line before rendering. When the command line is used, these options are referred to as com-

mands and use a prefix flag (-). Also, when commands that contain more than one word, such

as trace depth (seen in the preceding excerpt), are entered on the command line, an under-

score rather then a space is used, as with the options block syntax. Within this book, the com-

mand-line syntax is used, and thus in the same commands under the option block, the prefix

flag is omitted and the underscore is swapped for a space.

34 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 34

software for the more advanced features such as indirect illumination (a feature not

supported by hardware). It’s more common to combine the different software-based

algorithms than to use either raytracing or scanline rendering alongside hardware render-

ing. Essentially, mental ray offers an approach that allows you to specify and tweak render

algorithms for more-efficient rendering control. It is then up to you to find the best

approach for each project or scene. By specifying an algorithm as well as its settings, you

are actually defining the approach to several scene entities, such as reflections, refraction,

motion blur, camera lens effects, indirect illumination, and much more, which are all

enabled under the options block, provided their supporting algorithm (mostly raytracing)

is also enabled.

Choosing a Method: Scanline or Raytrace?
When mental ray initiates a render, it will always begin by using the scanline render algo-

rithm (unless that algorithm has specifically been disabled). If mental ray determines

during the render that raytracing is required, for example to resolve a reflection, it will

automatically switch to raytrace rendering. Scanline rendering evaluates the first primary

rays cast from the camera’s perspective into the scene; however, these primary rays are

not raytraced. Instead, their path is inferred from information gathered in the scanline

preprocessing phase (see “Scanline Rendering in Depth” later in this chapter). Typically,

raytracing is initiated only when a secondary ray needs to be traced. Then, when the ray-

trace ray completes its evaluation, mental ray will resume scanline rendering until the next

raytrace ray is required. In some renders, with scanline enabled, scanline rendering may

never be used. For example, a depth-of-field lens effect requires each primary ray to be

raytraced, so when it’s enabled, the render will never initiate scanline rendering, utilizing

raytracing for all primary rays. Thus mental ray will decide for itself when to trace a ray

and when to only use scanline rendering, provided you’ve enabled those capabilities under

the render settings.

If hardware rendering is enabled, the scanline process would utilize hardware methods

to best evaluate all hardware-supported features, loading color values into the frame buffer.

If raytracing is required, it may sample those raytrace features using software raytrace

rendering, passing those values to the GPU, where they are then passed to the frame buffer

and mathematically added to existing values, For example, color values calculated for

reflections are added onto the non-reflective color values determined solely by hardware.

This process is referred to as layering software and hardware rendering and is further

discussed in the section “Hardware Rendering” later in this chapter.

Advantages and Disadvantages

Raytracing and scanline rendering differ primarily in the quality of sample precision and

thus the method for evaluating a sample’s color. Scanline rendering only needs to identify

polygons directly in front of the camera and within a direct line of sight, while raytracing

mental ray rendering algorithms ■ 35

08547c02.qxd 10/24/07 4:12 PM Page 35

can examine surfaces by redirecting the line of sight, as with reflections and refractions.

Thus, with scanline rendering, mental ray does not need to know where additional sur-

faces are located or even if they exist. For example, surfaces behind the camera have no

influence on sampled points when raytracing is disabled, but when raytracing is enabled,

they provide reflection color contributions. Therefore, if a surface point requires addi-

tional color evaluations, such as a reflected color from a nearby surface, raytracing at that

point casts a secondary ray that looks for reflections or refractions based on the material

shader requirements and thus provides a more accurate means in measuring color.

Because raytracing requires more information about these additional surfaces not in

camera view, the time required for rendering is significantly increased. Thus, scanline

rendering is an efficient and affordable means for rendering when you need only to evalu-

ate a scene point by point without “seeing” the entire (reflected) environment. There are

workarounds such as environmental mapping that provide “fake” reflections using texture

projection (projecting color values from a bounding spherical or cubical environmental

image) and are a means for simulating reflections using scanline rendering, omitting any

raytrace rendering.

The comparison between hardware rendering and either of the software algorithms is

essentially between software CPU processing and hardware GPU processing, and the

advantages and disadvantages are based on hardware abilities, as well as on hardware ren-

dering implementation in general. Hardware rendering is resolution-dependent and does

not support sub-pixel sampling or high-resolution rendering, and it has little support for

complex shading. In short, it is not really a competitive algorithm compared with software

abilities. Hardware rendering is used when speed is an essential factor or when the devel-

opment process is aimed at transferring mental ray shaders to a hardware-based platform,

as with games.

Scanline Rendering in Depth
With scanline rendering, mental ray first preprocess the scene by sorting the scene trian-

gles (polygons) into a 2D pixel array of Y and X coordinates, determining where each

polygon should be placed. This array is essentially a projection of the scene using a direct

line of sight from the camera’s perspective, providing information on intersecting poly-

gons. Within this array 3D values are represented by 2D pixel raster values, and not in 3D

space coordinates. Even though depth (the Z axis) isn’t represented directly, mental ray

is still able to determine which object appears closer or farther from the camera based on

the camera’s depth range. Rendering is then simply the process of sorting the frontmost

geometry within this pixel array based on the surfaces’ spatial arrangement within the

scene. This means that several triangles may line up at the same coordinates within the

array so that polygons are overlapping. To sort depth, mental ray needs to resolve the tri-

angle’s location based on some scene depth measurement from the camera’s perspective,

36 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 36

which indicates where each polygon is located within the scene depth relative to other

polygons at the same X, Y pixel coordinate.

Rendering can then be set to sample at a sub-pixel level based on the information gath-

ered during the scanline preprocessing phase. With scanline rendering, once the front-

most object is identified, the object behind that surface may be ignored, and even removed

from the cache memory. With hardware rendering, the preprocessing phase of determin-

ing polygon intersections and depth sorting can be extremely fast but not as accurate as its

equivalent software-based preprocessing phase.

After preprocessing has completed (per render job), mental ray’s scanline renderer can

begin sampling points on the visible surfaces in the scene, ultimately resulting in a rastered

image. One of the advantages of rendering on a per-pixel basis with scanline rendering is

memory conservation. Only portions of geometry directly in front of the camera need to

be in memory, so as the render progresses, different geometry segments can be loaded or

unloaded based on demand and the polygon’s spatial positioning. Hence surfaces that

are behind the frontmost object or no longer needed may be removed from memory. This

technique lends itself to mental ray’s on-demand execution architecture, as discussed in

Chapter 1, “Introduction to mental ray.”

Scanline Render Algorithms
mental ray offers three different scanline algorithms—the default scanline renderer, the

rasterizer, and OpenGL—plus a fourth option, turning off scanline rendering altogether.

The default renderer This option is the default software scanline rendering algorithm just

described. This method also uses mental ray’s primary sampling algorithm, further dis-

cussed in Chapter 5.

The rasterizer The rasterizer scanline algorithm provides two significant render improve-

ments that primarily benefit film productions but are also useful for smaller productions.

First, this algorithm sorts the scene depth much faster than with regular scanline render-

ing, which means mental ray can find the frontmost triangle faster and without consider-

ing all other triangles that line up directly behind it at the same pixel-coordinate position.

Once it recognizes the first triangle based on a “first hit” from the camera’s perspective, it

can then ignore all the remaining triangles that are behind it. Essentially, the rasterizer

does not bother to sort each triangle’s distance from the camera in order to determine

With scanline rendering, mental ray’s ability to sort depth properly depends closely on a

proper setting of the camera’s near and far viewing ranges because they define the accuracy

of values used to define depth throughout the scene. In Chapter 3 you’ll learn how to properly

define the viewing ranges for scanline renders.

scanline rendering in depth ■ 37

08547c02.qxd 10/24/07 4:12 PM Page 37

which one is in front; omitting this step improves the scanline render speed. Dealing effec-

tively with dense geometry makes the rasterizer an attractive solution for rendering hair- or

fur-intensive scenes.

The rasterizer can also accelerate motion-blur rendering. mental ray’s motion-blur render-

ing can utilize either scanline or raytrace rendering without any significant difference in

the result. When the rasterizer is enabled, only scanline motion-blur rendering is sup-

ported and raytracing motion-blur effects are disabled. This significantly improves render

times, but the trade-off is that it doesn’t support any raytrace motion-blurring features

such as reflecting, refracting, or shadowing motion-blurred surfaces. However, the boost

in performance the rasterizer approach provides is very significant and should always be

considered when applicable. (You will learn more about motion blur with the rasterizer in

Chapter 8: “Motion Blur.”)

Is the rasterizer’s sampling algorithm “better than” mental ray’s default sampling algo-

rithm? It does not provide the same amount of flexibility and does not support the same

approach for sub-pixel sampling, although it can evaluate color on a sub-pixel level. How-

ever, it is particularly powerful when used to accelerate motion blur or troubleshoot large

scenes that may have become difficult to render because of their geometric complexity.

Some large scenes may have complex depth sorting for millions of triangles. Chapter 5

includes in-depth discussion on rasterizer sampling and characteristics.

OpenGL rendering OpenGL rendering improves performance by using a computer’s

graphics card while determining the spatial arrangement of the scene before proceeding to

render with a software render algorithm. The preprocessing scanline phases of intersecting

surfaces and depth sorting can be quickly generated using hardware, which is faster than

the equivalent calculations using software (but not as accurate). This process does not

reduce the rendering quality because all the subsequent color-sampling evaluations are

executed using software. OpenGL is used only to enhance the preprocessing phases; it is a

supplement to software-based rendering and not an alternative method (as hardware-

based rendering is).

One significant difference between OpenGL acceleration and hardware rendering is that

with the former, mental ray will not allow hardware to do any shader evaluations. With

hardware rendering, by contrast, mental ray does use hardware for shading. You’ll learn

more about that in the section “Hardware Rendering” later in this chapter.

The following excerpt of the render progress output for an OpenGL accelerated render

(using Maya) shows that preprocessing is used for intersections and “primary rays,”

determining the visible triangles from the camera’s view:

RC 0.2 progr: rendering

RCI 0.2 progr: opengl intersection rendering begin

PHEN 0.2 info : --

PHEN 0.2 info : mayabase, compiled on Jul 19 2005.

38 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 38

PHEN 0.2 info : --

RCI 0.2 info : opengl rendering time: 0.0 seconds

RCI 0.2 progr: opengl intersection rendering end

RCI 0.2 progr: begin intersection preprocessing

RCI 0.2 info : using OpenGL for eye rays

RCI 0.2 info : not tracing secondary rays

RCI 0.2 progr: end intersection preprocessing

Enabling scanline accelerated OpenGL rendering is fairly straightforward. On the command

line you can use the -scanline opengl command, or you can use the same command

within the options block of an .mi file. Within host applications OpenGL acceleration is

available with Maya and XSI 5.1 and lower. XSI 6 and 3ds Max do not offer OpenGL

acceleration. The topic of OpenGL acceleration may be fading out as CPU processor

power increases and significantly reduces the requirement for GPU assistance, opposed

to previous less capable CPU’s.

Disabling scanline rendering You may wonder why it would make sense to disable scan-

line rendering explicitly when you already know that mental ray will select raytracing

automatically if it needs to. The answer is simply to save the computer some work. Why

bother calculating and sorting the scene for scanline rendering if you know that the entire

scene requires raytracing? In these cases, disabling it will eliminate the scanline scene pre-

processing phase. Also, if certain artifacts appear, or you are experiencing render problems

(particularly due to depth precision), you may try disabling scanline rendering because

raytracing generally provides more-accurate results without the typical scanline depth

sorting process.

For example, it would make sense to disable scanline rendering within your host applica-

tion if you’re using mental ray’s depth-of-field effect, which requires raytracing for every

primary “eye ray” exiting the camera’s lens. Likewise, poor scene depth may result when

objects within near proximity appear simultaneously. They may appear to intersect each

other when in fact one should be the frontmost surface. This may happen either because

the camera’s depth viewing range is exaggerated or because the objects are just too close

for scanline depth sorting to properly determine which surface should appear first. Ray-

tracing may resolve this sort of problem using its more accurate methods for evaluating

the spatial arrangement of geometry within the scene.

Enabling the Scanline Render Algorithms

The scanline rendering options can be specified on the command line when using the

stand-alone renderer, with the following flags:

-scanline [off | on | rasterizer | opengl]

With respect to scanline rendering, it only applies to primary rays, so in host applica-

tions you can specify whether or not to use scanline for primary ray color samples. To

select them from one of the host applications, follow the procedures shown here.

scanline rendering in depth ■ 39

08547c02.qxd 10/24/07 4:12 PM Page 39

M A Y A

1. To open the Maya Render Settings window, start by pressing the shortcut icon or choose

from the top menu Window ➔ Rendering Editors ➔ Render Settings. In the Render

Settings window, under the Render Using drop-down menu, choose mental ray, and

locate the Rendering Features rollout, seen in Figure 2.2, under the mental ray tab.

2. The Primary Renderer radio buttons allow you to specify which algorithm is used for

primary rays, which include the scanline, rasterizer, and raytracing algorithms. Note

that when scanline or the rasterizer are enabled, they only determine the preferred

algorithm and do not disable raytracing. Notice that raytracing is also seen enabled

for secondary rays in Figure 2.2 under the Secondary Effects checkboxes.

X S I

1. Open the XSI Render Manager window from the top main menu, or under the Render

toolbar (on the left side), Select mental ray ➔ mental ray Render Options ➔ Rendering

tab. The render algorithms can be found under the Primary Rays ➔ Type dropdown

list, seen in Figure 2.3.

2. If you look in the mental ray Render Options ➔ Optimization tab you can see the

Primary Rays dropdown list again. Essentially the Rendering tab collects some of the

basic properties found in other tabs, but not only. Essentially these two are then linked,

change one and the other updates.

Figure 2.3

XSI’s render algo-
rithms can be found

in the Rendering
and Optimization

tabs under the men-
tal ray Rendering

Options rollout.

Regarding using the Render Manager, see the Chapter 1 “Render Manger in XSI 6.0” sidebar.

Figure 2.2

Maya’s scanline algo-
rithm settings can be
found under the Ren-
dering Features roll-

out in the Render
Settings window.

40 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 40

3. Notice in the Optimization tab the Tile Size and Order properties (seen in figure 2.8).

These options relate to the order and size of render tiles, a topic further explained in

the sidebar “Tiling Order and Task Size” later in this chapter.

3 D S M A X

1. For using mental ray with 3ds Max, you must first enable it as the Production renderer

in the Render Scene window. From the Main Menu bar, navigate to Rendering ➔

Render… (or press the F10 shortcut). Within the Render Scene window, you will find

the Assign Renderer rollout under the Common tab, enabling you to specify mental

ray as the renderer for the Production option.

2. In the Render Scene: mental ray Renderer window you will find the Rendering

Algorithms rollout options under the Renderer tab, seen in Figure 2.4.

3. Under the Scanline title, the Enable check box

correlates to the On/Off scanline options as cited

earlier under “Enabling the Scanline Render Algo-

rithms.” Enabling this utilizes the default scanline

algorithm.

4. When scanline rendering is enabled, you can further select whether to utilize the ras-

terizer algorithm by selecting the Use Fast Rasterizer (Rapid Motion Blur) check box.

Raytrace Rendering in Depth
Raytracing introduces several advanced features and algorithms into the render process.

At the most basic level, raytracing is really only another means of providing a more accu-

rate color measurement for a sampled point on a surface. Raytrace measurements are more

accurate because they sample points by “shooting” rays into the scene and then comparing

each ray with the triangles in the scene to determine if they intersect. To clarify, raytracing

does not really use rays, however it does evaluate triangle intersections along a given path

in the scene, hence the term rays. mental ray offers three different algorithms that deal

with dividing the scene into smaller segments, reducing the amounts of ray-triangle com-

parisons and accelerating the render time. These methods are described and discussed in

detail in Chapter 5. Thus, raytracing refers to the process of casting rays into the scene

from the camera’s point of view; the rays then travel inward in direct paths until they

intersect a surface. This initial phase of shooting rays into the scene for color measurements

is referred to as ray casting. The ray casting algorithm was first presented by Arthur Appel

in 1968.

raytrace rendering in depth ■ 41

Figure 2.4

3ds Max’s scanline
render algorithms
can be found on the
Renderer tab.

08547c02.qxd 10/24/07 4:12 PM Page 41

T I L I N G O R D E R A N D T A S K S I Z E

With mental ray’s software rendering methods, the rendering process occurs tile by tile

rather than line by line. From the host applications, you can control two tiling parameters

that may affect overall performance: tilling order and the task (render tile) pixel size.

T i l i n g O r d e r

For all three host applications, the default Hilbert tiling order optimizes the render in the

most efficient way for job execution and render performance. It forces mental ray to use the

scene database in the most logical order, which also optimizes memory handling when

intensive geometric scenes are rendered. For efficiency, you should always accept this

default. The other available tiling orders, which you might use diagnostically for viewing the

render “pattern” in a different sequence on the screen, are Spiral with XSI; with 3ds Max they

are Spiral, Left to Right, Right to Left, Top-Down, and Bottom-Up.

T a s k S i z e

The number of pixels contained within each tile is referred to as the task size. Task size can

be set in the options block (as seen earlier in the excerpt in the “mental ray Render Algo-

rithms” section) as well as on the command line. For the command line, the command is as

follows:

-task_size [whole number - integer]

Task size is specified in square pixel regions and typically is automatically evaluated by

mental ray within the host applications. When Task Size is set to zero, mental ray automati-

cally resolves the task size based on internal computation and the target render resolution.

Task size has some significant influence on sampling and filtering, which is described in detail

in Chapter 5.

The task size can influence rendering speed in a couple of ways. Lower values generally

take longer to render because fewer pixels are considered for each tile so there are ultimately

more tiles to evaluate. With large scenes, however, setting lower values may help you trouble-

shoot a difficult render. In setting a tiling size for rendering across a network, you need to

consider the other machines on the network. In general, a lower value will prevent slow

machines from delaying the render, but too low a value will slow down the entire network.

As a general rule of thumb, the Task Size automatic setting is fine on single machines;

however, when used with a network of machines, it doesn’t evaluate their abilities. Thus

when networking it is more feasible to examine different task sizes, and only if the render

has become problematic.

S E T T I N G T A S K S I Z E I N M A Y A

1. From the Render menu set, Render menu, select the Batch Render (or Render Current

Frame) option boxes to reveal their attributes.

42 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 42

T I L I N G O R D E R A N D T A S K S I Z E (c o n t i n u e d)

2. When the Auto Tiling attribute is enabled (default), the task size is automatically com-

puted. If you disable the Auto Tiling attribute, then you can manually specify a value

(pixel size) for the Task Size Attribute.

S E T T I N G T A S K S I Z E I N X S I

1. With XSI, open the Render Manager and navigate to the mental ray Render Options ➔

Optimization tab.

2. The Tile Size and Tile Order properties are used to control the size of each tile and

the order in which it appears on the screen, respectively. (These options are shown

in Figure 2.8, later in this chapter.)

3. As you can see, XSI then offers two tiling orders, Hilbert and Spiral, as well as an auto-

matic task size, based on XSI’s “best guess” for the scene, which usually should suffice.

(But note the exception regarding network renders cited earlier.)

S E T T I N G T A S K S I Z E I N 3 D S M A X

1. In the Render Scene: mental ray Renderer window look under the Renderer tab. The Options

section found under the Sampling Quality rollout provides control over these settings.

2. The Bucket Width setting correlates to the Task Size settings, as discussed earlier, and

defaults to a 48x48 tile.

3. The Bucket Order option controls the tiling order and in this case offers several different

orders to choose from, including the Hilbert, Spiral, Left to Right, Right to Left, Top-

Down, and Bottom-Up.

Ray Casting
Ray casting provided a more accurate means for measuring color within the scene than

the older and less-precise scanline rendering algorithm. The first feature film to make full

use of ray casting, combining live action with 3D while relying solely on ray casting, was

Tron in 1982, produced by the MAGI animation studio in New York. (Interestingly, it

wasn’t until more than 10 years later, in 1995, that the first fully animated scanline feature

film was released: Pixar’s Toy Story.)

Tron was a major event, if not the cornerstone of 3D feature-film production, using

advanced ray casting algorithms to superimpose CG with real actors, making history.

Remarkably, in the same year and using the same conceptual artist, Syd Mead, the unfor-

gettable Blade Runner was released. Blade Runner remains one of the biggest influences

on CG futuristic films, having opened the door to concepts such as genetic engineering,

raytrace rendering in depth ■ 43

08547c02.qxd 10/24/07 4:12 PM Page 43

cloning, and futuristic environments. Where the creation of these environments such as

with Blade Runner, relied on photographic effects and miniature sets, it now relies on

advanced rendering algorithms along with the miniatures. Integrating all these elements

with actors, backgrounds, and natural phenomena at times relies on some form of ray-

tracing techniques, bringing realism into films such as Terminator 3: Rise of the Machines,

a Warner Bros. film loaded with complex renders of reflective surfaces.

Raytracing
Raytracing, first presented by Turner Whitted in 1979, expanded on the ray casting abili-

ties by including the additional reflection, refraction, and shadow ray algorithms. This

means that as eye rays are cast into the scene, they can further trace these additional paths.

As you’ve seen, the eye rays are typically referred to as primary rays, and the additional

reflection and refraction rays are referred to as secondary rays. (Shadow rays are also a

form of a secondary ray.) All these additional rays can be cast after primary rays intersect

with a surface, if needed, based on the render options you specify for a scene, and of

course the surface shader. For example, if you’ve enabled raytrace shadows, reflections,

or refractions, then additional rays trace the path from the intersecting point to the next

intersecting point, returning information about the color that should be visible on the

first point of intersection. The traced path also can provide a means for measuring the dis-

tance between two traced points, which opens the door to advanced reflection, refraction,

and shadow techniques and is discussed shortly, as well as demonstrated in detail within

this book.

Raytracing always implies a change in direction for a given ray. Direct paths such as

with plain transparency (index of refraction of 1) don’t need to be raytraced; thus with

nonrefractive transparent objects, scanline rendering (when enabled) will suffice. Raytrac-

ing is then enabled every time a specific shader requires the primary ray to change its

direction, thus tracing direct segments in any direction. Furthermore, enhanced raytrace

features also support more-accurate blurring of reflections (a more distant reflection

should be more blurred) and more-accurate distant shadows (as a shadow falls farther

away from the object, it both expands and blurs). You’ll learn more about these topics in

Chapters 6, 7, and 10.

In a nutshell, raytracing has evolved to provide more advanced features that have the

ability to consider indirect, reflected, and refracted light contribution from the surround-

ing environment, as well as the total incoming irradiance, which enables utilizing HDR

images for simulating real-world light intensities. Thus raytracing has expanded to con-

sider the light energy reflected onto a point by other objects in the scene for indirect light

contribution. In comparison to scanline software and hardware rendering, raytracing has

access to the entire 3D environment, not just points directly in front of the camera, and

provides increased accuracy in all aspects of image generation.

44 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 44

Also, with respect to cameras, the ability of raytracing to perturb the direction of a ray

opens the door for implementing camera lens effects. Thus mental ray can faithfully

reproduce several realistic lens characteristics (known as lens shaders) by bending the

direction of the primary rays as they travel outward from the camera into the scene, a

topic discussed in detail in Chapters 3 and 4. Another raytracing feature, known as ray

marching, is the ability to evaluate ray measurements along a light path, determining the

visibility of light; thus the raytracer may consider volumetric effects within the light’s path

that affect shadowing and lighting. If air or dust participates in the lighting of a scene,

raytracing can then be used to evaluate the relationship between suspended particles in air

by measuring the distance between each particle, a topic you will learn about in more

detail in Chapter 12, “Indirect Illumination.”

Combine these raytracing abilities and you are provided with a powerful approach for

simulating realism. (Of course, this comes at the price of increased render times.) Almost

all of mental ray’s advanced tools rely on some form of raytracing effect. Raytrace features

that incorporate advanced render algorithms, such as those used with indirect illumina-

tion, advanced shaders, and volumetric effects, are all covered in detail throughout the

book, particularly in Chapters 10 through 14.

The Raytracing Process
As discussed earlier, raytracing is the process of tracing paths from a given point into the

scene, investigating the influences cast upon that point from other surrounding points

from within the 3D environment, and returning a color. Let’s examine raytrace character-

istics with Figure 2.5

Reflection and Refractions

In Figure 2.5, as a ray exits the camera, it is first evaluated at point A, the sampled point.

Thus, at point A the surface shader is called and begins evaluating surface properties for

that point based on its shader settings. If the surface is reflective, refractive, or both, the

shader evaluation will determine whether a ray needs to bounce and thus cast a secondary

ray into the scene to look for additional influence objects.

Assuming point A is reflective, a secondary ray is cast to point B. When the ray hits

point B, the same process of evaluating the surface shader is repeated, this time for point B.

If point B is nonreflective, a simple shader evaluation will return a reflective color value

for point A’s shader evaluation. However, if point B is reflective, an additional ray will

travel, for example, to point C and begin yet another shader evaluation at point C. Thus,

In Chapter 9, you will review in detail the different types of light-reflection characteristics, as

well as how they relate to 3D shading models.

raytrace rendering in depth ■ 45

08547c02.qxd 10/24/07 4:12 PM Page 45

point C would return a reflective color to point B, which would then complete the surface

shader evaluation for point B and return a reflective value for point A, as illustrated by the

diagram within the figure. Black arrows represent the rays cast into the scene, and the gray

arrows represent the returned values.

If point A is a refractive surface (index of refraction other than 1.0), then a refraction ray

path is cast to point B1, which is the bottom portion of the refractive container. At point

B1, another shader evaluation is executed to determine the color that should be returned

to point A’s surface evaluation, just as with point B (reflection example). If there are fur-

ther refractions, then an additional ray would exit the container and travel to a theoretical

point C1. As with reflection rays, refractions follow realistic ray paths while evaluating so

that rays perturb their direction based on real-world physics, in this case following Snell’s

Law of refraction. You can learn more about the physics of light in Chapter 9.

Raytrace Limits

With both reflections and refractions, the number of times a ray can bounce is based on

the limits specified in the render settings (as described in the section “Enabling and Con-

trolling Raytracing”). If reflections are set to a limit of 2 and refractions are set to a limit

The reflection angle of incidence is equal to the angle of reflection, as seen in Figure 2.5; hence

reflections require mental ray to perturb a ray’s path so that it can follow a physically accurate

path into the scene, as with specular reflections (see Chapter 9), and then return accurate

reflective values.

r
r

i

i

i

Refraction Reflection

C

B

B
1

A

C
1

C
1

B
1

C

B

A

i = r

Figure 2.5

The process of calcu-
lating reflection

bounces

46 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 46

of 2, then you may expect up to a total of 4 raytrace rays to exist in the scene. Thus, each

surface point may emit a secondary ray, reflection and refraction, which is permitted to

“bounce” one more time within the scene before returning a color value because the

reflection and refraction limit for each component has been set to 2, which includes the

first secondary ray and one more additional ray.

Essentially, this means that in the case illustrated in Figure 2.5, as a secondary ray is

cast from point A to B and then to C, if the reflection limit has been set to 2 the flowchart

holds and the reflection values can be evaluated. Upon completion, the color values are

transferred down the chain toward the first surface (point A), thus the initial surface that

triggered the reflection request receives reflection colors influenced by both points B and C.

Max Trace Depth

A maximum raytrace limit can be set for the combined total of both reflection and refrac-

tion rays. In Figure 2.5 if the max trace value is set to less than 4 bounces and there is a

requirement for evaluating 2 reflection and 2 refraction rays, then raytracing is forced to

quit before completion. If the limit is set to 2, then mental ray can only evaluate 2 reflec-

tions or 2 refractions or one of each. This limit acts regardless of the reflection and refrac-

tion limits settings so that they can both be set to 10; however only a maximum of n max

trace reflections may be evaluated. The fact that limits can be set independently allows you

to tentatively set the reflections to a high value and refractions to a lower value and then

limit the total of the two in a way that allows the renderer to make the best use of these set-

tings, but within a reasonable range. Alternately, this also provides you with a fast option

to troubleshoot or preview-render the scene with very low settings by changing only one

attribute. As a rule of thumb, with raytracing, usually two raytrace evaluations will provide

you with sufficient color evaluations; however, with refractions, if you do not provide

enough refractions as required by the surface and the surface requires penetrating four

times to evaluate the color, an unwanted value is usually returned, resulting in empty

(black) spots within the image’s RGB and alpha channels. We will examine these settings

further in relvant sections throughout the book.

Empty Space and Environment Reflections

If the ray limit is met or there are no other objects to reflect, the ray will terminate and

return a color. If an environment shader exists, either globally in the scene or as part of a

specific shading network, that shader will be used to calculate the reflection value. Note

Aside from setting these global settings, within each application, shaders and surface proper-

ties further allow you to specify raytrace limits, thus disabling or enabling raytracing for a par-

ticular shader or object. This extends these settings to a per-object or -shader basis and

provides a means to further optimize raytrace renders.

raytrace rendering in depth ■ 47

08547c02.qxd 10/24/07 4:12 PM Page 47

that this sort of reflection value, defined by an environment shader, does not utilize

raytracing but is part of a projected shader, such as with a spherical environment shader.

In essence, several raytrace features can be easily reduced by using environmental

projections to provide reflected color. We will look at creating these “fake” environment

reflections in various contexts within the book. Note that the mental ray base reflection

shader (a sample compositing shader) has a No-Trace (with similar labels in Maya, XSI,

and 3ds Max) option that disables raytrace reflections altogether, regardless of the global

settings. The underlying concept is that of using an environment shader to produce

reflections for a particular surface. Sometimes, these environment shaders may be

panoramic images of the scene itself, generated to reproduce reflections over several

frames of objects that remain still. We will examine these concepts to some extent in

shader-related chapters.

Enabling and Controlling Raytracing
The steps for enabling raytracing and controlling the different settings are almost identical

for the three host applications. We will look at the raytracing stand-alone flags, and then

locate them within the applications. Essentially, they have all been defined earlier in the

section “The Raytracing Process.” The following sections will focus on reflection and

refraction, and you will further investigate raytrace acceleration methods in Chapter 5 and

shadows in Chapters 6 and 7.

On the command line, with the stand-alone renderer, the following options are sup-

ported with respect to enabling raytracing, reflections and refractions, and max trace depth:
-trace [on | off]

-trace_depth [reflect] [refract] [max trace]

The -trace option enables or disables raytracing from participating in the render.

-trace_depth, as discussed earlier, is used to limit the total number of times a secondary

ray can bounce within a scene. This limit applies not only to the number of reflections or

refractions, but also the total of both combined.

Maya

1. Navigate to the Maya Render Settings window,

and under the mental ray tab, locate the Ray-

tracing rollout, shown in Figure 2.6

2. The Ray tracing check box is used to enable or

disable raytracing altogether, corresponding to

the command-line -trace option. Note that the

Ray Tracing check box correlates to the Rendering

Features rollout ➔ Secondary Effects ➔ Raytracing

check box seen in Figure 2.2. Thus if you change

either one, the other will update automatically.

48 ■ chapter 2: Rendering Algorithms

Figure 2.6

Maya’s raytracing settings are found
on the metal ray tab in the Render Set-
tings window.

08547c02.qxd 10/24/07 4:12 PM Page 48

3. The Reflections, Refractions, and Max Trace Depth attributes are the same as the

mental ray raytrace limiting options described earlier. These settings are the same

with all applications.

4. The Shadows attribute limits the number of times a raytrace shadow can bounce and

appear visible between one (reflective) surface and the next. Raytrace shadows are

further discussed Chapters 6 and 7.

5. The Reflection Blur Limit and Refraction Blur Limit attributes supposedly control how

many times blurred reflections may appear reflected or refracted. These attributes

don't appear to function properly, the topic is examined in more detail in Chapter 10.

Maya raytracing shader overrides can collide with global settings if not planned care-

fully. Keep in mind the underlying concept of optimization—most surfaces don’t require

generating several bounced rays; however, when need be, you may increase the limit

for that specific shader. Thus, with Maya you can set several limits on a

per-shader level and then adjust those limits either globally or within the

shader. One of the advantages with this approach is that it enables you to

globally reduce the limits quickly while testing (without changing all your

per-shader settings) and to prevent high global settings from affecting

each shader. On the flip side, you need to remember to adjust these set-

tings because they are always active when raytracing is enabled and they

default to low values.

You can also specifically disable tracing reflections or refractions on a per-object level

regardless of the shader or the global settings. This is achieved by navigating to the mental

ray rollout in the Attribute Editor for the selected shape node (or from under the Flags

rollout under a similar mental ray rollout on the transform node). On this rollout (under

the shape node), you can disable both the Trace Reflections and Transmit Refractions

attributes, which consequently will disable either of those raytrace features for that object.

Only native Maya shaders have raytracing limits; Maya mental ray shaders under the Create

mental ray Nodes do not have these per-shader limiting attributes and are affected only by

the global render settings.

When you’re using Maya shaders in a scene that will be raytraced, if you increase the raytrac-

ing limits under the Raytracing rollout, you must also specify correlating limits for the rele-

vant shading networks, using the Refraction Limit and Reflection Limit attributes under the

Raytracing Options rollout for reflective shading models, such as a Blinn or Phong shaders, as

seen in Figure 2.7.

raytrace rendering in depth ■ 49

Figure 2.7

Maya shader ray-
tracing settings.
These settings may
unexpectedly con-
fuse the user by lim-
iting reflection or
refraction rays.

08547c02.qxd 10/24/07 4:12 PM Page 49

XSI

1. Open the XSI current pass Renderer Options from the top main menu or under the

Render toolbar (or in the Render Manager window). Select the Optimization tab, and

locate the Secondary Rays - Depth section, shown in Figure 2.8.

2. Below the Secondary Rays - Depth title you can enable or disable raytracing rendering

with the Enable check box, correlating to the command-line -trace option.

3. When Enable is checked, you can further specify the raytrace limits from under the

Reflection, Refraction, and Combined properties, as seen in Figure 2.8. The Com-

bined property correlates to the max trace depth option discussed earlier.

Within XSI you can further set raytrace overrides on a per-surface basis.

4. Open the Visibility tab for an object from the Explorer window (number-8 hotkey),

and examine the Rendering tab, seen in Figure 2.9.

5. Under the Ray Visibility title, you can specify whether the surface is visible using the

Primary check box. This option applies to primary rays, regardless of whether they

are scanline or raytrace; thus, unchecking the Primary check box renders the surface

invisible.

Figure 2.9

XSI per-object visibility settings enable
specifying per-object surface-rendering
properties.

Figure 2.8

XSI’s raytracing settings are found on
the Optimization tab.

XSI shaders provide independent access to each type of ray; thus you may assign specific

“rules” for the different raytrace rays, a topic discussed further in Chapter 12.

Remember that XSI supports raytrace updates in its render region. If you want to see the effect

“live,” just drag the sliders up and down (under the Render Region Options) in a simple highly

reflective scene.

50 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 50

6. The Secondary option enables casting secondary reflection or refraction rays for the

object; thus when it’s disabled, the surface will not render (will not “see”) reflections

or refractions, regardless of whether they are enabled as global settings.

7. Under the Reflection and Refraction titles, there are two options to further customize

the secondary ray characteristics for both reflections and refractions:

Caster disables the secondary ray for each raytrace feature. Thus when it’s dis-

abled, for example under Reflection, the surface doesn’t (“see”) render reflec-

tions of other objects in the scene.

Visible enables viewing the surface in other reflected surfaces. Thus when

it’s disabled, the surface itself may render color, even reflection color (as when

Caster is enabled), but the surface color will not appear in other surfaces

that render reflections, essentially rendering it “invisible” to the other second-

ary rays.

Notice that several other raytrace overrides exist for other types of rays, such as with
indirect illumination algorithms (not visible in the figure).

3ds Max

1. Navigate from the Main Menu bar Rendering ➔

Render… to reveal the Render Scene: mental ray

Renderer window. In the Render Scene window

under the Renderer tab expand the Rendering Algo-

rithms rollout (as in the previous 3ds Max scanline

rendering tutorial), as seen in Figure 2.10.

2. Below the Ray Tracing title, you can enable or disable raytracing rendering with the

Enable check box, corresponding to the command-line -trace option.

3. When Enable is checked, you can further specify raytrace limits from under the Max

Reflections, Max Refractions, and Max Depth attributes, as seen in Figure 2.10.

With native 3ds Max shaders, not mental ray–specific shaders, reflections and refrac-

tions also need to be enabled under the shader’s Maps section, as seen in Figure 2.11. You

can navigate to these settings for the selected shader in the Maps rollout in the Material

Editor window.

Enabling the Reflection or Refraction attribute is not enough. You must also apply a

reflection shader to the slot, such as the Reflect (Base) mental ray component shader or

the 3ds Max Reflect/Refract shader, both seen in Figure 2.11 as Map #3 and Map #5,

respectively. This process is identical to concepts

presented in Chapter 1 for mental ray base shaders

and component shaders.

raytrace rendering in depth ■ 51

Figure 2.10

3ds Max’s raytracing
settings are found in
the Rendering Algo-
rithms rollout.

Figure 2.11

3ds Max shader’s
Maps section, where
you apply different
shader types into
the shader tree

08547c02.qxd 10/24/07 4:12 PM Page 51

Hardware Rendering
As graphics processing units (GPUs) improve over time, so does our ability to accelerate

rendering using the GPU rather than the CPU. The most significant improvements in

GPU technology directly relates to accelerating render performance at several different

levels and can be seen within the increased hardware support throughout several renderers

and host applications across the board. This integration more commonly relates to view-

ing and working with hardware shaders for hardware-based platforms such as games and

not specifically for increasing software render speed. An example of this integration is seen

with the extensive support for using and developing real-time shaders within all these host

applications. For example, XSI enables viewing, editing, and troubleshooting Cg- (Cg

stands for C-like programming language for graphics), OpenGL- and DirectX-supported

shaders in real time, completely separate from any software renderer.

Terms such as Cg, DirectX, and OpenGL may be unfamiliar to CG artists working out-

side the “real-time arena,” which tends to keep both worlds apart. The main gap between

hardware and software rendering is in the approach to rendering. Hardware rendering

deals with one triangle at a time, with no additional knowledge of the scene database. The

GPU’s sole purpose is to fill the frame buffer as fast as possible, providing real-time ren-

dering. The objective of hardware rendering is to pass vertices through the GPU as fast as

possible through the vertex and fragment processing stages (see “Programmable GPUs and

Shader Trees” later in the chapter), filling up the frame buffer within the given resolution,

as with, for example, real-time games. With software rendering, the resolution is not much

of a factor, and theoretically, any resolution can be processed within a given time span and

a properly set-up render, even if it requires rendering separate regions and then combining

them within compositing. Another difference is that software can examine each pixel at

the sub-pixel level, providing better aliasing and shading interpolation. The significant

difference between both methods is then in the approach to rendering, where software can

build a render more accurately, one sample at a time, regardless of resolution, whereas

hardware initiates with the resolution knowing nothing about the scene and filling in pixels

as fast as possible based on the resolution. One of hardware rendering’s disadvantages for

entertainment applications is its resolution dependence; you cannot render at a higher

resolution than the system’s graphics board supports.

Because (as you’ll see) hardware rendering isn’t a practical option for most users of

mental ray’s host applications, the following sections provide the book’s only coverage of

the topic, and we’ll look at it in some depth.

GPU, Cg, OpenGL, and Direct3D
In the past, CPUs performed all the 3D calculations, transforming vertices to pixels and

rasterizing 3D graphics within the CPU. The hardware only displayed the frame buffer

after the per-pixel values had been fully calculated by the CPU. Today, software rendering

52 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 52

still uses the CPU for rendering, but with much more powerful CPUs than in the past.

One reason we still use CPUs is programmability. Although hardware has become

extremely fast, it still doesn’t support the same level of shader programmability and func-

tionalities, such as raytracing or complex shading algorithms. Hence, the fact that hard-

ware deals with one vertex at a time, filling up the frame buffer, obviously limits its ability

to support advanced algorithms that require seeing other geometric objects in the scene,

as with indirect illumination or other advanced raytrace features. Regardless of raytracing,

most notable is the fact that hardware deals with a per-pixel value while software can per-

form several sub-pixel shader calculations and thus still is a preferred method for shading

over hardware.

The GPU Advantage

GPUs have been developed to maximize speed and flexibility for hardware vertex transfor-

mations followed by primitive assembly and rasterization, creating vertices that have been

lit, shaded, and placed within a specific pixel space as well as eliminating all unused ver-

tices. The ability of a GPU to deal with such tasks in real time has some significant advan-

tages over CPUs. In fact, GPU hardware can process hundreds of millions of triangles per

second. As a result, your CPU can be relieved of these duties, which provides for a more

efficient system pipeline by dividing render tasks between the GPU and CPU. Obviously,

nowadays you may want to take advantage of the GPU while rendering without compro-

mising quality, which is why OpenGL acceleration provides for a nice speed performance

upgrade. Essentially it means that you allow the GPU to deal with vertex transformations,

which in most cases will be much faster than the CPU, and then use the CPU for shading

so that there is no hit to shading quality because of the GPU’s limited shading abilities.

GPU Communication

To communicate with the GPU, we need to use one of two common APIs: OpenGL and

Direct3D. OpenGL was developed on Unix-based systems by Silicon Graphics in the early

1990s as a means to provide a programming interface that is aimed at interfacing with

the GPU. Direct3D, developed by Microsoft, is a component of the DirectX framework.

Direct3D is also an interface for communicating 3D through the GPU. Currently OpenGL

is the cross-platform standard, supported on Windows, Mac OS, Unix, and Linux, and

thus the most accessible system. Direct3D is available only for Windows systems and most

likely will stay that way as part of the Microsoft DirectX multimedia framework.

These APIs expect to receive compiled shader programs that are then passed as instruc-

tions into the GPU for processing. Using these sort of compiled shaders is referred to as

static compilation. The shaders are written for DirectX or OpenGL, compiled by the pro-

grammer, and then passed to the API using one of these two interfaces. Thus, when you

use these interfaces for hardware rendering with mental ray, you also need to provide,

hardware rendering ■ 53

08547c02.qxd 10/24/07 4:12 PM Page 53

based on your system, a set of precompiled shaders that support either Direct3D or

OpenGL, such as the mental ray migl_base.dll shader library, which provides OpenGL

base shaders.

mental ray Hardware Shaders

When hardware rendering is enabled, mental ray automatically looks for hardware

shaders that are named exactly the same as the software shaders used within the scene. The

difference is that hardware shaders have a unique prefix or postfix to help identify them as

hardware shaders. Cg shaders can be provided as source code without precompilation (see

the following section), and mental ray searches for these .cg shader files within a specified

path. These shaders would have the software shader name in addition to a postfix, such as

with mib_illum_phong_v.cg or mib_illum_phong_f.cg, which stand for the two different

hardware shader types vertex (_v.cg) of fragment (_f.cg) shaders, and in this example cor-

relating to the mib_illum_phong base shader. When searching for a compiled OpenGL or

Direct3D shader (or a shader library), mental ray expects a prefix such as migl_base.dll,

which would provide a hardware shader library equivalent to the base.dll shader library.

These prefixes for shader libraries are as follows:

P R E F I X T Y P E

micg_ Cg shaders

migl_ OpenGL shaders

misl__ Direct 3D shaders

Cg, OpenGL 2.0, and HLSL

The high-level Cg shading language provides a solution for dynamic compilation of

shaders while executing a render. Cg shaders can be used with any platform API and

regardless of the hardware as long as the system supports the Cg compiler, or the Cg

shader has already been compiled. Thus, Cg shaders are not NVIDIA-specific and can

work on, for example, ATI hardware systems. With Cg, you can simply specify the shader

code using the C-like programming language, which is then compiled at runtime when

the render is executed and passed to the GPU through the platform’s API. Thus, Cg comes

as a solution to the lower-level static shading interfaces used with OpenGL and Direct3D.

Cg has been developed by NVIDIA in close collaboration with Microsoft, offering a

more flexible programming language to interface with the GPU through Direct3D or

OpenGL. The collaboration between NVIDIA and Microsoft has resulted in the high-level

shading language (HLSL) for DirectX 9.0, which is equivalent to Cg, and Cg and HLSL can

be used interchangeably with Direct3D on Windows systems. Similarly, OpenGL 2.0 also

has extended the basic OpenGL support for a more robust shading language that extends

54 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 54

the vanilla base-shader abilities of hardwired (nonprogrammable) hardware rendering to

a more flexible programmable shader approach.

The importance for mental ray users is that when using Cg-specific shaders, you can

describe (Phenomenon shader-equivalent) shader trees that are compiled upon render

execution, assuming your system can link with the Cg runtime routine supporting

dynamic Cg compilation. Essentially, whenever you render, the Cg code is first compiled

by the Cg compiler for the specific graphics system’s platform (DirectX or OpenGL) and

in accordance with the GPU’s supported abilities. Thus, Cg provides a common ground

and flexibility to access any environment as well as avoid a tedious development cycle.

The Cg Advantage

The connection between all these technologies and the GPU is that shaders that process

the appearance of 3D renders are all processed within the GPU. Thus the Cg program,

which interfaces with the GPU through either OpenGL or Direct3D, executes within the

GPU every vertex and fragment shader (see “Programmable GPUs and Shader Trees”

below), repeatedly if necessary, until the shader process has finished evaluating. Essen-

tially, with mental ray, when using Cg you can simply provide the source code for several

base component shaders, which when combined form a complex shader tree, and then

compile upon render execution. These component shaders rely on a programmable GPU

to then execute several shader mathematical operations repeatedly, in many “passes,”

evaluating a Cg-equivalent Phenomenon shader. Figure 2.12 shows the approach to ren-

dering with Cg shaders as apposed to equivalent OpenGL or Direct3D shaders.

Programmable GPUs and Shader Trees
Hardware shading abilities have come a long way, from supporting vanilla base shaders to

being able to support shading trees. Shading trees are the backbone of any good 3D appli-

cation; you develop a shader graph by connecting several different elements in a certain

“tree” form, creating a complex effect. Supporting shader trees requires programmable

third-generation or later GPUs. That is, for a shader to provide mathematical color-

evaluation instructions, the GPU must be capable of interpreting and executing those

instructions. A programmable GPU supports receiving such instructions through the

OpenGL and Direct3D 3D APIs using Cg, GLSL, or HLSL precompiled shaders. Note that

although you may pass Cg (only) shaders uncompiled, by the time they reach the GPU

they have been compiled using the Cg runtime compiler.

In the past, the vertex and fragment operations were not programmable. They were

hardwired hardware operations; thus, once in the GPU, they could only perform specific

tasks that represent vanilla base shaders and not shader trees or programmable user-

defined procedures, a topic further described in the next section.

hardware rendering ■ 55

08547c02.qxd 10/24/07 4:12 PM Page 55

These advances in technology that have opened the door for programmable vertex and

fragment processing enable us to specify specific mathematical operations for execution

within the GPU. This essentially opened the door for programmable shader trees, which

can be very quickly processed by the GPU and match low-level Phenomenon shaders (see

Chapter 1, “Introduction to mental ray”).

Using such shader trees through compiled fragment shader instructions utilizes the

increasing abilities of advanced graphics boards to perform (basic) decent shading calcula-

tions. So in addition to accelerating 3D, hardware rendering now allows us to render an

entire image based on the hardware’s GPU abilities.

Vertex and Fragment Stages
The hardware pipeline first deals with tasks such as vertex transformations, screen posi-

tioning, and vertex prelighting. These are followed by the primitive assembly stage, which

creates the geometric form using the vertices, and finally fragments are configured for

execution. Vertex transformations are responsible for defining the visibility of objects and

their placement within the frame buffer. Fragments are essentially per-pixel shading oper-

ations that process color, textures, and the final output of each pixel. In essence, a single

triangle may have several fragments associated with it, and as GPUs have expanded to

support programmable shader instructions, mental ray commonly passes Cg fragment

shaders that specify a set of mathematical color operations to be executed within the GPU.

Cg source code
OpenGL / Direct3D

compiled shader (dll)

mental ray

OpenGL or Direct3D
3D API

Cg compiler

GPU

SOFTWARE PROCESSING—
CPU BASED

HARDWARE PROCESSING—
GPU BASED

Figure 2.12

The hardware flow
using Cg, OpenGL,

or Direct3D shaders

56 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 56

Thus, both vertex and fragment shaders can be passed at render time from mental ray to

the GPU through one of the APIs discussed earlier, and as a result, the GPU may process

several consecutive tasks until it has finalized the color for a pixel. This process is similar

to compositing, as several passes are layered together to resolve a per-pixel color; fragment

shaders may initiate a set of instructions that layer together several different color processes

for each pixel, and at lightning speed. Figure 2.13 illustrates the processes that are carried

out during hardware rendering.

mental ray Hardware Rendering
Currently, hardware rendering is a practical option only for stand-alone mental ray users.

(Although Maya allows you to specify hardware rendering, you still need to provide sup-

porting shaders as well as customize the render for hardware support.) Thus, hardware

rendering currently is not an “out-of-the-box” solution. You may, however, find that it

can greatly accelerate render times, and so you can research it further with your applica-

tion and the onboard hardware through the mental ray help files. This section outlines

some of the concepts behind mental ray hardware-based rendering.

Vertex
Processor

Assembly &
Rasterization

Fragment
Processor

Vertex
program (shader)

Similar looping programmability as with the fragment processor,
prepares vertex transformations for the following

primitive assembly and rasterization phase

Fragment
program (shader)

Final Raster
Operations

OpenGL or Direct3D
3D API

Frame Buffer

GPU

Programmable
GPU

in outin out

receive
instructions

load temp
data

execute
instructions / load

texture maps

store temp data
or

finalize process

additional
instructions

yes no

hardware rendering ■ 57

Figure 2.13

mental ray and GPU
flowchart

08547c02.qxd 10/24/07 4:12 PM Page 57

The fundamental concept is layering. This process refers to repeatedly rendering ele-

ments one at a time, based on the current shading task. This method forms an optimized

render flow based on executing tasks in the “best” order. Essentially, hardware layering

uses many data sources to evaluate each task that may originate from a hardware shading

calculation, from a prerendered map such as a shadow map, or from a software rendering

task. The execution would first initiate with the software-based tasks that may require the

generation of a photon map, or shadow map, and then follow through to the hardware-

based stages. Texture maps or light maps are typically passed into the GPU when called for

by a fragment shader.

Hardware can deal exceptionally well with image files (within the onboard memory lim-

its), but it can’t deal with advanced algorithms such as raytrace abilities, so such data must

be compiled into texture maps so that hardware rendering can leverage those advanced

render features. Thus, as texture maps may represent a multitude of different effects that

include indirect illumination light maps, shadow maps, environment shaders for non-ray-

trace reflections, and any other color contributing maps, hardware rendering may use them

to add their colors into the color evaluation of a particular fragment shader. In essence, this

process can be broken into two basic forms: mental ray hardware rendering can either read

in precomputed image map files that the user has supplied on disk or precompute them

during the render stage, on the fly, thus layering software rendering (scanline or raytrace)

on top of hardware rendering, eventually passing the software computations to hardware

rendering. One of the advantages of doing a poor job in preparation is that hardware ren-

dering may fall back on software rendering when need be, so you are “covered” for all ren-

der tasks. However, this may impact the usefulness of the hardware render approach. It is

important to note that mental ray is then responsible for layering and executing these tasks

through the GPU based on providing the resources, regardless of their origin.

Hence, hardware rendering will use all available resources, initiating with any required

software tasks followed by the hardware tasks (any number of times), passing color

values to the frame buffer. This process can be extremely fast and have a significant

impact on render times. Although reducing render times is an attractive notion, you

also must consider hardware rendering’s limitations, both in general and those specific

to your hardware.

Hardware Rendering Capability Parameters

The following sections list some hardware rendering architectural implementation issues,

capabilities, and limitations.

I M P L E M E N T A T I O N

Hardware rendering imposes on mental ray some implementation characteristics of its own:

• Hardware rendering has no knowledge of the scene and thus copes only with one triangle

at a time, adding its color values within the frame buffer. This approach is significantly

58 ■ chapter 2: Rendering Algorithms

08547c02.qxd 10/24/07 4:12 PM Page 58

different than software rendering, which sorts the scene with a scene database, evalu-

ating and distributing jobs based on the entire scene, as discussed in Chapter 1.

• With hardware rendering and OpenGL acceleration, the preprocessing phase is done

on the client machine, and then the render is distributed between the different servers.

C A P A B I L I T I E S

As a result of hardware limitations, mental ray tries to increase capabilities using some

workarounds, improving render quality.

• mental ray provides two approaches for increasing hardware render quality:

• Supersampling enables increasing the frame buffer size so that, theoretically,

pixels are sampled on a sub-pixel level, as the frame buffer is then scaled down

to the original size.

• Multisampling enables hardware to sample each triangle several times, each time

passing the color to the frame buffer and eventually resolving a better color

solution.

• Hardware rendering copes efficiently with texture maps, as cited earlier, and can sort

depth complexity and determine triangle visibilities at a faster rate than software. Pro-

viding premade texture maps enables layering software solutions for complex shading

algorithms during rendering using hardware shading.

L I M I T A T I O N S

There are several limitations with respect to hardware, especially when compared with a

top-level renderer such as mental ray.

• Only supports the RGBA (red, green, blue, and alpha channels) and Z depth frame

buffers at a limited bit depth.

• Low-quality preview motion-blur abilities.

• Per-pixel sampling, which does not support sub-pixel sampling, so there is less accu-

racy when resolving shader colors.

• Limited memory for storing texture maps. Although processing images with hardware

is efficient, this is true only for images within the hardware’s memory abilities (to load).

• mental ray supports rendering partial shadow maps, requiring shadow information

only for visible shadows. With hardware-based shadows, by contrast, the entire

shadow is calculated; so with hardware rendering you cannot leverage mental ray’s

(fairly new) ability to consider partial shadow data.

Hardware Rendering Setup
As the setup process for hardware rendering with mental ray can become inconvenient for

most users who are not familiar with hardware shaders and technologies, this section is

aimed at pointing out the mental ray–related options and their usage. To enable hardware

hardware rendering ■ 59

08547c02.qxd 10/24/07 4:12 PM Page 59

rendering, use the following commands and options, either in the options block of an .mi

file or on the command line:

-hardware [off|on|all] [cg|native|fast] [force]

These options specify a specific order for hardware render execution, as well as define

whether or not hardware rendering can fall back on software rendering. You may specify a

command as follows:

-hardware all cg native fast force

Hardware command-line commands instruct mental ray to do the following:

on specifies that any objects with specific instructions to render in hardware (meaning

if the object has a specific hardware-on option within its declaration inside the .mi

file) will first try rendering hardware before falling back on software.

all means that mental ray will attempt to first render all objects using hardware ren-

dering before falling back on software.

off obviously disables hardware rendering altogether and is the default. You can see

the hardware options block option set to off in the options block excerpt as mentioned

in the section “mental ray Render Algorithms” earlier in this chapter.

cg specifies that mental ray should first attempt to use Cg shaders, which are the only

shaders mental ray can use for compiling basic shader trees, as discussed earlier.

If Cg shaders are unavailable, native instructs mental ray to then look for program-

mable precompiled OpenGL 2.0 or HLSL shaders.

If native fails, it will fall back on fast, which uses only hardwired nonprogrammable

OpenGL shaders, provided they exist.

If force is specified, mental ray forces all the geometry to render using hardware, dis-

abling software rendering. If Force is disabled, mental ray would first try resolving

hardware shading in the specified order (cg native fast), and if all those fail, it would

use software rendering as a fall-back option. This option forces objects to render based

only on the on, all, and off specifications.

Enabling Hardware Rendering in Maya

In Maya, when exporting .mi files, you can enable these features from under the .mi

default options. These options should be accessed preferably when mental ray is selected

as the current render type. Once mental ray rendering is enabled, you can access the hard-

ware render settings by entering the following line into the script editor:

select -r miDefaultOptions;

Once you’ve opened the Attribute Editor, locate the bottom Extra Attributes tab, where

you will see the hardware rendering settings, equivalent to the command-line options dis-

cussed earlier, seen in Figure 2.14. You can also select the miDefaultOptions node in the

Outliner window when the Display menu ➔ DAG Objects Only attribute is disabled.

60 ■ chapter 2: Rendering Algorithms

Figure 2.14

mental ray hardware
render settings

within Maya

08547c02.qxd 10/24/07 4:12 PM Page 60

mental ray Output

This chapter tackles mental ray’s output features, including camera shaders

and custom passes. We begin with the relationships between mental ray’s data types and

bit depth as a foundation for understanding image formats. Frame buffers control render

output and so you’ll learn about the different mental ray frame buffer types and their bit

depths and purposes throughout this chapter. In the section “mental ray Cameras,” you’ll

begin outputting custom frame buffers and specifying global shader effects. You’ll achieve

this through camera output statements and shaders. Camera shaders are used to add back-

ground environments, volume effects (such as fog or mist), 2D postprocess effects (such

as glow effects), and lens effects that influence the cameras’ photographic characteristics.

In addition the chapter begins to look at external resources for custom shaders that can be

used for customizing your host application’s abilities.

This chapter covers various topics that influence all the other topics discussed through-

out the book. It can be considered as a book within a book on advanced render techniques

and as a preparation for compositing 3D. You may want to return to this chapter after you

finish the book to recap all the topics discussed here, The chapter covers the following

topics:

■ mental ray Data Types

■ The Frame Buffer

■ Frame Buffer Options

■ mental ray Cameras

■ Output Statements

C H A P T E R 3

08547c03.qxd 10/24/07 4:16 PM Page 61

mental ray Data Types
Before we dive into the topic of mental ray output, image formats, and frame buffers, you

need to know some basic terminology as well as how images are stored. The following sec-

tions will gradually build these concepts so that you feel more confident with all the differ-

ent frame buffer and image output options available with mental ray.

Image bit depths are specified as either n bits per channel or n bits per pixel. Per chan-

nel bit depth refers to the bit depth of each channel independent of the total of all three

(RGB) or four (RGB+A) channels. When you combine all these RGB color channels, the

result is referred to as a per-pixel bit depth (per image). Thus, a single channel may contain

8-, 16-, or 32-bit depth values, and a three-channel image (excluding the alpha channel)

may contain 24, 48, and 96 bits per pixel, respectively.

A three-channel (RGB) 24-bit per-pixel image provides more color combinations than

the human eye can see, so any bit depth greater than 8 bits per-channel leads to unneces-

sary file sizes and color ranges. If you’re rendering a 16-bit or 32-bit per channel image

(64–128 bits per-pixel image), you most likely intend to further postprocess the image

with Photoshop or compositing packages, in which case you require a higher bit depth to

avoid color artifacts such as banding as well as have more control over the render exposure.

Image Channels and Color Values
By default, all color image formats typically use three channels to store the RGB color val-

ues as grayscale shades in each channel. It is the image viewer software that interprets the

first channel within an image as a scale of red values, the second as a scale of green values,

and the third as blue values, providing, in the case of an 8-bit per-channel image, 24-bit

color, also commonly referred to as True Color within monitor display settings. The per-

channel grayscale values that interpret as shades of color represent the luminance values

(brightness) for each color channel independent of the other color channels.

Primary and Secondary Color Values

RGB primary colors, when combined, provide any shade of color from the visible spec-

trum. The RGB color model is described as additive because colors are formed by adding

light—generated by phosphors in the monitor—in the three primary colors. Essentially, a

render view (background) can be thought of as a black “blank canvas,” corresponding to a

value of zero. As values are rendered, their values are added together, increasing in value

and relative brightness. When all three colors are combined at their highest possible value

When using a compositing software, higher bit depth images help maintain the image’s

integrity after being exposed to several filters or color corrections. It also opens the door for

applying custom tone-mapping corrections to correct for over exposure.

62 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 62

(255 on a 0–255 scale), the color appears as white, which can be thought of as the expo-

sure limit; any value greater than 255 will appear as white.

With print, CMYK colors are used to process color values. CMYK color is described as

subtractive because the colors we see are the colors reflected back to us after other colors

are absorbed by the inks or pigments. This can be thought of as a process of removing

color values from white, revealing darker shades of color. With 3D rendering, we primarily

use RGB color; any conversion to CMYK color is applied later in a graphic imaging appli-

cation such as Adobe Photoshop. See the side bar “Calibration in a Nutshell”.

The Alpha Channel

The fourth channel is typically used for storing a masking channel, such as the alpha chan-

nel but not only. This channel should be considered as an additional grayscale channel not

encoded to any specific color because it is not automatically (by the image viewer) encoded

with any of the primary RGB colors; it is simply a black-to-white grayscale channel that is

used to store any form of data as grayscale values. For example, high dynamic range (HDR)

images store the three standard RGB channels and use the fourth (alpha) channel to store

an additional exponent value, as further explained later in this chapter in the section “Intro

to HDR Images,” and in Chapter 9, “The Fundamentals of Light and Shading Models.”

Intro to Multichannel Images

Beyond these standard four channels, additional channels may also be stored, providing a

multichannel image. For example, an image may store the RGBA channels and an additional

fifth Z-depth channel, supporting five channels within a single image file. Today, one of the

most significant formats is OpenEXR, an HDR format that supports storing any number of

additional channels. It can store different grayscale channels that can then be interpreted as

color channels within supporting compositing packages such as Nuke, Shake, and Digital

Fusion. For example, an OpenEXR image can have the following 10 channels, representing

the RGB color pass and alpha channel, RGB specular pass, and an RGB environment pass:

RGBA+RGB+RGB. Each RGB combination represents an “independent” image that is

stored within the OpenEXR image and can be accessed easily in compositing, mostly with

Nuke that has superior abilities for compositing with multi-channel OpenEXR images.

OpenEXR images (the multi-channel approach) provide for easier handling of data

within compositing applications and conserve disk space. Encoding any of the additional

channels (beyond the first 4 RGBA channels) as R, G, and B channels is applied within the

compositing software. The section “Output Statements” later in this chapter discusses

multichannel rendering for compositing purposes.

You can find an article I wrote on compositing multichannel images on the companion

CD in the PDF file labeled “Nuke Compositing”, offering a detailed look at using such

images with Nuke. Nuke is a compositing application owned by The Foundry (UK) that

was developed in-house at Digital Domain.

mental ray data types ■ 63

08547c03.qxd 10/24/07 4:16 PM Page 63

Bit Depth and Data Types
Bit depth and data types determine the range of values and the precision used to represent

data (color value) in an image file. Numeric data types are distinguished by the range of

values they can represent, and whether they are natural or rational numbers. A single bit, of

course, provides two options, 0 or 1 (off or on), offering either black or white, and is thus

the smallest unit of data on computers. As we increase the bit depth, we get a larger range of

options and thus an ability to define grayscale shades between white and black. With 8 bits

per channel we have 28 grayscale values per channel, providing 256 (natural numbers on a

number line scale) color options per channel, which is commonly referred to as the byte

data type. A byte is used to represent clumps of 8-bit data. So you may refer to a 3-channel

(RGB) 8-bit per-channel image as an image with 3 bytes per pixel. A 16-bit image (216)

provides 65,536 color values per channel, utilizing with mental ray the integer data type.

The byte and integer data types offer different ranges of whole number values (natural

numbers) that are used with 8 to 16 bit frame buffers. Thus bytes and integer data types

are nondecimal point numbers, such as 1, 2, 3…256. Floating-point data types are used

with 32-bit images, which support a wider range of values, as well as rational (decimal

point) numbers.With 32-bit images, the increase in bit depth enables floating-point

images to store a larger range of values (232 per channel) and also supports using several

decimal points that represent a fractional value such as 1÷10000, using 0.0001, providing

more accurate precision while describing a gradation between two values, such as between

0.0 and 1.0. To avoid confusion, note that in mathematics, the term rational numbers is

used to describe a fractional number. The main comparison between 8- to 16-bit images

and 32-bit images is in the available range of values they use to represent a gradation from

black to white and not as much how they choose to represent those values (integer vs.

floating-point values). Most important is the fact that floating point images can store

values that exceed the 0 to 1 range, a topic further discussed throughout this and other

chapters. Table 3.1 illustrates the relationship between bit depth values and their data

types that are used with mental ray (discussed further shortly).

D A T A T Y P E B I T P E R C H A N N E L B I T S P E R P I X E L C O L O R R A N G E

Byte 8 0–255 24 (28 × 3) (three channels) 16,777,216

Byte 8 0–255 32 (28 × 4) (four channels) 16,777,216
+ transparency

16 0–65535 48 (216 × 3) (three channels) 281 trillion

16 -32,768–32,768 48 (216 × 3) (three channels) 281 trillion

Int_32 unsigned 32 4,294,967,295 4,294,967,295
Natural numbers

Float 32 -3.4 × 1038 –3.4 × 1038 96 (232 × 3) three channels) 4,294,967,295
A rational number
range (decimal point)

32 (232 × 1) one channel - used only
with the mental ray tag frame buffer)

Int_16 (half)
unsigned

Int_16 (short)
unsigned

C O L O R R A N G E

P E R C H A N N E L

64 ■ chapter 3: mental ray Output

Table 3.1

Bit Depth and men-
tal ray Data Types

08547c03.qxd 10/24/07 4:16 PM Page 64

Bit Depth and File Size

High-resolution images are among the largest computer files, making storage space a valid

issue for anyone working with them. When we store an image (or any file type), we meas-

ure its size in multiples of bytes: kilobytes (1,024 bytes), megabytes (1,048,576 bytes), and

so forth. We can estimate the disk space required by a particular image (ignoring any

compression or additional encoded data) by looking at its bit depth, and its pixel resolu-

tion. For example, a 1024 ×1024-pixel image (sometimes described as a 1k image) stored

as a single 8-bit grayscale channel would require 1,024 kilobytes (1 megabyte) per channel;

when using three 8-bit channels, it requires 3 megabytes on disk:

(X × Y resolution) × channels × bytes per channel = file size (in bytes)

10242 × 3 × 1 = 3,145,728 bytes

When represented as MB the result is divided by 1k as follows:
3,145,728 ÷ 1,0242(X × Y resolution) = 3 MB

As you can see, a 1k image using three 8-bit channels requires only 3MB of disk space;

however, when you increase the bit depth per channel, the file size significantly increases.

The same image with an additional alpha channel (RGBA) and at 16-bit (2 bytes per chan-

nel) requires 8MB, and at 32-bit, (4 bytes per channel) requires 16MB per image. Most file

formats, however, provide some form of compression to reduce the file size.

The Frame Buffer
A frame buffer is a resolution-dependent temporary image with a given number of chan-

nels and bit depth. Frame buffers are generated when you render and are used to store

color values in memory until the rendering phase has completed (frame buffers can also

be temporarily written to disk) and the output image can be written to disk using a speci-

fied file format and data type. Because frame buffers are required to maintain these per-pixel

values during rendering, they may represent any supported data type (listed in Table 3.1)

that is required for the rendering. These data types are associated, as cited earlier, with

channels and a bit depth defining their purpose their purpose, for example, the typical

8-bit RGB and alpha channels, or a 32-bit Z-depth channel, among others.

By default, mental ray will render an image using an 8-bit per-channel frame buffer,

representing the output image format’s supported bit depth (for example, 8-bit TIF),

unless you specify a greater output bit depth. Thus, the default frame buffer channels and

bit depth correspond to the four 8-bit RGBA color channels in a 32-bit per pixel image.

This provides three color channels as well as an alpha channel, all at a bit depth adequate

for most viewing purposes.

Thus, mental ray data types represent the number of channels and bit depth used for a

given output image within each channel. In the same context, data types also define the

numerical precision in which data is stored (float versus integer). Typically the mental ray

the frame buffer ■ 65

08547c03.qxd 10/24/07 4:16 PM Page 65

frame buffers are referred to by their data type (as seen in Table 3.1), for example byte,

integer, or floating-point data type frame buffers. Thus the default frame buffer is referred

to as a byte data type because each channel’s color value is represented with a single byte,

offering the commonly used 8-bit four-channel (RGBA) image format, providing 256

shades of gray per channel and 16,777,216 color variations.

Normalized Values
In most image applications—digital cameras, rendering formats, and scanners, for

example—the bit depth usually ranges from 8 to 16 bits per channel. As you can see, the

range of colors between 8- and 16-bit images can be expressed using different numerical

values, but the value always represents a range from black to white. To address the differ-

ence in value range, mental ray always uses normalized ranges so that the range from black

to white is described as fractional values from 0 to 1 instead of 0 to 255 or 0 to 65535.

When mental ray outputs an image to the chosen image format and bit depth, mental

ray converts these normalized values to match the target bit depth format by multiplying

its range by the current normalized value. For example, a 50% gray RGB color, a normal-

ized value of 0.5 per channel, is multiplied by 256 when saving to an 8-bit image, adapting

to the 0 to 255 nondecimal range; a color value of 128 is used for each of the RGB color

channels.

32-Bit Depth and Super-Whites
Hardware devices such as monitor displays, scanners, cameras, and printers are limited to

displaying only colors within the range of black to white, and more accurately, within a

range of a given contrast ratio. Contrast ratios describe the gradation in value from the

darkest to the brightest values in an image, which is not limited to a given range in real life

lighting conditions; however, with display devices the contrast ratio range is limited by the

device’s display abilities. For now we are only concerned with a range from black to white.

As color is represented by numerical values, hardware devices such as those cited above

have no use for colors beyond the numerical range of their supported colors. Values in

excess of white are referred to as super-brights or super-whites; these values always appear

as white in an image viewer or on paper (print); for example, a value of 1.2 on a scale of 0

to 1 (black to white) will appear as white within an image viewer. To clarify, these output

devices do not visually differentiate between colors beyond the scale of white even if they

exist within the image. As you’ll see, however, mental ray can make use of these super-

bright values.

In most contexts, normalizing values refers to remapping any range of values so that it fits

into a 0 to 1 range. In this case, normalized values are remapped to the output range.

66 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 66

With 8-bit and 16-bit data types, values greater than the permitted range are either

scaled down within the 0 to 1 range or clipped to that range so that values do not exceed

the 0 to 1 range. For example, an 8-bit image utilizes a 0–255 range describing black to

white, and if a value of 300 were received, that value would be either clipped or scaled

down to the valid range, a value not greater than 255. Clipping values results in the

removal of any super-bright data from an image, and scaling refers to the remapping of

color values so they “fit” into the given range, such as with tone-mapping operations.

Super-whites can be stored only in limited image formats that typically support at least

32-bit per-channel color, or HDR images that can use 8-bit images to represent a virtually

limitless range; more on that later. Thus mental ray can store values in excess of the 0 to 1

range (black to white) using 32-bit floating-point data types or HDR images. Values that

are not clipped to the typical 0 to 1 range maintain their numerical integrity and thus

maintain the relationship between values (the contrast ratio) even if they exceeded the 0 to

1 range. Although we can store such super-bright values, they can not be visually per-

ceived in image viewers. In practice, storing such super-bright values allows us to control

light intensities, remove overexposure, and more, all topics that will be discussed over the

course of this book, beginning with the discussion of overexposure in the section “Frame

Buffer Options” later in this chapter.

Intro to HDR Images

With HDR images (RGBE), the alpha channel is used as an exponent (E) channel, known

as an exponential notation (see Chapter 9), that is used to represent each channel’s “real”

value outside the 0 to 1 range and in fact practically within any range. This sort of image

format supports value ranges that can better represent real-world ranges of light intensity.

The problem HDR imaging addresses is that the dynamic range of light humans can per-

ceive (expressed as a contrast ratio) is much greater than most of today’s output devices’

display abilities. (Tomorrow’s devices, however…) For example, monitors have specific

contrast ratio ranges that describe their display qualities, but this range is far smaller than

the visible range perceived by the human eye.

Thus HDR images can use 8-, 16-, or 32-bit depth where the fourth channel is used as

an exponent value so that the range evaluated mathematically is far greater than the typi-

cal 8-bit range. With HDR images, the difference of using 8 to 32 bits per channel really

only addresses the mathematical precision of the values (gradation) and the file size and

not so much the range, because again, the expression can evaluate to represent any range

regardless of the bit depth.

In most cases 8-bit HDR images are more then adequate for reproducing images with a high

dynamic range.

the frame buffer ■ 67

08547c03.qxd 10/24/07 4:16 PM Page 67

Not every image format supports HDR data. Typical formats are the radiance HDR

format, ILM’s OpenEXR format, or the floating-point TIF formats, as well as mental ray’s

CTH format. HDR images and their significance on photography and 3D imaging and

their characteristics are discussed in detail in Chapter 9 as well as used with advanced

lighting examples in Chapter 13.

Color Values and Sampling
When mental ray renders, regardless of the output format, it samples each color channel

value as a 32-bit floating-point value, and only then converts these values to the specified

output format (8, 16 or 32-bit) before storing them in the frame buffer. This means that

within the 3D domain, color values can represent contrast ratios within a high dynamic

range, similar to HDR images. This characteristic has significant impact on rendering. For

example, consider that during rendering, shaders add values from material shaders, light

shaders, indirect illumination, and so on, the color values for a given shaded point often

exceed the standard 0 to 1 range of an image, giving us super-white colors. The fact that

mental ray renders using a high dynamic range can affect how you select an output format

and describe values (lights and shaders) in the 3D scene.

First consider that 32-bit buffers store the values in a linear fashion, a one to one map-

ping with the color acquired during the rendering stage. Thus the colors are not further

modified as they are stored within the buffer, maintaining their integrity, be it a value of

0.05 or 500. Clearly this process also requires an image format that supports 32-bit data

while storing these values on disk.

Then consider that when using lower bit depth buffers (8- and 16-bit), mental ray still

utilizes a 32-bit process that represents a contrast ratio between the darkest and brightest

colors acquired from sampling. And so, if the contrast described within the scene exceeds

a range of 256 values, only a given portion of those values can be effectively represented

using an 8- or 16-bit buffer. The result is two fold.

1. Artifacts such as banding may appear due to a lack of accuracy in representing grada-

tions using lower bit depth buffers. The precision of fractional numbers acquired

while sampling with a 32-bit process is greater than the precision of lower bit-depth

buffers.

2. Lower bit depth buffers only consider values within that 0 to 1 range clipping values

in excess of 1, hence values are easily omitted from being properly stored or repre-

sented within a 16-bit and lower image format.

Thus, while defining lights and shaders, to some extent you also need to consider how

colors are evaluated for the frame buffer, providing colors that are adequate for the range

of its selected data type (8 bit, 16 bit, etc.). mental ray provides some options for control-

ling how colors are scaled or clipped to match the range with 16-bit and lower frame

buffers. The topic of balancing light and shader values is further discussed in Chapter 9.

68 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 68

Primary and User Frame Buffers
Before rendering begins, mental ray can create and maintain up to six standard “built-in”

frame buffer types as well as additional user-defined frame buffers. The standard frame

buffer types include RGBA, Z-depth, motion vectors, normal vectors, coverage, and tag

labels. The primary frame buffer (RGBA), a four-channel data type frame buffer (at any

bit depth), is responsible for storing per-pixel color and transparency values that correlate

directly to the output image RGB and alpha (transparency) channels.

The primary frame buffer is the minimum requirement for rendering images. The

remaining five buffer types act as assisting frame buffers. They are created on demand to

support specific shader calls, typically for postprocess effects that require a specific type of

information. Examples include 2D postprocess depth of field or motion blur effects. Post-

process shaders with mental ray are referred to as output shaders and are further discussed

in “mental ray Cameras” later in this chapter. As frame buffers are used to represent per-

pixel values, they can only be used with per-pixel operations. They are used to output cus-

tom channels for compositing (essentially a form of postprocess effects) or with output

shaders that apply postprocess effects during rendering.

mental ray frame buffers can be output to disk in specific image formats. These formats

may be either host specific, to support a target data type and precision, or one of mental

ray’s image formats. mental ray’s formats, as a matter of convenience, directly correlate to

the different frame buffer types, discussed next. Each frame buffer can then be stored

either using one of the mental ray formats or using a host-specific format correlating to

that format’s data type. For example, if three 32-bit channels are required, either use the

mental ray format or an equivalent 32-bit TIF image. The following sections describe the

frame buffer types and recommended bit depth to help correlate them with supported

output formats. Further, in each case the mental ray format is specified. It should be clear

that the concepts of saving frame buffers as images is nothing more than the process of

storing data (value) in image files that have a given number of channels and are at a given

bit depth. In most cases, host applications may force you to accept a host-specific format

which is fine, as long as it has adequate bit depth and supports the channels you require.

Most custom buffers use 32-bit output to guarantee a high degree of precision while process-

ing postprocess effects or for compositing purposes, where a high precision is required in

order to avoid any resulting artifacts after the effects have processed.

Throughout the chapter, the term primary frame buffer refers only to the RGBA (main) frame

buffer and when referred to as plural, as with primary frame buffers, it refers to the six built-in

frame buffers listed above. The term standard frame buffers is also commonly used to describe

the primary frame buffers.

the frame buffer ■ 69

08547c03.qxd 10/24/07 4:16 PM Page 69

The Z-Depth Frame Buffer

The Z-depth frame buffer, a 32-bit single floating-point channel frame buffer shown in

Figure 3.1, represents the scene depth based on the camera’s viewing plane. mental ray

provides the ZT image format for exporting Z-depth images, or you most likely will use

your host-specific Z-depth format.

Z-depth is used for depth sorting with per-pixel effects, such as depth fading, 2D fog,

or fast depth-of-field post-process effects. For example, a 2D depth fade would require the

use of both the RGBA primary frame buffer and the Z-depth frame buffer to calculate the

relationship between the RGBA colors and the scene depth. It can fade an image over dis-

tance by inverting the Z-depth values and multiplying by a fade value, so that if the far-

thest point from the camera is assigned a value of 0 and the closest point a value of 1, as

surfaces get farther from the camera they fade to black.

You can see in the figure that in mental ray’s Z-depth output, white represents the far-

thest point from the camera, and black is the closest point to the camera. This color inter-

pretation for depth is the opposite of that used by other rendering applications. Typically

these values would be inverted for image processing.

Z-depth postprocess effects, whether with an output shader or in a compositing application,

a high level of accuracy is required for representing a transition over distance as means for

avoiding unwanted artifacts, and thus you should always use (and export) 32-bit floating-

point Z-depth passes.

Figure 3.1

The Z-depth frame
buffer can be used

for compositing 2D
postprocess effects

with mental ray or a
compositing appli-

cation such as Nuke,
Shake, and Digital

Fusion.

70 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 70

The Motion Vectors Frame Buffer

The motion vectors frame buffer, a three-channel 32-bit-per-channel floating-point data

type frame buffer, stores motion vectors typically for 2D (postprocess) motion blur

effects. Motion vectors are exported using the MT mental ray format and represent the

vertex motion and velocity in a color-coded form so that it can then be used by output

shaders or with vector motion blur effects within compositing applications. When ren-

dering motion blur 2D postprocess effects, mental ray creates the primary RGBA frame

buffer and a motion vectors frame buffer and maintains them until the 2D motion blur

effect has been processed. With respect to outputting the motion vectors frame buffer as a

pass, mental ray motion vectors are not easily used with compositing applications, how-

ever, there are other custom shaders and plug-ins that you can use more effectively. You

can see an example for a motion vectors pass with the image labeled “LMV Motion Vec-

tors” on the companion CD, under the Chapter 3 directory. The topic of using motion

vectors for 2D motion blur is further discussed in Chapter 8, “Motion Blur.”

The Normal Vectors Frame Buffer

The normal vectors buffer uses three 32-bit floating-point channels to store the surface

normal directions in a color-coded form using mental ray’s NT image format. Normal

vectors are used to describe the surface normal aim direction at a given point, typically in

world space coordinates. Green is used for the up Y vector, red for positive X vector, and

blue for positive Z vector, as seen in Figure 3.2 (on the CD, you’ll find a color version

named “Normal Vectors”).

Z = BlueX = Red Y = Green

Figure 3.2

The normal vectors
frame buffer pro-
duces a color-coded
image representing
the surface’s orien-
tation within the
scene’s coordinate
space.

With depth of field and motion blur effects, updating a render sequence can take several

hours. This wait time is the Achilles heel of 3D rendering. Too often, even though the 3D

counterpart is much more realistic and physically accurate, it is also significantly slower, so a

quick 2D solution becomes much more attractive in most production-driven cases, as

demonstrated with motion blur in Chapter 8.

the frame buffer ■ 71

08547c03.qxd 10/24/07 4:16 PM Page 71

To fully explain normal vectors, it’s actually useful to see them in grayscale. Figure 3.2

shows the primary color channels separated so you can distinguish between the different

color values. (You can see this separation for any image simply by viewing channels indi-

vidually in the host application’s “flip book” utility, in a compositing package, or in Pho-

toshop.) In the grayscale image, white represents on a scale from 0 to 1 a value of 1, which

in the case of the red channel is 100 percent red, whereas a 0.5 value provides 50 percent

red, as a gray value. Remember that the channels are grayscale gradations from 0 to 1,

encoded with color by the viewer. Thus, a value of 1 in any of the three RGB channels cor-

responds directly to the positive direction for that X, Y, or Z axis, corresponding to the R,

G, and B channels respectively. Thus 100% red refers to the positive X axis. As you can see

in the figure, each channel indicates the direction of its correlating positive X, Y, and Z

axis with white. You can tell by looking at the figure that the camera is looking directly at

the sphere where the world’s Y axis points up, as indicated with the white color under the

Y-Green label. Black colors in the figure represent the opposite (negative) side for that axis

(normal direction), which in color is drawn using secondary colors (the result of mixing

the primary colors). To fully understand the color interpretation take a look at the color

image noted above.

Normal vector values may be required by some output shaders for applying effects that

require information about a surface’s normal aim direction. It is more common to use

normal vectors as texture maps for bump mapping rather than output frame buffers. The

topic of normal maps for shading is further discussed in Chapters 11 and 14. In a nutshell,

the process of color coding images based on the normals directionality allows you to take a

high resolution model, and bake a normal map. Baking refers to exporting an image that

contains the normal vector output as color, just as with the normals frame buffer, but only

as a texture map. The map contains within it the directional information of the high-reso-

lution surface’s geometry in a color-coded format. You can then apply that normal map as

a normals bump map texture to a lower resolution model. Bump mapping shaders use nor-

mals to perturb (bend) the direction of the geometries normals based on image files, in

this case it will use the normal data to control the lighting across the surface, based on the

data extracted from the higher resolution model. Thus it provides a means for transferring

surface properties from a high-resolution model to a low-resolution model so that you

can mimic the same interaction of light on the lower-resolution model; its shading.

Most significantly, the game industry uses normal texture maps to define how a flat

plane with a simple texture can perturb light so it appears to have a 3D form, such as a

wall that appears to have pipes stretching across the surface or bricks bulging out.

By now it should be clear that color in CG is a very significant source of information for pro-

cessing postprocess effects either with shaders or in compositing, and thus not just a visually

pleasing aspect of an image.

72 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 72

The Object Labels Frame Buffer

The tag frame buffer creates a 32-bit single integer channel frame buffer that stores tags

(also called labels) that list objects within the scene. Essentially this is the only buffer that

uses 32-bit depth with integer precision instead of floating-point precision. Integer preci-

sion is used so that each label may have a unique number, thus the objective is to provide

a clear color separation between separate labels and not a smooth gradation, as with Z-

depth or motion vectors. This buffer uses the mental ray TT image format.

An output shader uses the information it contains to identify objects or groups of

objects; for example, a tire may comprise several independent surfaces grouped as “one”

tire. The object labels then act as ID tags, helping output shaders determine how to

process effects on the pixels associated with those object IDs. Thus a label may or may not

be unique to a single object; it can also be shared by several objects that require similar

processing, and are defined by the user. After rendering a scene, you can view this frame

buffer in the image viewer and see the different objects identified by label color, as shown

in “Object Labels” in the Chapter 3 folder on the CD. This frame buffer may appear to

provide a sort of masking ability, based on the object’s label. However, it does not provide

sufficient precision to be applicable as a compositing pass. In the section “Output Order

and Output Shaders” later in this chapter you will see an example of using this object

labels frame buffer with a 2D postprocess fur shader.

The Coverage Frame Buffer

The coverage frame buffer can use a single channel 32-bit floating-point frame buffer

or any other precision to represent pixel coverage. This buffer can then use a grayscale

range of values to represent objects that have more pixel coverage within a pixel so

that the dominant object’s coverage is represented. This frame buffer with mental ray

is stored using the ST format. Coverage can be used with other frame buffers to help

prioritize objects that are dominant within a pixel, so in a way it can help the accuracy

of other frame buffers by determining the most influential surface per pixel. This sort

of specialized buffer is more useful in the hands of a shader developer, who creates

custom programs that process various effects that may require this sort of specialized

information.

All these frame buffers are specifically used with shaders, and in most cases, if you have no

use for them in compositing, you would not bother to output them. Shader writers, however,

can choose which frame buffers they require for processing an effect and thus have more use

for specifying them. Finally, as cited earlier, for compositing, the Z-depth and motion vector

frame buffers have the most usage and are more commonly exported as separate image

passes.

the frame buffer ■ 73

08547c03.qxd 10/24/07 4:16 PM Page 73

User Frame Buffers

Aside from the six “built-in” frame buffers, which are created on demand, mental ray 3.4

and later also supports any number of additional user-defined frame buffers. Typically these

buffers are meant to assist some sort of 2D output shader postprocess effect or to output

specific color information, such as separate color passes for diffuse and specular color

components. Users define the user frame buffer data type so that it supports their specific

objectives, so mental ray allows user-defined frame buffers

to be of any data type. In Figure 3.3 you can see the XSI

properties for a new user frame buffer. As you can see, the

Type property allows you to select any of the frame buffer

data types discussed above so that the new user frame buffer

labeled My_User_Buffer_01 may be any of the following

types: Color (RGBA), Grayscale (single channel), Depth,

Normal Vector, Vectors / Motion Vectors, and Object Label.

Consider that when all the color information is stored within the same RGBA primary

frame buffer, there is no color separation; you can’t store just a specific color component

(ex. the reflection, specular, shadow, or other color). Thus user frame buffers are used to

provide separation, where you can store specific color passes, such as the reflection, specu-

lar, shadow, or indirect light colors, to mention a few, in separate frame buffers that are

then saved as separate image files on disk, used as passes for compositing. We return to

user frame buffers and passes shortly, in the section “mental ray Cameras,” and see an

example of their implementation within XSI. You can also see the Nuke Compositing arti-

cle noted earlier on the CD.

Frame Buffer Options
Frame buffer options enable us to deal with different types of color ranges and how they

are stored on disk. These options enable us to control how floating-point color evalua-

tions are converted to a specific frame buffer data type and output format. They are used

to define whether an image is 32 bit or 8 bit, premultiplied, interpolated, dithered, and so

forth as well as whether its gamma corrected. All frame buffer options must be entered

within a mental image file’s options block.

One advantage of frame buffer options in mental ray 3.4 (and up) is that frame buffers

can be saved on disk during the render, in a temporary file until the render has completed.

This enables mental ray to better handle memory when several buffers are required, such

as with multiple user frame buffers, effectively enabling mental ray to use the memory for

more pertinent information. Also, during sampling, mental ray can examine each buffer

for contrast thresholds, so that a change in contrast from any one buffer may result in

additional samples. The topics of sampling and contrast thresholds are described in detail

in Chapter 5, “Quality Control.”

74 ■ chapter 3: mental ray Output

Figure 3.3

Defining custom
user frame buffer
data types in XSI

08547c03.qxd 10/24/07 4:16 PM Page 74

mental ray frame buffer settings are offered at different levels and different integrations

within each package. We’ll look at the mental ray options first and then identify them

within host applications.

mental ray Frame Buffer Options
The following options control how colors are combined into pixels and how color and

transparency are handled with respect to the image’s bit-depth format:

• Interpolation vs. padding

• Premultiply

• Colorclip

• Desaturate

• Gamma

• Dither

The Colorclip, Gamma, and Desaturate options deal with controlling color with frame

buffers that maintain a (16-bit or lower) 0 to 1 color range. These options are not relevant

with 32-bit data types; however, they must be set accordingly, as discussed in following

sections, so they don’t “damage” the desired results. Premultiply in most cases should be

enabled, unless you intend on compositing different elements (ex. a character, room,

phone, and chair) and color correcting them, hence an option that is intended for com-

positing purposes. Let’s look in detail at all of these options with the following sections.

Interpolation vs. Padding

This option defines whether sample values are blended together. When a frame buffer is

interpolated, it will blend the samples for a given pixel, producing an “averaged” result. A

padded frame buffer, by contrast, simply stores the first or last received value (depending

on the buffer’s data type); samples are not blended together. Padded frame buffers would

not suffice for evaluating good “beauty” pass color renders. We specify frame buffers in

the mental ray options block, prefixed with an interpolation option, either a plus (interpo-

lated) or a minus sign (padded). The primary frame buffer (RGBA) is interpolated and

thus referred to as +RGBA frame buffer. Thus custom user buffers that deal with extract-

ing color passes should also be specified as interpolated frame buffers.

Premultiplication

The Premultiply option is specified on the command line as

-premultiply on | off

This option, referred to as premultiplication in compositing, controls how transparency

values are stored within the RGB and alpha channels. Unless you specifically know that

frame buffer options ■ 75

08547c03.qxd 10/24/07 4:16 PM Page 75

you need an un-premultiplied image, which is an image that has not been premultiplied (as

described in this section), you should always leave this option enabled. Premultiply math-

ematically multiplies each RGB color channel by the alpha channel value. By doing so, this

option preserves the correct transparency values for each of the RGB color channels. For

example, an RGB value of 0.9 multiplied by an alpha value of 0.2 (R*A, G*A, B*A), will

result in a 0.18 value for each color channel. Essentially premultiply is a per-pixel opera-

tion that matches the RGB intensity for a given pixel with the corresponding alpha chan-

nel transparency.

The premultiply option is intended for 16-bit and lower image formats, since those images

utilize a 0 to 1 value range. However, with 32-bit buffers (and output) the color values are

greater than 1, so if premultiplication is applied on 32-bit buffers, color values that are

multiplied by an alpha value of 0.5 (50 percent transparency) may still provide RGB color

values in excess of 1, and hence are not an accurate representative of transparency for

compositing purposes. For example, consider a pure color of blue that is set with a value

of 500 (R=0, G=0, and B = 500), when multiplied by 0.5 it equals 250 which still provides

a full intensity blue color, without appearing any darker (transparent). However, in a 0 to

1 range a color value that can not exceed 1, when multiplied by an alpha below 1, will cor-

rectly represent a transparency within the RGB channels and of course correlating to that

pixels alpha value.

Another form of transparency is applied along an object’s edge as it recedes into the

background. Anti-aliasing (Chapter 5) attempts to provide a smooth gradation for this

transitional phase. If the background color is set to black (the default in host applications),

the surface color will transition to black; that is, the surface itself changes color as it is

composited over the black background by blending both (surface and background) colors

together. If you have a composite of several passes and you intend to apply color or value

corrections, you inevitably would adjust the transition color from the surface to the back-

ground while applying color corrections, rather than just adjust the surface color. Con-

sider that the transition color represents the current surface’s color after it has been

premultiplied and thus corrected for transparency. If you change that value it no longer

represents the correct transparency value. In the case of a transition to black, if you

increase the brightness of an image in compositing, this would influence the “fade to

black” transition, which should maintain the same gradual “darkening” value throughout

the transition. However, adjusting brightness will in fact also brighten the transition, cre-

ating visible artifacts along the transition.

Figure 3.41 later in this chapter shows artifacts from applying incompatible postprocess

shaders to premultiplied images with 3ds Max effect shaders, which apply a blur color effect

that creates a clear black outline around spheres that are rendered over a white background.

76 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 76

C O M P O S I T I N G P R A C T I C E S A N D P R E M U L T I P L I C A T I O N

Based on the discussions above, when compositing different elements together you want

to apply all the color corrections to the un-premultiplied image; an image that has not

been multiplied by its alpha channel. Then, when you are satisfied and ready to composite

it over a background image, use a premultiply operator in your compositing application

to premultiply the foreground by its alpha. You can then composite it using an over opera-

tion. An over operation is a standard compositing term (math operation) that refers to

layering two images (a premultiplied foreground image and a background image) together

based on the alpha channel of the foreground (top) image like this:

A + (B × (1-a))

This means that the foreground A (premultiplied) is added with the background B. The

background is first multiplied by 1 minus the foregroundÕs alpha value. This means that

where the foreground alpha is equal to 1 (white / opaque) it will result with 1 - 1 which is

equal to zero, and vice versa for values of 0 which will equal 1. This has the effect of invert-

ing the foreground alpha and multiplying it by the background, effectively cutting out a

hole in the background image so that the foreground colors can fit into that hole without

increasing in intensity; remember they are mathematically added together so that if you

donÕt cut a hole with the foregroundÕs alpha, the values of both layers add up together.

Since the image has been premultiplied in compositing after color corrections and

before the composite (over) operation, it assures that the correct color values between the

A

B

Figure 3.4

Premultiplied and
un-premultiplied
compositing. Notice
the artifacts along
the premultiplied
color-corrected
image (A) compared
with the unpremulti-
plied image with the
same correction (B).

frame buffer options ■ 77

08547c03.qxd 10/24/07 4:16 PM Page 77

background and foreground will blend together along the edges, where a transition is

defined using values from 0 to 1. Thus, by correcting an un-premultiplied image, you can

adjust the color without concerning yourself with such artifacts. Figure 3.4, image B shows

how the transition is maintained using the same composite flowchart (composite tree)

used for image A; however, an un-premultiplied image was used rather than the premulti-

plied image. After a color correction has been applied, the image was premultiplied by its

alpha and composite over the background using an over operation.

U N P R E M U L T I P L I E D R E N D E R C H A R A C T E R I S T I C S

When premultiplication is disabled, especially with transparent surfaces, we typically see

two noticeable characteristics. The first is that the transparent areas are filled with the sur-

face’s color. For example, suppose a transparent solid blue glass is placed over an empty

background. With premultiplication disabled, instead of appearing darker from the influ-

ence of the black background “visible” through the glass, that transparent area is filled

with a solid blue color, showing no transparency in the RGB channels and a gray transpar-

ent level in the alpha channel.

The other noticeable characteristic is that in the surface color’s transition area (edge

anti-aliasing) over the background’s empty space, the surface edge color is exaggerated

outward from the object. For example, if the surface were green, a green color as well as

the specular color would extend outward from the surface to compensate for the area of

transition (as shown in Figure 3.5 D, Premultiply off). In the color version on the CD

(named “Color Clipping”), notice how for labels C and D (where Premultiply is off), you

can see how the green color covers the entire surface (seen as brighter values in print) and

gets brighter thanks to the specular component instead of fading to black, as with the sec-

tion labeled B (premultiplied) that preserves the transparency.

This should all make sense now that you examined the compositing process. If the

image is not multiplied by the alpha (unpremultiplied), it will not show any transparency

and thus maintain its correct surface color throughout its surface area and over the edges’

aliasing areas. You can then change blue to red, premultiply it, and arrive at a correct pre-

multiplied image that is ready to be superimposed over a background image.

Color Clipping

The colorclip option is specified on the command line as follows:

-colorclip [raw | rgb | alpha]

It controls how mental ray treats sample color values that exceed the 0 to 1 range, pro-

viding values suitable for the selected frame buffer’s data type bit depth. With 16-bit and

lower frame buffers, the RGB and alpha clipping options enable you to prioritize a color

clipping method; how values are clipped to the 0 to 1 range. These options scale the range

of one value (ex. RGB values) to the other (ex. the alpha value), thus maintaining either

78 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 78

color or alpha intensity and always clipped at a maximum value of 1. The raw mode,

discussed shortly, is the only mode that permits values outside the 0 to 1 range and is used

by default with 32-bit images.

R G B A N D A L P H A M O D E S (1 6 - B I T B U F F E R S A N D L O W E R)

Figure 3.5 illustrates the relationship between RGB and alpha color clipping. It shows both

RGB color and alpha channel renders with various settings. In all cases, the surface shader

used a horizontal gradient texture to define transparency and a solid green color is used

for color as well as an overexposed white specular color to pronounce the effect color clip-

ping has on specular highlights.

The alpha gradient seen under label D represents the “real” shader’s alpha gradient,

which was used in all cases. The only changes applied to all these images are color clipping

modes and premultiplication. The figure is hard to interpret in black and white, thus I

recommend you locate the color plate on the companion CD. In black and white, brighter

color indicates a higher value of green, where the brightest colors indicate specularity, and

as color value transitions to black, the transparency influence is taking effect.

In these discussions consider that with an HSV color scale the V parameter defines the color

intensity (brightness). In the same context, on an RGB color scale each channel has its own

intensity defined with its numerical value, where higher values for the R, G, and B color chan-

nels are also considered brighter colors. The following discussions refer to value often and

thus can be interpreted either as the per-channel value or the HSV V value. Also remember

that the alpha channel only has one channel that defines its intensity.

Alpha color clipping RGB color clipping RAW color clipping

A

Premultiply

B

Premultiply off

Alpha

Premultiply

Premultiply off

Premultiply offAlpha

Alpha

Alpha

C

D

Figure 3.5

Color clip compar-
isons. These images
show RGB, alpha,
and raw color and
alpha channels,
respectively.

frame buffer options ■ 79

08547c03.qxd 10/24/07 4:16 PM Page 79

The RGB Mode

RGB color clipping will prioritize color over alpha by first conforming the alpha values to

the RGB values’ intensity so that the alpha intensity, if need be, is raised to conform to the

surface’s intensity. In the figure under RGB color clipping (B), you can see how the alpha

channel has adjusted to match the surface’s value, specifically noticeable with the specular

highlight in the center of the surface. Notice how that highlight carries through from the

RGB channels to the alpha channel, which makes the alpha channel look like a glossy sur-

face. With alpha color clipping (A), the alpha channel (third one down labeled Alpha)

shows no such highlight. Clearly you can see how RGB color clipping affects the alpha

channel.

The Alpha Mode

With alpha color clipping, transparency is preserved and RGB values are clipped to pre-

serve the alpha intensity. Look at alpha color clipping in Figure 3.4A. The first premulti-

plied version shows how the green surface is multiplied by the alpha, preserving the

transparency. Most noticeable is that the specular component has been scaled down by the

alpha, as its part of the RGB color values. The alpha gradually loses intensity along the sur-

face, so at the mid point it has already scaled down by some percentage, and at that point

we have a specular highlight that should be much brighter (even overexposed), When the

RGB values are multiplied by the alpha, however, the intensity is lost. Thus alpha color

clipping may lead to unwanted results, so it should only be used if you are sure that you

need to prioritize transparency over color.

Factoring Premultiplication

If premultiplication is enabled, as in Figure 3.4A and B, the RGB color values are premul-

tiplied by the alpha channel after color clipping has been evaluated, based on the selected

color clipping mode. Thus the color clipping mode is first used to clip colors based on the

mode, and then premultiplication takes effect. When premultiplication is disabled, as in C

(under RGB color clipping), notice how the surface color is much brighter and, as cited

earlier, the color and specular components are carried through the surface’s transparent

areas and over the surface edges. This is exactly the type of unpremultiplied image you

want to use for compositing color corrections, as discussed earlier under “Compositing

Practices and Premultiplication”.

Also notice, under C, how the alpha has also been affected by RGB intensities, raised in

this case to the unpremultiplied RGB intensity. Because mental ray tries to match intensity

of either RGB or alpha channels when rendering 16-bit and lower images based on the

specified color clipping mode. Thus, when premultiply is disabled the RGB color clipping

mode provides an alpha channel that preserves the unpremultiplied RGB colors values

and eliminates any real representation of the surface’s transparency within the alpha

channel. In such a case, you may want to render a separated alpha pass and then during

80 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 80

compositing after applying any color corrections, premultiply the RGB image by the sepa-

rate alpha pass to determine its effect on the transparency. With respect to compositing, if

you premultiply the alpha pass by the color pass in the compositing application you will

still lose the RGB intensity. As a workaround consider that if you render specular color as

a separate pass you can still composite surface transparency while maintaining highlights,

as each is handled (composited) as a separate component.

With alpha color clipping, when premultiplication is off, you can see how the RGB col-

ors scale to a lower grayer color (A), because the RGB colors are still scaled down by the

alpha channel. These modes and premultiplication provide for different variations in how

you use the options. When alpha color clipping is selected and premultiplication is dis-

abled, the results are similar since both methods conform the RGB color channels to the

alpha intensity. Typically you should prefer RGB color clipping because you don’t want to

lose highlight color values.

R A W M O D E A N D 3 2 - B I T C O M P O S I T I N G

The raw color clip mode allows colors outside the normal 0 to 1 range and thus enables

RGB colors that contradict the alpha value, as seen in Figure 3.5 D where the raw mode is

selected, premultiply is disabled, and a 32-bit image data type is selected. As you can see,

the alpha value is maintained, as with alpha color clipping, and the RGB color is main-

tained as with RGB (unpremultiplied) color clipping, both values contradicting each

other. If premultiplication is enabled, the RGB colors will look like the premultiply image

seen under label B, however, the alpha channel will not conform to the RGB values and

maintain its integrity, as seen under image D. Thus the RGB and alpha channels will still

contradict in value, however, the appearance of a premultiplied image is present. Note

that the RGB values will support super-bright values, for example, the brightest areas seen

in the highlight under B (when rendered as 32-bit raw) may carry values such as 2 or 20,

both significantly higher than the 0 to 1 range.

mental ray will only store erroneous values when using 32-bit frame buffers with the raw

mode (32-bit buffers default to the raw mode).

Remember, all these discussions only apply to 16-bit and lower images.

After Effects users, notice that when you import images into After Effects you are immedi-

ately prompted to indicate if the images are premultiplied or not. The topic of premultiplica-

tion is at the backbone of every composite tree that deals with superimposing CG over other

images.

frame buffer options ■ 81

08547c03.qxd 10/24/07 4:16 PM Page 81

Desaturation, RGB and alpha color clipping, and gamma correction are all disabled

with 32-bit frame buffers. They all represent methods for adjusting “real” values to values

that are in the 0 to 1 range as well as values that don’t contradict in value (RGB and alpha),

opposed to 32-bit images that offer values outside the 0 to 1 range using raw values that

may contradict in value, for example an image that has a fully transparent alpha with bright

RGB colors.

Compositing 32-bit Images

Let’s look at the significant differences between using 32-bit images and 8-bit images in

compositing. Figure 3.6 shows side by side two columns of rendered images, one at 32 bit

and the other at 8 bit, and in both cases using the RGB channels with no alpha channel.

(The 32-bit image is not an HDR image.) The images were generated using an infinite point

light emitting a strong bright light that forms a large overexposed circular region over a

checkerboard surface. Notice that after the brightness for the 8-bit image is scaled down, a

smudge of gray color remains. The pattern there is lost because those values no longer

exist; the colors have been clipped to within the 0 to 1 range. The 32-bit image maintains

the relationship of values over the 0 to 1 range, and so when the exposure is scaled down,

the pattern reveals itself. This permits powerful compositing editing without loss of data

and avoids the need for re-rendering to recover lost data.

32-bit image 8-bit image

Figure 3.6

An infinite point
light reveals the pat-

tern behind the
overexposed areas
with 32-bit images.

Contrast this with
the 8-bit image,

which has lost any
relational data for

those values.

82 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 82

Desaturation

The Desaturate option is specified on the command line as follows:

-desaturate on | off

Desaturation is an option that should be used with the 16-bit and lower images. It pro-

vides a means for maintaining the ratio between color values that exceed the 0 to 1 range,

relatively scaling down values into the 0 to 1 range so that their relative brightness (con-

trast) is maintained. Figure 3.7 shows two images side by side, both clipped using RGB

color clipping. Notice how the specular highlight appears flat in the nondesaturated image

(left), and how it appears to maintain some level of gradation in the desaturated image

(right) as mental ray reduced some of the color values in excess of 1 into the 0 to 1 range,

rather than just clip them at 1. This method is not a tone mapping operation that effec-

tively handles a non-linear remapping of image values, as discussed in Chapters 9 and 13,

rather a loose hack that reduces the intensity locally, which may or may not suffice. As

cited above, overexposure is best handled in compositing when using 32-bit images, or by

carefully specifying shading and lighting values in the scene so that they do not easily

exceed a 0 to 1 range.

Figure 3.7

Desaturation
enables us to scale
down super-bright
colors so that they
maintain a visible
intensity gradation
within images at
16 bits and lower
bit depths.

When values exceed the 0 to 1 range, but not significantly (ex. 1.2, 1.5), the desaturate option

will usually provide adequate results.

In compositing, it is always better to use 32-bit images that enable you to preserve the rela-

tionship between color values and thus correct overexposure on-the-fly rather than by re-

rendering. It also provides for better color correction and effect abilities without introducing

artifacts into the image due to the increase in precision, as discussed earlier.

frame buffer options ■ 83

08547c03.qxd 10/24/07 4:16 PM Page 83

Dithering

The Dither option is specified on the command line as follows:

-dither [on | off]

Dithering is a method that introduces noise into the image to minimize artifacts caused

by linear gradations. Typically, dithering is a term that is used in reference to print; when

pixels don’t correspond directly to dots per inch with the printer, dithering is used to intro-

duce more dots (noise) for representing equivalent pixels. In 3D, dithering is used in part for

film production when the render will be printed to film. mental ray dithering is not really

distinguishable and is primarily aimed at removing the chances of artifacts, such as banding.

Gamma Correction

The Gamma option is specified on the command line as follows:

-gamma [value]

Gamma is a term used to describe the display characteristic of monitors with a mathe-

matical equation that represents how values from black to white are displayed. Monitors

display light values in a nonlinear fashion, thus color values between 0 and 1 will not

reproduce at the same intensity (grayscale shade) on a monitor, typically appearing darker

than they are. The voltage sent to the monitor defines the monitor’s response curve to

light, which describes a nonlinear transition of voltages for a given light intensity (grayscale

value), and as the intensity increases, more voltage is required for reproducing the correct

brightness.

The equation used to derive the display intensity at a given gamma (a monitor-specific

gamma) is then the color (pixel) value raised to the power of the gamma, and so the dis-

play brightness equals xgamma. Most monitors today use a gamma of 2.2 to 2.5 (for PC

monitors), so ball-parking this value may be sufficient. This equation then represents the

display characteristics for the monitor, and so a pixel value of 0.52.2 is roughly 0.22.

Clearly a 50 percent gray displayed as a 78 percent gray appears darker, which then

requires a gamma correction to adapt to the given monitor’s response curve.

Images captured or created using a linear curve to represent value distribution between

0 and 1 would obviously appear too dark on monitors, and so we apply a gamma correc-

tion to boost their intensity. This way, if we need to display a 50 percent gray, we need to

correct the image’s gamma so that 50 percent gray equals a 75 percent gray (closer to

white). Thus, when sent to the monitor it appears as 50 percent gray. The equation used

to derive a corrective gamma curve is applied in the same way as when extracting gamma,

thus xinverse gamma; the inverse of the gamma. To determine the inverse gamma value that

we should use, we divide a value of 1 by the monitor’s gamma(1÷gamma), providing us

with a gamma-corrected value that we can use for rendering. In the case of a 2.2 gamma

that value is 0.454 (1÷2.2). Thus when you want to correct a 2.2 gamma you should apply

the gamma option with a value of 0.454.

84 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 84

To help clarify these equations and how they affect gamma, let’s look at Table 3.2. Using

the equations cited above, Table 3.2 shows a few different linear intensity values and their

equivalent value (intensity) based on a 2.2 gamma display monitor, referred to as monitor

gamma Y in the table; it shows you how a gray value will appear on a typical PC monitor

without applying any gamma correction. The last column utilizes a gamma correction

value of 0.454, as cited above, displaying the result of raising each gamma value Y to the

power of 0.454. You can see how the last column almost (because I only used three digits

precision past the decimal point) reproduces the exact initial intensity values listed under

the first column (the source intensity). Thus it corrects the Y gamma values so that they

will appear on a 2.2 monitor correctly, using the same intensity values seen in the first col-

umn; the source image.

L I N E A R V A L U E X X 2 . 2 (M O N I T O R G A M M A Y) C O R R E C T E D G A M M A (Y 0 . 4 5 4)

0 0 0

0.25 0.047 0.249

0.5 0.217 0.499

0.75 0.531 0.749

0.85 0.699 0.849

0.95 0.893 0.949

1 1 1

It’s important to emphasize that gamma only affects values between 0 and 1 not inclu-

sive of 0 and 1. Thus it generates a non-linear curve that starts at 0 and slowly increases in

value as illustrated in Figure 3.8 above gamma 2.2. Figure 3.8 illustrates the relationship

between a linear curve, gamma curve, and a gamma-corrected curve, correlating to the

table above where the first column is the linear curve, the second column is the gamma

curve, and the third column is the gamma-corrected curve. The gradient renders under

each of the illustrated curves show you the following:

Gamma 1 shows a gradient that represents the target image; it shows what a linear

black to white gradation should look like when it appears correctly.

Gamma 2.2 shows how such an image (gamma 1) will look on a monitor without

gamma correction; the image appears darker throughout the gradation until it even-

tually turns white.

Gamma 0.45 shows the result of applying a gamma correction; the image appears cor-

rectly on screen and looks identical to the source (target) image seen under gamma 1.

Notice how 0 and 1 define the bounds of the gamma curve, where in-between values

are affected by the monitor’s gamma. For this reason, gamma correction is only applied to

images that are in the 0 to 1 range, hence images that are 16-bit and lower, as discussed

above. With 32-bit images you can’t apply any gamma correction; more on that later.

Table 3.2

Intensity values
based on a 2.2
gamma.

frame buffer options ■ 85

08547c03.qxd 10/24/07 4:16 PM Page 85

Gamma can be corrected by hardware or software—usually by software on Windows

computers. Software gamma correction can be done either automatically, as with Photo-

shop, or manually as with the mental ray gamma option. With Macs, typically there is a

built-in gamma correction of 1.4, which is slightly lower than the actual gamma correc-

tion of 1.8 that is required, and thus Macs use some hardware gamma correction (which

does not mean that you can’t also use software gamma correction of course). Note that if

you render on Macs with the intention of displaying the image elsewhere (TV, PC monitors,

etc.) you need to apply software gamma correction to the image, since the Mac’s hardware

gamma correction is not imprinted in the image; it will appear darker on other screens.

The rendered grayscale values may appear incorrect in print, see the “Gamma Curves” image

provided in the Chapter 3 folder on the CD.

gamma 1.0 gamma 2.2 gamma 0.45

Figure 3.8

Gamma curves and
correction

With mental ray’s gamma correction option, use the inverse value to select the gamma cor-

rection you desire, as discussed in this section. Thus for a 2.2 monitor gamma use a value of

0.454, not 2.2. Some applications expect you to enter the monitor’s gamma value (2.2) and

they do the math behind the scenes, which is not how mental ray handles gamma correction

values.

86 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 86

G A M M A C O R R E C T I O N I N 3 D

With respect to rendering, when viewing your images on a monitor, a gamma correction

has already been applied to textures from digital images, so you would not need to do so

yourself. The only reason for you to apply gamma correction is if you are using source

material that is still represented as a linear transition from black to white and thus would

require a gamma correction to appear correctly on the monitor. mental ray by default ren-

ders images with a gamma of 1, which means it doesn’t change the gamma of the source

material, and so unless you need to change this value, it should stay at 1. If, for example,

you wanted to apply a gamma correction of 2.2, you would use a value of 0.45 for the

gamma correction, entering the inverse of the monitor’s gamma. However, for the pur-

pose of lighting you do need to apply gamma correction. That is, 3D lighting is applied

linearly, thus the spread of light always appears to dark. As a result, you may try adding

more lights into the scene, or using stronger source lights, which has the effect of creating

various overexposed areas without a natural transition of light. The topic of gamma cor-

rection and it’s implications on lighting is discussed and demonstrated in more detail in

Chapters 9 and 12 with indirect lighting.

Gamma Correction and Texture Files

If you want to work in linear space, you should remove the gamma correction before

importing texture image files into 3D or within the package, such as with XSI’s gamma

property for shaders, with Maya’s gamma shader, and with 3ds Max’s LUT and gamma

correction window (see host tutorials below for details on their gamma options). The rea-

son is, image values in gamma-corrected images are represented in a non-linear fashion

(as seen in Figure 3.8 above), whereas color values in 3D are added mathematically in a

linear fashion; a linear space. Thus, all the color values used with shader math should be

represented using their correct linear value and not the gamma corrected value. Then,

during rendering the gamma correction is applied (or re-applied) while color values are

passed to the frame buffer with a lens shader, as a postprocess, or in compositing.

Remember, the gamma correction is only relevant to 16-bit and lower images, unlike 32-bit

images that are always linear (see the discussion on 32-bit images above). Also, images that

are used for shader functions, such as bump mapping, displacement mapping, or masking

are not used in the same context as other image files, meaning they are not used to provide

color output for visual purposes, rather values for some internal effect. These images don’t

need to be gamma corrected; they should be linear before using them within the applica-

tion since their values are used to create an effect where, for example, a 50 percent bump

is applied using a 0.5 gray, not the equivalent gamma corrected value of 0.729, a much

higher value.

frame buffer options ■ 87

08547c03.qxd 10/24/07 4:16 PM Page 87

The only problem with applying gamma correction relates to the bit depth of the

image. Since gamma correction shifts the distribution of values, it can also reduce the

quality of an image with low-bit-depth images, which is why it is better to use 16-bit

buffers when gamma correction is applied; it reduces the likelihood of banding artifacts.

Workflow Considerations

I always render an image using a 0.454 (2.2) gamma correction value applied. In this way I

can see how the light should spread in the scene while I specify light and shading values. It

gives me a correct indication for how the render should look like once finalized. Then,

before I execute a final render, I set the gamma value back to 1; a linear gamma without

any gamma correction. I then select a 32-bit output format and render.

In compositing (or Photoshop) I set the image viewer to display the sRGB color space

(discussed in Chapter 9), which is similar to a gamma correction of 2.2. In some applica-

tions I would just set the application viewer’s display gamma to 2.2. It allows me to apply

all the compositing effects and color corrections to an image while viewing it with gamma

correction, as well as using a high bit depth so that artifacts don’t appear as a result of

compositing effects when using lower bit depths. When the composite tree is finalized,

as a last composite operation, I set the gamma correction value to 2.2 and render. Alter-

natively, in Nuke, I select to output the image to the sRGB color space which has a simi-

lar effect.

Note that I don’t usually use a full 2.2 gamma correction since it has the tendency of

reducing the contrast, thus I use lower gamma correction values, such as 1.8 which pro-

duces a more cinematic gamma appearance.

Finally, here are a few points of consideration from a practical user perspective:

1. Do you need to remove gamma from all the images before rendering with gamma

correction? No. It’s not the most practical (or easy) approach to remove gamma from

all your source material. If one or two textures in the render appear to become too

bright due to gamma correction, you may want to remove gamma just for those

images.

It is better to render at a high bit depth, process the image, and then apply gamma correc-

tion as a final stage.

If you render 32-bit images without gamma correction (a gamma value of 1), when you open

the image in Photoshop it will appear with a gamma correction of 2.2 automatically. The

topic is further discussed in Chapters 12 and 13.

88 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 88

2. Should you attempt to remove gamma from procedural shaders? No, they are usually

fine as is, if they appear to bright adjust their color properties as you do for normal

shader properties.

3. Do you need to use gamma correction to fix light distribution so that it appears more

natural? Absolutely yes!

4. Is it better to apply gamma correction in compositing? Depends; when you use lens

shaders for gamma correction, the correction is applied on a per sample basis and

may provide better quality images without artifacts. For postprocess gamma correc-

tion, a pixel based operation, you should probably leave the gamma correction for the

compositing stage.

5. Is it a confusing topic? It is indeed, and still needs a lot of work in host applications to

become more user friendly. In fact, XSI has completely removed the gamma option

from its render settings.

Frame Buffer Options in Host Applications
The topic of user frame buffers is further discussed throughout the chapter with mental

ray cameras, as frame buffers and their output format are dependent on camera state-

ments, options block options, and custom shaders.

The topic of frame buffer options in host applications is divided into two parts that are

the frame buffer options discussed above (mental ray Colorclip, Premult, Desaturate, and

Dither options) and how frame buffers are exported, including the primary frame buffer,

additional primary frame buffers (Z-depth, motion vectors, etc.), and user frame buffers.

Let’s examine how the host applications handle mental ray frame buffer options and types

as well as introduce the frame buffer and user frame buffer export options. After we review

each host application’s options, we then take a look at managing user frame buffer out-

put using a set of powerful tools available from online resources.

With user frame buffers, the primary RGBA frame buffer will render a full image using the

different color components, whereas user frame buffers extract those components and store

them in individual image files. Thus the compositing process is based on using the user frame

buffer’s color passes, not the primary frame buffer pass, which represents the complete image

where all the different color contributions are combined.

If the light distribution is corrected for gamma, the lighting will appear more natural; your pri-

mary concern. All the other considerations should be handled visually, modifying texture val-

ues without necessarily dealing with gamma correction or removal. It will allow you to keep a

safe distance from getting too technical while focusing on your art rather than on whether

the texture or image files have been properly treated for gamma correction.

frame buffer options ■ 89

08547c03.qxd 10/24/07 4:16 PM Page 89

Maya

Maya offers two separate levels of interaction with mental ray output options. First, you’ll

find a variety of render output attributes in the Render Settings window ➔ Common tab.

In this tab, you can easily specify image formats and output channels without customizing

the mental ray frame buffer. In the Render Settings ➔ mental ray tab ➔ Framebuffer rollout,

there are several additional attributes for customizing specific mental ray frame buffer

options, thus further customizing the output format, its bit depth, and data type.

In the Common tab, the Image File Output section offers the basic RGB, Alpha, and

Depth (Z-depth) channel export attributes, as well as commonly used image formats,

such as TIF, JPG, IFF, TGA, and more. When mental ray is selected as the current ren-

derer, the same Image Format drop-down provides a similar list of image formats and

mental ray–specific formats, including CT, TT, MT, NT, CTH, ST, and others. The mental

ray–specific image formats correspond to mental ray frame buffer data types, such as

motion vectors (MT), Z-depth (ZT), normal vectors (NT), and so forth, as discussed ear-

lier. In addition, when mental ray is enabled, you also see the OpenEXR, HDR, and TIFF

uncompressed (tif) formats. The OpenEXR, HDR, and TIFF uncompressed (tif) formats

support HDR images and 32-bit images; all these formats support raw data. The TIFF

uncompressed (tif) format also supports storing higher DPI values.

Our focus in this section is on the mental ray Render Settings ➔ mental ray tab ➔ Frame-

buffer ➔ Primary Framebuffer rollout shown in Figure 3.9, which controls mental ray–spe-

cific frame buffer settings: image channels, bit depth, data types and render options. By

default, the frame buffer is set to RGBA (Byte) 4×8

Bit, which is the default 8-bit frame buffer, so when

Maya renders, this would be the frame buffer used

for storing output color values before writing that

data to the selected image file and format (selected

from the Common tab ➔ Image format list).

The frame buffer Data Type drop-down list is used to select the bit depth, channels,

and data type for the frame buffer.

For example, selecting RGBA (Byte) 4×8 Bit will render four channels (RGBA), each

using a byte size data type, the default buffer. Alternatively, the Depth (Float) 1x32 Bit

option renders a single-channel 32-bit floating-point depth buffer into a 32-bit support-

ing image format. There is also an RGBE 4x8 Bit HDR image format, so you can render

HDR images with mental ray; this option also requires that you select an appropriate HDR

image format such as the mental ray .cth format, the radiance HDR format, or ILM’s

OpenEXR format, which all support the (E) exponent channel.

With the TIFF uncompressed format you can render a 32-bit image at 300 DPI and then mod-

ify it in Photoshop, as required for most print related tasks.

90 ■ chapter 3: mental ray Output

Figure 3.9

Maya frame buffer
settings that corre-

spond directly to
mental ray–specific

render options

08547c03.qxd 10/24/07 4:16 PM Page 90

Below the Data Type drop-down list, there are additional attributes including Gamma,

Colorclip (drop-down list), Desaturate, Premultiply, and Dither, all of which behave as

described earlier. In Figure 3.9 you can see a common setup for rendering, correlating to

our discussions on frame buffer options where the Colorclip attribute is set to RGB color

clipping and the Gamma attribute is set with a value of 0.454; a gamma correction for a

common PC display based on a 2.2 gamma curve. Also, you can see that frame buffer is set

to Interpolate Samples (interpolated versus padded), as it should be so that samples are

averaged for “beauty” color output.

O U T P U T T I N G S E V E R A L P R I M A R Y F R A M E B U F F E R S

The problem with selecting a data type under the Primary Framebuffer rollout is that it

only supports one data type export. To clarify, it will only render the selected data type as

output. However, as discussed earlier, one of the advantages of frame buffers is that sev-

eral frame buffers can be exported during the execution of a single render. For example,

you may select the RGBA (Byte) 4×8 Bit data type for color but then also add a Z-depth

channel. To do so, you can enable the Depth channel (Z-depth) attribute under the Com-

mon tab ➔ Renderable Cameras rollout. When enabled, the Z-depth will render its value into

the output image file as a fifth channel in addition to the RGBA channels (with IFF file

formats), or as a separate IFF file placed in the same render directory (when the primary

output format doesn’t support adding a Z-depth channel, for example with TIF images).

In addition to this common practice with Maya you may want to export motion vec-

tors, or any other primary frame buffer during the render, in which case the Primary

Framebuffer rollout doesn’t provide you with additional export options as noted above;

you can only select one data type and enable the Z-depth under the Common tab. To out-

put additional buffers during the execution of a single render, select the render camera

and reveal its attributes in the Attribute Editor window. Under the mental ray rollout ➔

Output Passes rollout, shown in Figure 3.10, you can enable additional primary frame

buffers for output by listing both output statements and shaders (shaders are discussed

later) after clicking the Create button.

Figure 3.10 shows a list where three different output passes for Z-depth, coverage, and

normals are listed and rendered in addition to the primary buffer that is selected under the

Render Settings window (typically the RGBA color buffer). Thus, in the case shown in Fig-

ure 3.10, each rendered frame will produce four image files on disk including the primary

and the three additional frame buffers shown in Figure 3.10.

Figure 3.11 shows the window that appears after clicking on the Create button. Under

Frame Buffer Type, you can select the type of frame buffer that you want write to disk,

identical to the Render Setting’s Framebuffer ➔ Primary Framebuffer rollout ➔ Data type

attribute discussed above. In the same context, the Interpolate Samples attribute will spec-

ify whether the buffer is interpolated or padded.

frame buffer options ■ 91

08547c03.qxd 10/24/07 4:16 PM Page 91

The File Mode attribute specifies whether this listing acts as an output statement or

output shader (output shaders are discussed under “mental ray Cameras” later in this

chapter). When it’s enabled, the File Name Postfix and Image Format attributes are also

enabled so that you can specify the output image format and file name. Note that the

name you specify will be appended to the file name indicated in the Render Settings ➔

Common tab. Also note that for sequence numbering (animation) in the Common tab

you should set the Frame/Animation ext: attribute to name.ext.# so that the custom buffer

labels are appended before the numbered sequence.

I highly recommend that you experiment with a simple scene while outputting com-

mon buffers, such as depth and normal buffers that are easy to view in image viewers. Once

you manage the first step try exporting a small animation sequence of 5 frames and import-

ing it into a compositing application. You should first see that you fully understand the

process of exporting custom buffers as well as making use of them in compositing before

using it for production purposes.

M A Y A U S E R F R A M E B U F F E R S

User frame buffers, although they can be created within Maya, currently have little or no

application for the standard user. They are only partially integrated into Maya; mostly part

of a development cycle and an option for advanced users. Basically, they are not useful

unless you plan on adding custom mental ray text to the scene, editing the scene within an

.mi file, or have a custom output shader that requires using additional frame buffers,

which would then be specified by the shader (most likely). Essentially, mental ray user

frame buffers are only created when needed, so if they are not specified within a specific

output statement, or shader, there is no reason to create them.

Listing output frame buffers in the Output Passes list allows you to write several images to

disk during a single render rather than one at a time.

Figure 3.11

The Output Passes list enables you to specify
whether you want to output custom frame buffers
or apply output shaders during the render.

Figure 3.10

Maya enables you to list several output frame
buffers under the camera’s Output Passes
rollout.

92 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 92

The User Framebuffer rollout in the mental ray Render Settings window offers a short-
cut for enabling or disabling custom frame buffers by clicking the Open Editor attribute
button. This button opens the miDefaultOptions node attributes in the Attribute Editor
window. We discuss this window on several occasions throughout the book; essentially it
offers a more complete listing of mental ray options, some of which are not available in
the Render Settings window. In this case, under the Frame Buffers rollout you click the
Create button to create new user frame buffers, similar to the process described above
with the Output Passes list on the render camera. The list discussed above deals with out-
putting images using any of the built-in primary frame buffers, whereas this list offers you
the ability to create new user frame buffers. When you click Create you can then select
any output format for the user frame buffer. User frame buffers are specified with index
numbers, a topic discussed in detail under ÒOutput StatementsÓ later in this chapter.
As cited above, this process is still a work in progress development and is not functional
unless you plan on writing custom shaders that can write color data to specific frame
buffers.

XSI

XSI is geared solely for rendering with mental ray, which means there is no separation
between the mental ray frame buffer output settings and the host application (XSI) set-
tings; they go hand in hand. The Render Options properties in XSI that control frame
buffer output options are found under various tabs in the Render Manager window. LetÕs
begin by reviewing the frame buffer options discussed earlier, found under the mental ray �

Framebuffer tab.

T H E F R A M E B U F F E R T A B

The Framebuffer tab, shown in Figure 3.12, provides the frame
buffer options discussed earlier, under the Color Control and
Advanced Settings sections shown in the figure. LetÕs briefly
review these options:

1. The Dither 8-bit Framebuffers and Desaturate colors
when clipping properties correspond to the mental ray
dither and desaturate options.

2. The Premultiply with Alpha property corresponds to the
premultiply option, when enabled images are premulti-
plied by the alpha.

The section “Online Resources for Exporting Custom Passes” introduces a powerful set of

tools for efficiently managing user frame buffer export options with Maya and mental ray.

frame buffer options � 93

Figure 3.12
The Framebuffer tab
enables specifying
the mental ray frame
buffer options.

08547c03.qxd 10/24/07 4:16 PM Page 93

3. The On-disk Framebuffers property enables temporarily storing frame buffers on disk

and thus improves memory handling when several frame buffers need to be written to

file. This is typically useful for when you use several user frame buffers or render very

high resolutions.

4. The Sample contrast check on all framebuffers property, as mentioned earlier,

enables mental ray sampling to compare contrast values in all the frame buffers when

determining the adaptive sampling level. See Chapter 5 for sampling and contrast

checks.

5. The Color Channel Clipping property drop-down list has labels that may appear

somewhat confusing in comparison to the mental ray color clip options discussed

earlier. These labels act as follows:

1. The Clip alpha below RGB option corresponds to RGB color clipping.

2. The Clip RGB above alpha option corresponds to alpha color clipping.

3. The No Clip option corresponds to raw color clipping.

T H E O U T P U T T A B

In the Render Manager window ➔ Current Pass ➔ Output tab , you can control the per pass

(for the current pass) RGBA primary frame buffer’s output options as well as list addi-

tional primary and user frame buffers for output using the Render Channels Output list

shown in Figure 3.13.

G A M M A I N X S I

XSI 6 and higher removed the mental ray gamma option from the render properties. To apply

gamma correction you can use a custom lens shader such as the tone-mapping shader dis-

cussed in Chapter 13, “Final Gather and Ambient Occlusion.” Alternatively there are online

shaders that you can install and use to apply gamma correction as well as remove gamma cor-

rection from textures, on a per image basis; recall that in a linear workspace you may want

to remove gamma from image files that are already gamma corrected if those images will

be exposed to a gamma correction during the render. The sRGB color space, discussed in

Chapter 9, is similar to a standard gamma correction for a 2.2 display; images in sRGB appear

similar to gamma corrected images. The purpose of the sRGB color space is to set a standard

correction for web display. You can find two custom shaders as well a discussion on the topic

of gamma and the sRGB color space online at:

http://www.xsi-blog.com/archives/133

From there you can also download two shaders (sRGB_utils); a lens shader for gamma cor-

rection and a texture shader used to remove gamma from image files. Currently the link that

provides these shaders as a downloadable Zip file resides at: http://perso.orange.fr/

harry.bardak/data/sRGB_Utils.zip

94 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 94

The default listing shown in the figure refers to the primary RGBA frame buffer out-

putted with each render. When you select it (click anywhere within the listing) and click

on Edit… you can modify its properties in the pop up window shown in Figure 3.14. As

you can see in the figure, under Output you specify the file name seen as [Pass]_[Frame-

buffer] by default, which defaults to the name of the current pass and the frame buffer

name. The frame buffer name is seen under the Render Channel property in Figure 3.14

as well as under the Channel column in Figure 3.13.

Under the Output Format section three drop-down lists offer the properties that con-

trol the current frame buffer settings; the frame buffer listed under Render Channel seen

as Main in the figure. The Main frame buffer correlates to the primary RGBA frame

buffer. The first drop-down list selects an image format, the second drop-down list selects

the rendered channels (ex. RGBA, RGBE, RGB, etc.) and the third drop-down list selects

the per-channel bit depth. When you select an image format the other two drop-down lists

automatically update to include within them relevant (supported) settings for that image

format. For example, when TIFF is selected, as shown in the figure, you can then select

either RGB or RGBA for the render channels and set the bit depth to 8 bits, 16 bits, or

Float (from the third drop-down list). Thus these three drop-down lists specify an image

format, its channels, and bit depth.

As another example, if you render HDR output using the Radiance HDR (.hdr) image

format, then you will see that the RGBE channels (the E exponent channel is required for

HDR formats) are enabled at 8 bits without any options for changing the channels or bit

depth properties (see Chapter 9 for more on HDR image formats), demonstrating how

these options only offer relevant settings for a given image format.

Figure 3.14

The frame buffer properties can be
edited in a properties window by select-
ing the frame buffer listing and press-
ing Edit… under the Render Channels
Output list shown in Figure 3.13.

Figure 3.13

The primary frame buffer, its name,
image format, and channels are seen
listed under the Render Channels Out-
put property.

frame buffer options ■ 95

08547c03.qxd 10/24/07 4:16 PM Page 95

O U T P U T T I N G P R I M A R Y A N D U S E R F R A M E B U F F E R S

To output additional primary frame buffers (Z-depth, motion vectors, normals, tags, and

coverage), you can append them to the list seen in Figure 3.13 by clicking on the Add…

property. When you click on Add you are prompted in the Create Framebuffer From

Render Channel window, shown in Figure 3.15,

to select which frame buffers you want to append

to the list. As you can see in the figure, the Ren-

der Channel property drop-down list enables

selecting any of the standard built-in frame

buffers as well as any user frame buffers that are

currently defined for the scene (user frame

buffers are clarified shortly). Once you select a

frame buffer and click on OK a new entry is

added to the Render Channels Output list, as

shown in Figure 3.16.

In Figure 3.16 you can see various standard and user defined frame buffers have been

added to the list. The checkmark on the left of each listing specifies whether that listing

will be used to output an image during the render. The checkmark correlates to the Enabled

property checkbox seen in Figure 3.14; both disable or enable the selected frame buffer. As

you can see in Figure 3.16, the Depth channel, referring to the standard Z-depth frame

buffer, is disabled (no checkmark) so that it will not output a Z-depth pass when a render

is executed. You can modify the properties for any of the listed channels by selecting the

listing and pressing Edit… as seen earlier with the primary frame buffer and Figure 3.14.

As you can see, for the Depth channel the mental ray ZT image format is used. You could

then edit that listing and change the image format used to

store the Z-depth to a more compatible format; a format

that is supported by your compositing application which

may be ZPIC (Softimage Z-depth), RLA, OpenEXR, or

any other format.

XSI User Frame Buffers

In Figure 3.16 you can also see that additional user frame buffers have been added to the

list, including Diffuse, Specular, and MyCustomPass. User frame buffers in XSI are offered

as additional predefined user frame buffers or user frame buffers that you manually con-

struct. In the Render Manager window under Scene ➔ Scene Render Options ➔ Available

Trial and error experimentation will help you identify the formats that are best suited for your

work environment.

96 ■ chapter 3: mental ray Output

Figure 3.15

The Create Frame-
buffer From Render

Channel window

Figure 3.16

The Render Chan-
nels Output lists sev-

eral primary and
user defined frame

buffers to be ren-
dered when a render

is executed.

08547c03.qxd 10/24/07 4:16 PM Page 96

Channels tab, shown in Figure 3.17, you can see a list of all the available frame buffers for

your scene, globally. All the frame buffers highlighted in gray (brighter in the figure) refer

to the six built-in primary frame buffers, and those highlighted in green (darker in the fig-

ure) refer to custom user frame buffers. The first six listed user frame buffers are provided

by XSI for you, allowing you to separate any XSI render pass into several sub-pass compo-

nents that output specific color information to

image files during the execution of a single

render (for each rendered frame), including

the Ambient, Diffuse, Specular, Irradiance,

Reflection, and Refraction frame buffers

listed in Figure 3.17. These buffers can be

added to the current pass (or any other pass)

by pressing the Add… property under the

Render Channels Output list and selecting

the frame buffer form the list shown earlier in

Figure 3.15.

Creating User Frame Buffers

As you can see in Figure 3.17, two additional user frame buffers that I manually created

are present in the list. They are MyCustomPass (RGBA color buffer) and Custom_MV_Pass

(a motion vectors frame buffer). To create these buffers press the Add… property shown

in Figure 3.17 under the list. You are then prompted with the Create Render Channel

window shown earlier in Figure 3.3. In that window you label the frame buffer with the

Name property and set its data type with the Type property. As discussed earlier, any user

frame buffer can be set to one of the six default data types (seen listed in Figure 3.3) that

are Color (RGBA), Grayscale (single channel output), Depth, Normal Vector, Vectors /

Motion Vectors, and Object Label. In the case of figure 3.17, MyCustomPass is set as an

RGBA color pass and Custom_MV_Pass is set to render motion vectors.

To actually make use of these buffers, they must receive some color information

from shaders in the scene; they don’t automatically know from what surfaces they should

extract color values. Thus you need to further customize the scene so that they are con-

nected to certain shaders. This process is only true for user frame buffers that you manu-

ally define. The other six XSI user frame buffers (diffuse, specular, etc.) already know how

to extract those colors form shaders, thus they don’t require additional customization.

By listing several of these predefined user framer buffers, during the render of a single frame,

several additional customized frame buffers are output with specific color information, as

instructed by their relevant user frame buffer.

frame buffer options ■ 97

Figure 3.17

The available frame
buffers for a scene,
which can be used
with any XSI pass,
are seen under the
Available Channels
list in the Render
Manager window

08547c03.qxd 10/24/07 4:16 PM Page 97

Let’s look at some practical examples for using user frame buffers, such as those that I

added to the list in Figure 3.17.

1. The custom color user frame buffer (myCustomPass) can be used to extract color

from a collection of surfaces in the scene that you want to further tweak during com-

positing. For example, the scene is very slow to render and you are not completely

satisfied with their exposure or color values. Exporting them as separate buffers

(passes) allows you to further modify those surface colors during compositing.

2. With respect to the motion vectors pass, you may want to output the motion vectors

for specific surfaces (that are in motion) so that you can modify their motion blur

effect independently of other surfaces in compositing. A more advanced approach for

motion vectors, based on the discussion on custom motion vectors in a sidebar at the

end of Chapter 8, is to use custom shaders (LMV shader) to create color (RGB)

motion vector passes. In Chapter 8 you will see how you may want separate motion

vector passes for different components in the scene. Using such custom passes, in this

case a color pass from a custom shader, would allow you to specifically output motion

vectors for individual surfaces using a user defined frame buffer.

3. You may want to render the output from volume light effects into a separate frame

buffer so that it becomes easier to fine-tune its effect during compositing.

To apply the connection between user frame buffers and shaders, shown in Figure 3.18,

follow these steps:

1. In the Render Tree window, graph a shader tree for a given surface.

2. From under Nodes ➔ Render Channels you can select to create a shader that corre-

sponds to the type of output you need. For example, in Figure 3.18 I want to output

the color from the Cook-Torrance shader labeled A into an RGBA color user frame

buffer (myCustomPass in Figure 3.17). Thus, I created a Store Color In Channel

shader seen labeled B. You can see the other channel types in the figure labeled D,

corresponding to vector, scalar, Boolean, and integer output data types.

3. I connect the output from the Cook-Torrance shader labeled A to the Color_

StoreInChannel shader labeled B. I then connect that shader to the Material Surface

property input labeled C.

4. To select a user frame buffer, under the Color_StoreInChannel shader properties, the

Render Channel property drop-down list is used to select any of the predefined user

frame buffers available from the list shown in Figure 3.17. Only relevant user frame

buffers will appear; frame buffers that have the same data type (color, vector, etc.).

In this way, you create an in-between shader that resides between the surface material

and the illumination shader (or any other shader) which is used to pass the color (or

other) data from the source shader (labeled A) to a user frame buffer (labeled B).

98 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 98

We will look at the implementation of these output stalemates later in the chapter in

the section “mental ray Cameras.”

3ds Max

3ds Max tries to collapse all the global settings for export into common tabs for all render-

ers (mental ray, 3ds Max, V-Ray, etc.). In doing so, in my opinion, it has both neglected to

provide several important settings and included some nice additional settings not com-

monly found in other host applications.

3ds Max has not included the premultiply, desaturate, dither, and colorclip options as

mental ray render parameters. On the other hand, 3ds Max’s extended support for output

image formats such as OpenEXR provides for some nice options not found in Maya or

XSI. Further, 3ds Max is currently the only host application to support multipass

rendering, a topic further discussed at the end of this chapter.

For gamma correction, you need to navigate through the Customize ➔ Preferences… ➔

Gamma and LUT tab. In this window you can specify 3ds Max postprocess gamma cor-

rection. To enable gamma correction, enable the Enable Gamma/LUT Correction param-

eter checkbox and then specify a gamma correction value with the Gamma parameter.

The values you specify here are opposite to those discussed earlier in the chapter, meaning

for a 2.2 gamma correction use the value of 2.2 not 0.454.

3ds Max image formats and channels, with respect to mental ray, are integrated in a com-

pletely different way than with Maya or XSI. This is not necessarily a disadvantage. 3ds Max

does offer users a lot of flexibility, especially with channels using the OpenEXR, RPF, and RLA

formats. However, the frame buffer options discussed throughout this chapter are not

derived from mental ray–specific parameters and thus can be accomplished in various differ-

ent ways. We will look at some of these options in this section.

A

B C

D

Figure 3.18

A shader tree in XSI
used to output color
values from the illu-
mination shader (A)
to a custom user
frame buffer with
the shader labeled B

frame buffer options ■ 99

08547c03.qxd 10/24/07 4:16 PM Page 99

With respect to the primary frame buffer settings, you will find the following under the

Render Scene: mental ray Renderer window ➔ Renderer tab ➔ Sampling Quality rollout ➔

Options section a Frame Buffer Type setting offering you a selection between 16- or 32-bit

frame buffers.

Under the Common tab ➔ Render Output ➔ Files, if you select an OpenEXR image file

format and go into the setup (or click Save), an additional window, shown in Figure 3.19,

appears, providing some advanced features for multichannel images, a hot topic these

days. Under the Extra Channels to Save section you can add additional images for output

based on the primary frame buffers discussed above as well as some 3ds max–specific cus-

tom frame buffers. Notice the Pre-Multiply Alpha setting in this window; it enables or dis-

ables premultiplication. You can also find similar settings for other image formats such as

the RPF image format. If you select a TIF image format then a Gamma Correction parame-

ter is provided. You can select to use the system defaults which derives the gamma correc-

tion value from the gamma parameter discussed earlier (in the Gamma and LUT

preferences tab), or use the Override parameter to manually specify a gamma correction

override value.

Figure 3.19

3ds Max OpenEXR
configuration win-

dow, where you may
select storing addi-

tional buffers in
channels within the
same multichannel

image

3ds Max applies its gamma correction as a post process so that it is best to apply it in com-

positing. For testing, set the gamma correction you require, such as 2.2, under the Gamma

and LUT preferences tab so that while you render you see a gamma corrected render in the

viewport render window, and then remove that gamma correction before executing a final

render, as discussed under the Gamma Correction section earlier in this chapter.

100 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 100

Essentially, with 3ds Max it appears that regardless of the render settings, the alpha

always corresponds to the mental ray Colorclip option RGB setting. Thus the alpha inten-

sity is raised to match the RGB values so that specular highlight intensities are maintained,

as discussed earlier.

E X P O R T I N G A D D I T I O N A L F R A M E B U F F E R S

To export additional frame buffers, as discussed earlier, either use the Extra Channels

and Attributes button seen in Figure 3.19 to add additional channels into an OpenEXR

image (similarly within the RPF format options) or set

each channel to render into separate image files. In

Figure 3.20, you can see the Render Scene: mental ray

Renderer window ➔ Render Elements tab and rollout.

Here you can select Add to enable outputting other

user frame buffers or primary frame buffers during the

render. This window is one of the nicest features

within 3ds Max with respect to mental ray output. It

enables selecting several custom passes as well as the

primary frame buffers and appears to function well.

For each element added, you will find options for

specifying the output file format and location, along

with occasional other options. With these settings you

can then easily export all the primary frame buffers,

including the motion vectors, normal vectors, object

ID, and so forth, each into a separate file.

The Render Elements passes (listed in the window) execute each render as a separate

render rendered consecutively. However, when you choose to specify additional output

channels for the EXR format, as cited earlier, the current render will include those output

channels without executing additional consecutive renders. If you choose to export a

mental images file for stand-alone rendering, when several render elements are specified,

each will be exported into a separate .mi file for rendering.

In Chapter 8 we look at rendering motion vectors for compositing motion blur in a

sidebar at the end of the chapter. That sidebar is based on using the Render Elements

window to render motion vectors output for compositing. With respect to mental ray user

frame buffers, there are external shaders for 3ds Max that can be used to better implement

user frame buffer output with mental ray, as discussed in the following topic.

Online Resources for Exporting Custom Passes

With all host applications, there are various shaders online that can help you better

develop your scenes for custom output, such as rendering separate passes into individual

image files or into a single OpenEXR multichannel image (discussed later in this chapter)

frame buffer options ■ 101

Figure 3.20

The 3ds Max Render
Elements options
enable you to out-
put several different
color properties and
frame buffers into
separated image
files.

08547c03.qxd 10/24/07 4:16 PM Page 101

during the execution of a single render. Pavel Ledin, aka Puppet, is the author of a collec-

tion of powerful shaders for managing custom output for mental ray standalone rendering

as well as through Maya, XSI, and 3ds Max. These shaders offer several advanced shading

and lighting options aside from their user frame buffer context discussed here. His

p_MegaTK shader tools enable you to specify various user frame buffers for export into

OpenEXR or other image formats, as shown in Figure 3.21, a Maya screen grab. You can

find the most current collection of shaders at: http://www.puppet.cgtalk.ru under Down-

load ➔ Shaders_p (current version) ➔ p_MegaTK. You can also use the puppet shaders for

each host application provided on the companion CD under the Custom Shaders folder ➔

Puppet Shaders folder (not guaranteed to be the most current collection). In the folder

under the Doc folder (as well as on his site), you will find tutorials and detailed explana-

tions on how to use these shaders in practice. Please see the Licensing page in the docu-

ments for more information on using these shaders or their source code (provided in the

Zip files). Basically he provides a BSD license.

In Figure 3.21 you can see that the Mega TK passes Out Format is set to Single OpenEXR

which, will render all the buffers specified under the Output passes rollout as additional

channels within a single OpenEXR image file. Also, note that all the primary built-in

buffers discussed earlier can be enabled under the Mental Ray Standard Channels rollout

seen contracted in the figure. Using the shader requires using custom illumination and

light shaders that are provided with the MegaTK shaders that write their output color val-

ues to the user frame buffers seen under the Output Passes list in Figure 3.21; you must

specify shaders to output color to specific user

frame buffers.

To clarify, when a shader outputs its color

values, it sends that output to the primary

frame buffer, for example, if you want the

reflection color values to output to the user

frame buffer for outputting a reflection pass,

the shader would need information on that

user frame buffer so that it knows to send the

reflection colors into that specific frame

buffer. Thus you can see how the user frame

buffers are tightly integrated with shaders

while determining the distribution of color (or

other) values across several user frame buffers.

Resources such as these custom shaders sig-

nificantly improve your abilities to create

more efficient renders, where several user frame

buffers are extracted and written to image files

during the time frame of a single render rather

102 ■ chapter 3: mental ray Output

Figure 3.21

Puppet’s p_MegaTK
shader collection

enables you to
output several
different color

components (user
frame buffers) dur-

ing the execution of
a single render.

08547c03.qxd 10/24/07 4:16 PM Page 102

than several consecutive renders. After all, the various color values such as specular and

reflection colors are present as independent components during the render; mental ray

adds the different shader contribution values during the render as discussed in Chapter 9,

thus these user frame buffers merely allow you to record those values before they are

processed together, outputting each as an independent image file for compositing pur-

poses. With XSI, as discussed above, you can construct your own user frame buffers to

some extent with the channel output shaders, which reduces the requirement of using

such custom shaders.

With respect to using such custom shaders in host applications, in Chapter 10 you will

learn more about installing such shaders. With respect to the puppet shaders, their help

documents on the CD will walk you through the installation process in each host applica-

tion. I recommend that you experiment with these custom shaders after you are very com-

fortable with using mental ray and compositing passes. Also, as cited above, these shaders

offer far more than just output passes. Their advantages will become clearer as you learn

more about mental ray shaders in Chapters 9 to 11.

I N D E P E N D E N T R E N D E R J O B S

There are actually two approaches to rendering passes, only one of which is discussed in this

chapter. The first consists of outputting passes during the execution of one render, meaning

that the frame is rendered once and during that time it outputs several image files based on

your requirements, as discussed per host in the sections above as well as with the puppet

shaders. This is the approach of using user frame buffers to define custom passes.

However (using a different method with each application), you can also render passes

consecutively. For example, first you might execute the diffuse pass, then a specular pass,

and so on, and each pass is then a separate render job, executing independently. Thus, in this

case a separate pass might as well be considered a separate render scene altogether and has

nothing to do with how you specify mental ray output options. To do this, Maya offers render

layers, XSI has passes, and 3ds Max has render elements. Each of these lets you define particular

settings that can then be executed. For example, you might first render the foreground and

then the background and define different shading options with each render, such as reflection

or diffuse colors. Maya and XSI have similar abilities for specifying object and shader overrides

per render layer or pass (respectively), and so you can prepare a scene for compositing and

then execute several consecutive renders that result with all the color passes you require.

You can learn more about compositing passes in the article on “Nuke Compositing” available

in the companion CD.

The topic of each hosts’ methods for defining these separate render passes is beyond the

scope of this book. It’s a host-specific approach (not mental ray–specific) for organizing your

scene into several separated render passes, which is not as render time efficient as when

using custom user frame buffers that handle this process during a single render.

frame buffer options ■ 103

08547c03.qxd 10/24/07 4:16 PM Page 103

mental ray Cameras
mental ray cameras have three primary objectives: to simulate the photographic character-

istics of a real camera, to specify environmental and postprocess effects, and to specify

output files and formats. With respect to host applications, mental ray cameras to a cer-

tain extent act as both the render settings and camera settings. In the following sections,

you will see how all of these settings come together within mental images files.

Virtual Cameras with mental ray
3D virtual cameras are typically characterized as pinhole cameras, which are the simplest

form of imaginary camera. Pinhole cameras don’t use lenses to perturb light as it enters the

camera; they simply provide an opening (the hole) that exposes film to light. Thus pin-

hole cameras don’t focus light onto the film as does a lens. Instead, they record the scene

simply perceived through the camera’s field of view. Essentially, this means that 3D cameras

don’t account for lens distortion and accurate perspectives. The cameras we use in 3D can

simulate a wide range of camera characteristics, such as capturing a wide field of view only

possible with wide angle lenses, however, as with a pinhole camera, a wide-angle focal length

would not yield the same result as when using a wide-angle lens (at the same focal length),

which distorts the path of light, focusing more light from various angles onto film.

For a virtual camera to simulate a real lens, paths of light must be raytraced as they

focus through the lens. This can be achieved through the use of a lens shader that describes

the lens’s physical characteristics. Once a lens shader is applied to a mental ray camera,

mental ray can realistically reproduce not only perspective, but also the focal depth (depth

of field), lens distortion, or any other lens effect (such as chromatic aberrations) provided

you have an appropriate lens shader that defines these effects mathematically. Chapter 4

discusses lens shaders extensively.

If you look at Figure 3.22, you can see the same image rendered with a wide-angle lens

effect (A) and without a lens shader (B). The image labeled A uses a barrel distortion lens

effect to simulate how a wide-angle lens would affect the projected image, by increasingly

distorting light paths closer to the lens rim as well as capturing a wider field of view. Thus

both images A and B are rendered using the same camera settings (placement and focal

depth), however image A shows more of the room than image B. Barrel distortion effects

are common to wide-angle (converging) lenses. As the lens focal length gets shorter, a

In Chapter 4, “Camera Fundamentals,” you will learn more about how real-life camera charac-

teristics are translated into CG cameras and about the relationship between real cameras and

virtual cameras.

104 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 104

wider angle can be recorded, eventually resulting in a near-180° image, which at that point

is referred to as a fish-eye lens that commonly posses a high-level of lens distortion.

A

B

Figure 3.22

Rendering with lens
effects to simulate
the barrel distortion
effect found with
wide-angle lenses

The virtual camera can simulate wide fields of views and their effect on perspective without a

lens shader, the equivalent of an “advanced” theoretical pinhole camera. However, the addi-

tion of lens shaders then adds that extra realism, allowing for the kinds of lens distortion seen

with real-world cameras as well as a more accurate perspective.

mental ray cameras ■ 105

08547c03.qxd 10/24/07 4:16 PM Page 105

mental ray Camera Declaration Block
Let’s look at a mental images file (.mi) camera declaration block. I have numbered com-

ments for each section so you can easily refer to them in following discussions:

camera “perspShape”

resolution 640 480

aspect 1.33333

aperture 1.41732

frame 3 3.

clip 0.1 1000.

focal 1.37795

1. mentalray Output Pass

output “+rgba” “iff” “firstRender”

2. mentalray postprocess 2D shader

output “+rgb_fp,+z” = “depth_fade” (

“near_depth” 1,

“far_depth” 15

)

3. mentalray final Output Pass

output “+rgba” “tif” “test_cam.tif”

4. mentalray lens shader

lens “maya_dof” (

“focusDistance” 5.,

“fStop” 5.6,

“focusRegionScale” 1.,

“lensSamples” 4

)

5. mentalray volume shader

volume = “mib_volume2”

6. mentalray environment shader

environment = “mib_lookup_spherical2”

end camera

You can see that the declaration block is broken into two segments. The first section

under the camera statements (before comment 1) includes settings for render resolution,

the camera’s aperture, the lens’s focal length, and the image aspect ratio. Chapter 4 dis-

cusses all of these settings, which directly relate to camera and lens characteristics. These

characteristics add realism when used with a lens shader during the render as shown in

106 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 106

Figure 3.22 image A. Without a lens shader, they merely determine perspective and field of

view. The frame option simply notes the frame sequence that should be rendered, and clip

defines the clipping planes (discussed in the section “Depth Sorting” later in the chapter).

Followed by the camera settings, you find in the following order mental ray’s output

statement (1), output shader (2), an additional output statement (3), lens shader (4), vol-

ume shader (5), and environment shader (6). All these show how mental ray cameras use

a variety of different shaders and options to process environmental effects, camera effects,

and render output. Let’s take a closer look at all these shaders.

Output, Volume, Environment, and Lens Shaders
All these shaders can be assigned internally from within your application, or added into an

exported .mi file when rendering with the standalone renderer. These shaders either ship

with mental ray or can be implemented into your application through the mental ray .rayrc

file, as discussed in the section “mental ray Shaders and Shader Libraries” in Chapter 1.

Output Shaders

An output shader affects frame buffer pixel values to produce its visual effect; it’s a 2D

postprocess effect that operates on per-pixel color values. For example, the shader in this

statement requires the primary frame buffer as a floating-point frame buffer and the Z-

depth buffer for producing a depth fading effect:

output “+rgb_fp,+z” = “bfade1”

Output shaders then apply their effect on a per-pixel basis and have no effect on sam-

pling. The significance of output shaders is that they are faster to render and are executed

in order, so several shaders can be “stacked” to execute in a specific order. We look closer

at the significance of output order later in this chapter under “Output Order and Output

Shaders”.

Maya and 3ds Max currently have not yet implemented any postprocess output shaders,

with the exception of contour shading and the architectural library exposure shader. The

exposure shaders (architectural library’s exposure simple and photographic shaders) can

be used either as an output or lens shader. From the shader resources cited in this chapter

and Chapter 10 you will find various output shaders that you can use. XSI does provide

some useful 2D postprocess shaders such as 2D fur, glows, and depth of field, among others.

One nice output shader is a glare shader from the Lume shader library (an additional

collection of mental ray shaders). It creates a glare effect around the brightest areas of the

For Maya and 3ds Max you can experiment with some of the output shaders kindly provided

by Jan Sandstrom (www.pixero.com) on the companion CD in ChapterFiles/CustomShaders/

Pixero in the Maya and 3ds Max folder. Try using the JS_Glare output shader. Each shader has

some relevant information within the Zip file.

mental ray cameras ■ 107

08547c03.qxd 10/24/07 4:16 PM Page 107

scene. It also allows you to specify whether you want to render solely the glare effect (good

for compositing), or the effect super imposed over the image. In Figure 3.23 you can see

an example of the glare effect rendered in XSI in overlay mode (you only see the effect of

the glare). In this case the glare Quality property is set high so that it appears to glare

from everything in the scene (all the various intensities). With lower Quality property

values the glare effect will focus only on the brightest areas of the scene as demonstrated in

the Color Gallery image “Physical Lighting”.

Lens, Volume, and Environment Shaders

The most significant difference between lens, volume, and environment shaders and out-

put shaders is that they are applied at the scene level and influence sampling, and thus the

order in which they are applied has no significance with respect to output statements. As

seen in the camera declaration block above, they all appear after the output statements

(4–6), unlike the output shader (2), which appears within the output statements (1 and 3).

L E N S S H A D E R S

Lens shaders almost always apply a distortion effect to simulate realistic lens characteris-

tics, as discussed earlier. Currently, each host application provides different lens shaders in

addition to the depth of field lens shader. XSI and 3ds Max also provide the additional

Lume shader library. Figure 3.22 image A was rendered using the Lume shader library dis-

tortion lens shader available in XSI and 3ds Max.

In Chapters 9 and 10 you will learn more about the custom shader resources presented

throughout this chapter, as well as installation tutorials.

Figure 3.23

The Lume shader
library glare output

shader effect ren-
dered in XSI

108 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 108

Another useful lens shader from the Lume collection is the wraparound shader. It

allows you to render a 360° spherical panoramic image (for panoramic image types see

Chapter 13), as shown in Figure 3.24, which can then be used for reflection maps to accel-

erate rendering. Reflection maps are discussed in more detail next. When you render

panoramic spherical images, the resolution should be set at a ratio of 2:1 such as 1024 × 512.

Note that there are other shaders and tools in host applications that can be used to pro-

duce panoramic images; the wraparound shader is just one of them. We return to lens

shaders in detail in the following chapter, with respect to depth of field.

E N V I R O N M E N T S H A D E R S

Camera environment shaders are used to bound the scene with a 2D environmental

image, which can be used to provide a background color, reflection color (reflections of

the environment), and a source of illumination for indirect illumination such as with final

gather, all topics discussed throughout this book. One key advantage of environmental

shaders is that they act as shader projections and do not require a geometric surface for

visibility. Thus geometry is not tessellated during the render; colors are sampled from the

environment projection. These images may be panoramic images, commonly provided as

either cubic or spherical images as shown in Figure 3.24; a spherical panoramic image.

If you have the lume.dll shader library you can easily add it to Maya as explained in Chapter 1.

The include (.mi shader declaration file) and AETemplate files are provided by Jan Sandstrom

(http://www.pixero.com) on the companion CD in ChapterFiles/CustomShaders/Pixero in the

Maya folder (LumeTools for Maya.zip).

Figure 3.24

Rendering spherical
panoramic images
for reflection maps
with the Lume wrap-
around shader

mental ray cameras ■ 109

08547c03.qxd 10/24/07 4:16 PM Page 109

Each application offers different methods for applying (projection-mapping) these shaders

into the scene (mental ray projection-mapping shaders are discussed in Chapter 11).

As noted above, environment shaders can be used to apply non-raytrace reflections by

extracting the reflection color values for a surface from the environment projection. This

means that the environment behaves like any other color texture mapped on a shader,

where in this case, the reflection color is acquired by sampling values from a spherical tex-

ture projection rather than by raytracing the scene. Thus, a prerequisite to faking reflec-

tion is rendering the scene as a panoramic image, as shown in Figure 3.24, which can then

be used to project reflection colors on surfaces placed within the scene, for example on a

mirror or on the windows.

In the camera declaration block excerpt, you can see a mental ray spherical environment

applied to the camera. When an environment shader is applied on the local level with a

surface material’s environment color, it provides reflection colors for that surface material

only, opposed to when applied with the camera which provides environmental colors that

are “seen” by all the shaders in the scene; of course only shaders that actually are specified

to sample reflections. Thus camera shaders are used extensively in host applications to

specify an environment.

Host applications offer common mental ray environment mapping techniques, such as

with spherical, cylindrical, and cubical mapping, discussed on a per-host basis in the fol-

lowing tutorials.

V O L U M E S H A D E R S

Volume shaders are used to define volumetric effects such as volume fog or mist. Volume

shaders applied to cameras act as global volumetric effects that influence the entire scene.

When volume shaders are applied on a per-object level, they apply a “foggy” effect within

the surface’s volume. Volume shaders can be used with transparent surfaces such as within

“mystical” crystal balls, within a cone that represents car headlights, or within a room. The

topic of mental ray materials and their shader inputs (volume, environment, illumination,

etc.) are discussed in detail in Chapter 9.

The most basic volume effect can be applied with the mental ray mib_volume base

shader, which has a Max option that defines how far you can see into the scene. When

applied to a camera it defines a gradual fade from the camera’s perspective into the scene;

It is a common practice with advanced reflection shaders to raytrace reflections of geometry

in the scene and then add the environment reflection using a simple color sampling process,

without raytracing. Furthermore, various shaders allow you to limit the distance raytrace rays

can travel into the scene before the environment color is sampled from an environment

shader, a topic demonstrated in Chapter 10.

110 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 110

it fades the scene over distance to the specified volume fog color as shown in Figure 3.25.

The mental ray mib_volume shader (in XSI the Volume_fog is an improved version for

the same shader) also has a Lightrays option that attenuates the light’s influence in the

scene based on the fog density. In other words, when disabled the light influence on sur-

faces is unaffected by the fog, and when enabled the light gradually decays as it passes

through the dense medium, as it does in real life. Note this only affects the light’s intensity

on surfaces and does not create a volume light effect for the source lights, such as with a

light beam. For the purpose of light beams, each host application offers host-centric shaders

that are geared towards volume light effects, as well as the mental ray participating media

shaders discussed in Chapter 12.

A better implementation for a volume fog effect is with the Lume shader library mist

shader available in XSI and 3ds Max. It provides more control over fading the fog over

distance using various options. It also has an ability to layer the fog (fade) from the

ground up so that you can create a low layer of mist. The shader is applied to a camera’s

volume shader input just as with any other global volume effect shaders. The shader

options are straightforward and easy to use.

Figure 3.25

Fading a scene over
distance using the
mental ray mib_vol-
ume volume shader

One nice feature about mental ray volume shaders is that their foggy influence can be seen

in reflections and refractions, which is not always the case with volume shaders found in vari-

ous applications.

mental ray cameras ■ 111

08547c03.qxd 10/24/07 4:16 PM Page 111

Applying Camera Shaders
In the following chapters we’ll use camera environment, lens, and volume shaders within

host applications. Let’s quickly identify them within each application and see how you

may apply them as mental ray camera shaders.

Maya

In Maya, you can apply these camera shaders directly under a camera’s mental ray tab in

the Attribute Editor, as seen in Figure 3.26.

Notice that you can select to map environment, volume, and lens shaders, as shown in

the figure. Under the Lens Shader tab you can further list several consecutive lens shaders

if need be. The physical_lens_dof1 (depth of field) shader listed in the figure is further dis-

cussed in Chapter 4.

Under Output Passes (Primary Output Passes ➔ Secondary Output Pass rollout in Maya

2008) the Output Shader attribute allows you to apply 2D postprocess shaders. Notice how

both the Color and Depth attributes are selected under the Framebuffers section. These

specify the type of frame buffers that should be maintained (used) with this shader, equiv-

alent to the excerpt seen in the camera declaration block earlier:

output “+rgb_fp,+z” = “bfade1”

When you map any of these shaders, the mental ray Create Render Node window ➔

mental ray tab pops up, allowing you to select a shader from the relevant tab. For example,

for a depth fog, you may select the Mib_volume shader (discussed above under Volume

Shaders) from the Volumetric Materials tab, which adds a simple distance-based fog effect

to the scene. Figure 3.25 was rendered using this volume shader.

Figure 3.26

Maya mental ray
camera settings for
shaders and output

statements

112 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 112

From the Environments tab in the Create Render Node, you can select to map the

Environment Shader attribute on the camera with one of the various mental ray envi-

ronment shaders, as seen mapped with a cubical environment in Figure 3.26. Note that

these shaders can also be used to map surface shaders for local (per-shader) effects. You

can also apply these environment shaders to Maya’s “default” camera’s Environment ➔

Background Color attribute. We will look at using these shaders in other sections of the

book as they become required. Figure 3.28 shows a Maya camera graphed in the Hyper-

shade window, revealing how all these shaders are connected to the camera, including

volume, output (bfade1), environment, and lens shaders, which were all connected by

dragging and dropping these shaders over their relevant camera attributes shown in

Figure 3.26.

T H E I M A G E B A S E D L I G H T I N G E N V I R O N M E N T A L N O D E

In the Render Settings window under the mental ray tab ➔ Environment rollout, Maya

provides the image based lighting attribute. If you click on Createan additional light node

is created in the scene, which can be seen under the Lights tab in the Hypershade window

(or in the Outliner window) labeled mentalrayIblShape1. This node physically appears as

a bounding spherical wire frame geometry in the 3D views, however it is rendered as a

non-geometric projection. Its appearance in the viewport makes it possible for you to

easily view and align (rotate) the background image. This node is referred to as the image

based lighting (IBL) node, providing various attributes for applying image based lighting

techniques in Maya.

Figure 3.27

A Maya camera
shader graph in the
Hypershade win-
dow, displaying
environment, vol-
ume, output, and
lens shader connec-
tions to the camera

mental ray cameras ■ 113

08547c03.qxd 10/24/07 4:16 PM Page 113

The IBL node offers a means for mapping the environment with a more robust set of

tools, specifically tuned for indirect illumination effects. It is used to map an environment

image as with a camera shader but also allows you to use that image for image based light-

ing; the process of emitting direct lighting from a dome of directional lights that surround

a scene, where each light acquires its intensity and color from the mapped environment

image. It also allows you to emit photons for indirect lighting in a similar fashion. The

topic of IBL techniques is discussed in more detail in Chapter 13. In the context of this

chapter, we are interested in using it simply to apply an environment image as a non-geo-

metric projection.

In the Attribute Editor window, the IBL node’s Image Based Lighting Attributes rollout

offers the Mapping, Type, and Image Name attributes to load environmental images, as

seen in Figure 3.28. Loading images is rather straightforward, as follows:

1. Set the Type attribute to Image File.

2. Specify (or browse to) a file path and name under the Image Name attribute.

3. If the image is a spherical image (may be spherical or angular, see Chapter 13), such

as the one seen in Figure 3.24, set the Mapping attribute to Spherical,

The Render Stats tab offers several visibility options for the environment; Figure 3.29

demonstrates their effect on rendering. Let’s review them quickly.

Figure 3.28

The image based
lighting (IBL) node
attributes for load-
ing and displaying

environmental
images in Maya

Most environment images that you may have from texture libraries default to spherical

mapping.

114 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 114

Primary Visibility enables rendering the environment into the background, as shown

in image A. However, the appearance of the IBL node as a colorful background is depended

on some other settings. With respect to our discussions on frame buffer options earlier

in this chapter, when the Colorclip attribute (under the Render settings window ➔ Frame-

buffer rollout) is set to Raw, the environment image will not affect the alpha (background)

and appear to render in full color in the RGB channels; this is what you typically want from

a background image. If the Colorclip attribute is set to RGB, the environment image’s

RGB values will be used as intensity values for the alpha channel, as shown in Figure 3.29

image B (image B displays the alpha channel). With RGB color clipping, the environment

will render as a colorful background image in the RGB channels, however, for composit-

ing purposes the alpha channel is not usable. When the Colorclip attribute is set to

Alpha, the environment image will not appear to render at all, because it is set to match a

zero alpha value, making it invisible in all the RBGA channels.

Visible in Secondary Reflections enables or disables any additional reflections after the

first one has rendered, as seen in image C. Notice how you can see the first reflection

level on the floor and sphere; however, the sphere’s reflection on the floor doesn’t show

A

C

B

D

Figure 3.29

A comparison
between the differ-
ent Render Stats
attributes with
the IBL node

mental ray cameras ■ 115

08547c03.qxd 10/24/07 4:16 PM Page 115

reflections from the environment, and thus the floor reflects a black “empty” sphere. The

same is true for the floor reflected on the sphere, where you can’t see the environment

color reflect across the floor.

Visible as Environment enables or disables the first reflection bounce, meaning the first

secondary ray. However, when it’s disabled (and when Visible in Secondary Reflections is

enabled), additional rays will still appear (second reflection bounce), as seen in image D.

Clearly you can see that the environment is being reflected form the sphere onto the floor

and vice versa, but the remaining areas of the floor and sphere, which represent the first

reflection level, appear empty.

If you find it a bit confusing, I recommend you experiment while changing these

attributes using a simple scene, such as the one shown in Figure 3.29. The rest of the set-

tings relate to indirect illumination and image-based lighting and will be further examined

when we discuss final gather in Chapter 13.

O U T P U T T I N G O U T P U T S H A D E R S A S P A S S E S

In the Output Passes tab (discussed earlier in the Maya frame buffer tutorials) under the

camera’s mental ray rollout ➔ Output passes (Primary Output Passes in Maya 2008), shown

in Figure 3.30, you can further list both output statements (demonstrated earlier) and

output shaders by clicking Create. Figure 3.30 shows several different output passes and

shaders that are applied in a given order; the order defines a sequence of execution for

output shaders and statements (output files).

Notice that first an output shader is applied,

and then a Z-depth buffer and a motion vec-

tors buffer are written to file, each as an inde-

pendent pass. These passes are followed by

another output shader and then another out-

put file, this time as an HDR image. Listing

these primary frame buffers within these lists

enables you not only to execute postprocess effects in order, but to output several other

primary frame buffers during the execution of a single render, as discussed in the previous

Maya tutorials and in the section “Output Statements” later in this chapter. In this case,

each frame will produce three image files on disk and process two output shaders. The last

output shader will only affect the last output statement because they depend on the order

in which they are listed.

Figure 3.11, displayed and discussed earlier, shows the window that pops up after you

click Create. In the previous tutorials we looked at adding output statements (outputting

frame buffers to file) to the Output Passes list. In this section we look at adding output

shaders to this list. When File Mode is disabled, you can use the Output Shader attribute

(grayed out in Figure 3.11) to map additional output shaders. Essentially, if you are using

an output shader, for example the contour shader, by listing it here after an initial output

116 ■ chapter 3: mental ray Output

Figure 3.30

Maya enables you to
list several output

statements
and shaders in this

window.

08547c03.qxd 10/24/07 4:16 PM Page 116

statement you may select to first write the image to file without the effect, and then process

the effect and write an additional image using a second output statement, which can then

allow you to composite these layers in compositing software. Thus in such a case you

would have three items listed: output statement, output shader, and output statement.

XSI

With XSI, you apply camera lens shaders under the camera’s

properties and global output, volume, and environment

shaders under the current pass options (or in the Render

Manager window). We use lens, environment, and volume

shaders in various chapters throughout the book, starting

with Chapter 4.

From the Explorer window, select and display the camera (General) properties window

for your camera. You will find the Lens Shaders tab, shown in Figure 3.31, under the

Camera rollout. Using the Add and Inspect property buttons you can append new lens

shaders to the shader stack and inspect their properties. As you can see in the figure, a

depth of field lens shader has been added as well as

a tone mapping shader, both shaders discussed in

detail in Chapters 4 and 13. If you select Add and

browse through the XSI lens shaders you will find

a True_lens_emulator shader that can be used to

simulate barrel distortion (and various other effects)

as illustrated earlier in Figure 3.22 image A.

For environment, volume, and output shaders,

open the current pass render options, shown in

Figure 3.32, via Render ➔ Edit ➔ Edit Current Pass.

Under the Default_Pass (or other pass name) roll-

out you can add global effect shaders in the Envi-

ronment, Output, and Volume Shader stacks

(lists) just as with the camera lens shaders. Notice

how the output shader stack has three entries.

These shaders are executed in the order of appear-

ance as discussed under “Output Order and Out-

put Shaders” later in this chapter.

If you want to list a sequence such as the one presented here, you don’t need to apply an

output shader under the Output Passes ➔ Obsolete Output Pass rollout ➔ Output Shader

attribute shown in Figure 3.26; omit that entry and use only the Output Passes list shown in

Figure 3.30.

mental ray cameras ■ 117

Figure 3.31

The XSI camera lens
shader list

Figure 3.32

XSI’s current pass
options reveal both
the global effect
shaders and the
cameras output
shaders, which with
mental ray are all
applied at the cam-
era level.

08547c03.qxd 10/24/07 4:16 PM Page 117

E N V I R O N M E N T S H A D E R S

The Environment shader seen in the Environment shader stack is an important shader

that is used extensively throughout the book with indirect illumination and as a source for

environment reflections. When you click on the Inspect property button for the environ-

ment shader, the Environment properties tab, shown in Figure 3.33, opens. In this win-

dow you can specify several options that define how the environment appears and is used

during the render.

The New property button allows you to load a new environment image from disk, or

select an existing one that is present in the scene. (You should already be familiar with the

process of loading and using image files in XSI.) Once an image is loaded, the Environ-

ment Mode drop-down list is used to select a projection mapping method for the (ideally

panoramic) image; typically you’ll use Spherical mapping as discussed earlier and shown

in Figure 3.24. We return to the topic of environment projection mapping in Chapters 10,

11, and 13, where Chapter 13 discusses panoramic image types in more detail.

Under the Intensity section, the Background, Reflections, and Image properties define

the intensity of the image for that given purpose using values from 0 to 1. A value of 1 ren-

ders the image fully opaque (full color), and as the value decreases to 0 its intensity declines

and becomes fully invisible at a value of 0. The Background property is used to specify the

visibility of the environment image as background color. The Reflections property defines

whether the background is visible in reflections, at a value of 1, or invisible to reflections

as the value approaches 0. And the Image property is used to specify the influence the

image has in final gathering, a topic discussed in Chapter 13.

Figure 3.34

The image clip properties win-
dow allows you to apply color
corrections and set the exposure
for an environment image.

Figure 3.33

The XSI environment shader proper-
ties window

118 ■ chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 118

After you load an image, select the Edit property in the Environment properties win-

dow (Figure 3.33) to open the image (Clips) property window, shown in Figure 3.34. If

you selected to load an HDR environment image, then under the HDR and OpenEXR

properties you can define the exposure of the image during rendering using the Exposure

(f-stop) property. It will define how bright (positive values) or dark (negative values)

the image appears to the three properties in the Environment properties window; Back-

ground, Reflections, and Image. The most significant influence this property has on ren-

dering is on how the image appears in the background when you include it as a visible

background image (appears rendered) and with final gather. The topic of HDR images,

exposure, and their usage in rendering is demonstrated throughout this book, particularly

in Chapters 9 and 13.

If you click on the Enable Effects property, shown in Figure 3.34, you can further color

correct the image using the Color Correction properties seen below (not included in the

figure). You can also blur the image with the properties found under the Blur section.

Blurring an image has several advantages in 3D, for example, it can help remove glossy

reflection artifacts when the image is an HDR image, and it can help render environment

sampling effects using the occlusion shader using a low sample value rather than a high

sample value; if the image is already blurred fewer occlusion samples are required to pro-

duce the glossy effect (see Chapters 10 and 13).

If you select the Cubic_mapping_6 environment shader (in the Environment shader

stack) and inspect its properties, you will see that each projection (front, right, left, back,

top, and down) has its own tab where you can load an image. Since each axis receives an

image, the projection method is cubical mapping and there is no need to further specify a

mapping technique.

V I E W I N G T H E C U R R E N T P A S S N E T W O R K

From the Explorer window, under Passes you can select the default pass (or other

pass) and graph its network in the Render Tree window, as shown in Figure 3.35. In

this figure you can see how all the shaders discussed above are applied to their relevant

inputs for the current pass. To see the lens shader inputs, you would graph the camera

instead.

Figure 3.35

XSI’s current pass
graphed in the
Render Tree win-
dow. You see all
the global shader
inputs applied at
the pass level.

mental ray cameras ■ 119

08547c03.qxd 10/24/07 4:16 PM Page 119

3ds Max

In 3ds Max, you apply camera shaders in the Render Scene: mental ray Renderer window ➔

Renderer tab ➔ Camera Effects rollout ➔ Camera Shaders section, seen in Figure 3.36. In
this window you can apply lens, output, or volume shaders using the three Lens, Output,

and Volume parameters seen mapped in the figure.
Each shader has been mapped with a relevant shader
from the Material/Map Browser window.

When you choose one of these shader options, the
Material/Map Browser window opens, enabling you to
select from the available shaders for the shader type
you selected. Forlens shaders, the Distortion (lume)
shader mimics the effect of wide-angle lenses, as seen in
Figure 3.22. The WrapAround (lume) is another nice lens
shader that allows you to export spherical panoramic
images of the scene, rendering 360 degrees, as seen in
Figure 3.24.

If you select one of these shaders, you can then display its settings in the Material
Editor window by dragging from the Lens parameter to an empty slot in the Material Edi-
tor window. Alternatively you can click the Get Material icon (the first icon on the left
under the material slots) to load the camera shader from under the Scene list in the Mater-
ial/Map Browser window. Once the shader is loaded, you can tweak its settings, as shown

in Figure 3.37 for the Lume Distortion shader. This
shaderÕs options allow you to specify the barrel effectÕs
intensity by increasing the Amount factor, simulating
lens distortion for a wide-angle lens.

If you want to list more than one shader for any of
these three camera shaders, then your 3ds Max offers
shader list shaders. Notice that in Figure 3.36 the Lens
parameter is mapped with a Shader List (Lens) shader
that I selected in the Material/Map Browser window.
When you drag this shader into the Material Editor
window and examine its parameters, you will see that
you can list several shaders in what is known as a shader
stack. Figure 3.38 shows the shader stack for the lens
shader. As you can see in the figure, two lens shaders
have been stacked in the list. You can add a shader using
the Add Shader parameter and inspect its parameters
by double-clicking over its name in the list.

120 ■ chapter 3: mental ray Output

Figure 3.36
3ds Max Camera

Effects settings roll-
out, where you

apply lens, output,
and volume shaders

Figure 3.37
The Material Editor
enables you to edit

settings for the cam-
era shader. In this

case, the Lume Dis-
tortion shader is

displayed.

Figure 3.38
Shader list shaders

allow you stack sev-
eral shaders for a

given purpose; lens,
environment,
volume, and

output effects.

08547c03.qxd 10/24/07 4:16 PM Page 120

3ds Max has several shader list shaders that are designated for specific tasks. In the
Material Editor window press the Get Material parameter to view all the available shaders
in the Material/Map Browser window. Figure 3.39 shows a
small segment of shaders that can be seen in the Material/
Map Browser window that are used as shader lists. As you
can see, each of the shaders under the Camera Shaders sec-
tion has a correlating shader list shader that can be used
for stacking several shaders for that specific purpose.

ENVIRONMENT SHADERS

To apply Environment shaders, navigate from the top menu Rendering � Environment to
open the Environments and Effects window, shown in Figure 3.40. Under Environment
Map you can simply add an image by selecting the mapping option, choosing Bitmap
from the Material/Map Browser window, and then navigating to the image file on disk.
You can then drag the bitmap shader to the Material Editor and edit its projection method.
When using spherical images, such as the one seen in
Figure 3.24, under the bitmap shader Coordinates
rollout in the Material Editor, select the Environ
parameter radio button and select Spherical Environ-
ment from under the Mapping drop down parameter.
The topic of 3ds Max projections is discussed in detail
in Chapter 11 and the topic of loading HDR images is
discussed in Chapter 13.

Note that you can also use the Atmosphere rollout in this window to apply 3ds Max-cen-
tric volume effects such as fog, but this may create color artifacts such as banding when ren-
dering with mental ray. In the Effects tab, you can also select 3ds Max postprocess effects that
currently donÕt appear to be fully compatible with mental ray. For example, these outputs
shader effects are applied on premultiplied images, producing artifacts that relate to Òoutlin-
ingÓ surfaces when extending their edges, as seen in Figure 3.41 with the depth of field effect.

Figure 3.41
3ds Max centric
effects are not com-
pletely compatible
with mental ray
and may cause arti-
facts, such as when
applied to premulti-
plied images.

mental ray cameras � 121

Figure 3.39
3ds Max has various
shader list shaders
that can be seen in
the Material/Map
Browser window

Figure 3.40
Applying Environ-
mental shaders in
3ds Max through the
Environment and
Effects window

08547c03.qxd 10/24/07 4:16 PM Page 121

Depth Sorting
mental rayÕs ability to properly sort depth depends on the cameraÕs near and far viewing
range. Known as hitherand yonplanes with mental ray, they define the visible scene range
from the render cameraÕs perspective. The depth represented within this range has
tremendous influence on the quality of scanline rendering, influencing scanline abilities to
identify the distances between polygons that line up at the same pixel coordinates. With
scanline rendering, the depth from the camera is represented by a grayscale scalar value.
When clipping planes are set to an optimal distance, this guarantees that the best value
distribution for the scene is being used without wasting values within empty space. In
some cases, even optimal values do not provide for efficient depth sorting, and in those
cases the render can be set to use only raytracing; alternately, the scene can be divided into
foreground and background elements (passes) that can be rendered independently, thus
more efficiently, and then composited.

For example, if you have a black to white 0 to 1 gradient range, consider the difference
between using 0.1 percent or 0.01 percent of that range to represent your scene depth
instead of 0.95 percent of the same range, as illustrated in Figure 3.42. This range is con-
stantly being evaluated by the camera for each frame, and if ignored it can lead to unwanted
flickering and polygon (partial or full) overlapping (intersecting) for close proximity
polygons. This occurs only with scanline-based rendering because raytracing uses a differ-
ent algorithm (not dependent on depth projections) for sorting distance and can resolve
depth-related artifacts, but at the expense of longer render times.

Far clip

Near clip

Far clip

Near clip

Figure 3.42
Setting the near and

far camera viewing
range has tremen-
dous influence on

scanline rendering.

122 � chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 122

One problem arises with clipping with respect to animated scenes that ÒtravelÓ over a
large distance. As objects get farther away from each other, the range of the scene expands.
In cases where clipping is automatically derived, artifacts may appear, and when it is man-
ually specified, sections of the scene may be clipped. To prevent this, all you can do is be
aware of these settings and make sure they are within a reasonable range.

For controlling the near and far clipping settings within host applications, use the fol-
lowing options for a selected camera:

H O S T C A M E R A C L I P P I N G S E T T I N G S

Maya Camera Attributes � Near (and Far) Clip Plane.

Auto Render Clip Plane should be disabled, or it overrides the clipping values.

XSI Camera � Primitive tab � Clipping Planes � Near (and Far) Plane. Notice you can
use the buttons on the side to either clip to the selected objectÕs bounding box or
the entire sceneÕs extent. The entire scene may be suitable in most cases.

3ds Max In the Modify panel, under Parameters � Clip Manually � Near (and Far) Clip

Clip Manually must be enabled for clipping control; you see the results within the
viewport.

Output Statements
Throughout this chapter you have been introduced to the topics of frame buffers and out-
put options, particularly the topic of rendering passes using primary and user frame buffers.
These topics are advanced and should be used once you feel more confident with every-
thing else mental ray. You may want to return to this chapter once you have completed
the book as its content reflects on various aspects of using mental ray. The topics of frame
buffers and output options are concentrated in this chapter to avoid spreading them
across several chapters in the book; these topics cover beginner to advanced principles and
techniques and thus you donÕt have to understand everything here at a first read.

The implementation of user frame buffers and passes is actually more complex within
host applications than in mental image (.mi) files, where few statements are used to clearly
represent the cameraÕs output. This section presents all the topics discussed earlier as they
are implemented in mental ray. It serves two purposes that are:

1. If you use the standalone mental ray renderer, you will be able to read the code and
modify it beyond what your host application offers. In the same context, exporting .mi
files from your host and examining the output statements can help you better under-
stand, or verify, what your host application does when it renders with mental ray.

2. No single host application offers the entire range of mental rayÕs abilities in this area;
looking at these options in mental image files provides more extensive coverage of
these topics as well as a better understanding for them in your host application.

As discussed throughout the chapter, an advantageous approach to rendering with
mental ray, especially when using the standalone renderer, is to create output statement

output statements � 123

08547c03.qxd 10/24/07 4:16 PM Page 123

passes, which enable you to output multiple passes at once during a single render execu-
tion. There are four aspects of this process:

(a.) You can output any of the six primary frame buffers into separate image files.
YouÕve already seen how to do this in the host applications.

(b.) Output order is also significant when output shaders are being used. Maya users
have seen how they can list different output statements and output shaders in a
given order under the Maya cameraÕs Output Passes list earlier in this chapter.

(c.) You can also leverage user frame buffers to output different color passes through
the execution of one render, as seen with XSI and with the p_MegaTK shaders pro-
vided by Puppet. We also briefly look at OpenEXR formats that can store unlimited
channels (in ÒOutputting User Frame BuffersÓ later in this chapter). In the same
context, you saw the OpenEXR multipass export options earlier in Figure 3.21 with
the Puppet shader.

(d) Finally, among mental rayÕs output options there is multipassrendering, which
enables you to save sampling frame buffers on disk to help deal with complex scenes.
This option is demonstrated through 3ds Max, the only host application that offers
it as a built-in feature.

Outputting Frame Buffers
One aspect of rendering passes with mental ray, explored within this chapter, is its ability
to specifically set different channels (primary frame buffers) for output, such as RGBA, Z-
depth, and motion vectors. Because each output is provided within a separate image file,
they can use different bit depth settings at varying precisions (floating vs. integer) inde-
pendent of the other outputs. Thus you can specify rendering color passes (RGBA) at 16 bit,
providing for high-quality images, and rendering a Z-depth pass at 32 bit (floating point)
for better quality Z-depth in compositing.

mental ray uses the following line for defining output, as seen in the camera declaration
block earlier in this chapter:

output •+rgbaŽ •iffŽ •firstRender.iffŽ

Left to right, this line says that the primary frame buffer, always referred to as +rgba

(the data type), will save an IFF (Maya file format) image file to disk using an image labeled
firstRender.iff. Using this syntax, you can list all the data types (passes) you wish to export.
LetÕs see how this is achieved through XSI and the resulting output.

With XSI, as you saw in Figure 3.16, for each render pass you can enable all the primary
frame buffers (and user frame buffers) to render during the execution of a single file. With
Maya, you saw that you can load them under the cameraÕs Output Passes list, and with 3ds
Max, you saw that you can include them within image formats such as the OpenEXR for-
mat but not specify that they render into separate image files, as with Maya or XSI.

124 � chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 124

By enabling additional frame buffers for export, you actually specify additional output
statements that are added into the .mi file upon execution. The result is shown in the follow-
ing excerpt from an XSI-to-.mi-file conversion, showing how all these data types are listed:

camera •Camera_Root/Camera/CameraŽ

output •-zŽ •ZpicŽ •Render.1.zpicŽ # Z Depth

output •-mŽ •mtŽ •Render.1.mtŽ # motion vectors

output •-tagŽ •ttŽ •Render.1.tagŽ # labels

output •-nŽ •ntŽ •Render.1.normŽ # normals

output •+rgbaŽ •picŽ •Render.1.picŽ # primary color

ƒ (omitted irrelvant camera statements for this example)

end camera

In this case, there will be five resulting images for each rendered frame, which have all
been declared under the cameraÕs output declaration. Each of these, as you see, uses a dif-
ferent data type (-m, -z , etc.), corresponding to its relevant frame buffer that is then stored
as an image on diskÑfor example, the line:

output •-mŽ •mtŽ •Render.1.mtŽ

uses the motion vectors frame buffer (-m) to store motion vectors in a mental ray MT
(file format) on disk, labeled Render.1.mt. Each host application then offers methods for
outputting these sorts of camera output statements using a different approach, as described
in ÒFrame Buffer Options in Host ApplicationsÓ earlier in this chapter.

Output Order and Output Shaders
Using mental rayÕs output statements, you can also output your render in stages, outputting
an image to file before processing a 2D postprocess effect, and then output another image
after the effect has been processed, as seen in the full camera declaration block earlier in
this chapter(a Maya-to-mental-images conversion). Output shaders and output statements
both deal with the rendering at the frame buffer level, so specifying different output shaders
or statements in a particular order will define an order-based set of frame buffer instructions
and postprocesses. To recap on the mental ray Camera Declaration Block seen earlier in
this chapter, consider these following lines:

output •+rgbaŽ •iffŽ •firstRenderŽ

output •+rgb_fp,+zŽ = •depth_fadeŽ (

•near_depthŽ 1,

•far_depthŽ 15

)

output •+rgbaŽ •tifŽ •test_cam.tifŽ

I recommend that you specify various primary frame buffers for output and export a .mi file,

then look at the camera declaration statement in the .mi file to see how your host exports

these statements in this way.

output statements � 125

08547c03.qxd 10/24/07 4:16 PM Page 125

The first statement will write a file to disk called firstRender.iff, and then the second
statement will process a depth fade postprocess effect on the primary frame buffer. Notice
that the second statement also includes the parameters for the depth fade effect. At that
point, yet another output statement is required for writing the result from the postprocess
depth fade effect to disk, seen with the third output statement. Thus the third statement
outputs the primary frame buffer after the postprocess effect has been applied. If you do
not explicitly set the order so that output shaders are executed before output statements,
they typically appear first in the cameraÕs declaration block output list so that they are
processed before any image files are written to disk.

When output shaders are used, the frame buffers that the shader requires for process-
ing are also included within the statement, as seen here from an XSI export using two out-
put shaders (the first is the 2D_depth_cue shader, and the second is a 2D_fur shader):

output •+rgba,-zŽ = •Camera_Root/Camera/_2D_depth_cueŽ

output •+rgba,-z,-n,-tagŽ = •Camera_Root/Camera/_2D_furŽ

As you can see, the depth cue output shader requires both the primary frame buffer
and the Z-depth frame buffer, and the fur shader requires in addition the normals and
object labels frame buffer. This should make sense because you can assume that for a fur
postprocess effect, mental ray requires knowledge of scene depth and the surface normal
direction for determining the furÕs growth aim direction, and of course it also needs to
identify the objects that grow fur within the frame bufferÕs pixel space, so object labels
provide a unique ID to help identify these fur-growing objects within the scene. This
example illustrates how the primary frame buffers are used specifically with output
shaders, or as passes for compositing.

Outputting User Frame Buffers
For compositing, it is likely you will need images with varying bit depth and different
channels. One in-production advantage relates to compositing passes so that light color
and intensity (overexposure) can be adjusted without re-rendering and effects such as
motion blur and depth of field can be added and tweaked interactively rather than with
very long time-consuming renders. For effects such as motion blur and depth of field, you
would need to output the Z-depth or motion vectors frame buffers as cited earlier.

User frame buffers typically target rendering custom color channels that are not
included with the primary frame buffers and may represent color passes such as diffuse,

Chapter 8 looks at a production proven technique for using motion vectors in compositing.

You donÕt see the output shader options in these two excerpts because they call on shaders

that have already been specified (declared) elsewhere in the mental image file.

126 � chapter 3: mental ray Output

08547c03.qxd 10/24/07 4:16 PM Page 126

specular, and shadow. Again, each host provides an approach for creating custom passes
ÑMayaÕs render layers, 3ds MaxÕs render elements, and XSIÕs passes. However, these out-
put options refer to separate render files and not user frame buffers that are output during
the execution of a single render.

Such built-in user frame buffers are available with XSI, offering a set of custom color
passes that execute during a single render, as discussed earlier.

These color passes use custom shaders that store specific color information within user
frame buffers and then output them during the render. User frame buffers must be declared
with a relevant data type (RGB, Z-depth, etc.) before being used, which is specified in the
mental images options block as seen with the following excerpt from an XSI-to-mental-
images export:

frame buffer 0 •+rgbaŽ

frame buffer 1 •+rgba_fpŽ

frame buffer 2 •+rgba_16Ž

frame buffer 3 •+rgba_fpŽ

frame buffer 4 •+rgbaŽ

frame buffer 5 •+rgbaŽ

Notice how each of these frame buffers is applied with a data type and index number.
You can see the same passes enabled within XSI in Figure 3.43. Each pass is provided with
a target image file, channel data type, and bit depth precision. So it is clear that various
color passes at various bit depths and formats may be outputted with user frame buffers.
The diffuse and irradiance passes are set to use a 32-bit floating point buffer, and the
specular pass uses a 16-bit buffer; all three have
corresponding frame buffer data types seen in
the preceding excerpt for frame buffers 1, 2, and 3.
Notice that all these buffers are also specified as
interpolated (plus sign) buffers that use averaged
color values for the pixels, commonly so with
most ÒbeautyÓ color pass outputs.

These same user frame buffers are then used within the cameraÕs declaration block to
specify their image output format, as seen in the following camera declaration excerpt for
the same XSI scene:

camera •Camera_Root/Camera/CameraŽ

output •+rgbaŽ •tifŽ •Main.tifŽ # primary buffer

output •+fb0Ž •tifŽ •Ambient.tifŽ

output •+fb1Ž •hdrŽ •Diffuse.hdrŽ

output •+fb2Ž •tifŽ •Specular.tifŽ

output •+fb3Ž •exrŽ •Irradiance.exrŽ

output •+fb4Ž •tifŽ •Reflection.tifŽ

output •+fb5Ž •tifŽ •Refraction.tifŽ

ƒ camera options omitted

end camera

output statements � 127

Figure 3.43
XSI per pass user
frame buffer output,
which will then cre-
ate several images
on disk for each ren-
dered frame con-
taining the
requested color
information

08547c03.qxd 10/24/07 4:16 PM Page 127

The ideal is that when you execute a render, during that render you can save several

additional passes to disk representing these diffuse, ambient, reflection, shadow, and

luminance passes, among others. The advantage is that rather than executing several con-

secutive renders, you execute one render that outputs all these passes during each frame’s

render, so the time in which a single frame is rendered provides several different passes on

disk for the purpose of compositing. In this case the diffuse pass is rendered as an HDR

image, the specular as a 16-bit image, the irradiance as a 32-bit image, and the remaining

passes are rendered as 8-bit images.

Multi-Channel Output

Another significant advantage of user frame buffers is that rather than outputting separate

image files for each pass, when using formats such as the OpenEXR format, all these passes

can be added into an individual image. Hence the OpenEXR format enables you to specify

one image file on disk that would contain four color passes within one image, represent-

ing, for example, 14 color channels in the following order:

• color pass -RGB channels,

• Alpha channel

• Z-depth channel

• Shadow - RGB channels

• light - RGB channels

• specular - RGB channels

Figure 3.44 shows the drop-down list for an OpenEXR image in Nuke, dis-

playing all the additional channels that are present within the file. The long list

of channels shows all the color channels stored within this image. As you can

see they are organized in a way that allows labeling sets of channels so that

you can easily identify, for example, the caustic RGB channels while com-

positing. See the Nuke Compositing article on the companion CD for more

information on compositing with OpenEXR images.

With 3ds Max, you can output primary frame buffers with some extra

channels, as seen under “Host Application Frame Buffer Options” earlier in

this chapter, into multichannel images. In addition, under the same section I

briefly introduced the Puppet p_MegaTK shaders that allow you to export a

single multichannel OpenEXR image from each host application. Currently,

none of the host applications provides a built-in straightforward method for

outputting such multichannel passes into a single EXR file, but I hope we will

see more support for these features in the future. In production environments,

these abilities are already being applied using custom plug-ins for mental ray

and host applications.

128 ■ chapter 3: mental ray Output

Figure 3.44

OpenEXR channels
seen within Nuke

for a multichannel
OpenEXR image file

08547c03.qxd 10/24/07 4:16 PM Page 128

Multipass Rendering
Multipass rendering is yet another camera-based output and shader option. With mental

ray, multipass rendering refers to rendering separate elements (ex. surfaces) and then

merging them together using sampling frame buffers. The strength behind multipass ren-

dering is with respect to rendering complex “heavy” scenes with a lot of geometry, so you

separate the scene into specific elements and then combine them later using a merge

shader.

Most artists approach this sort of compositing, using a Z-depth pass and the color

image files within a compositing application. Essentially, compositing surfaces in a 2D

application is based on a per-pixel depth composite that is dependent on the precision and

resolution of the Z-depth pass. Thus, while objects are being composited with a Z-depth

pass, the quality of the composite is based on the

available resolution of both the images and the

Z-depth pass and not on several sub-pixel sam-

ples as with 3D rendering.

Multipass rendering resolves any pixel limi-

tations by enabling you to combine elements (in

depth) on a per-sample basis rather than a per-

pixel basis, providing more accurate results.

Remember that sampling may be achieved on a

sub-pixel level, which means that elements are

then merged at the sub-pixel level.

The process is based on storing sampling

frame buffers on disk and then using them to

merge samples rather than pixels with mental

ray. Sample compositing can therefore be

processed only through mental ray, not a com-

positing package. Also, it is very easy to apply it

if you either have the standalone renderer or

are using 3ds Max, which currently is the only

software that provides built-in multipass ren-

dering features. With Maya or XSI, you would

simply add the pass write and pass read

options into the camera’s declaration block (as

demonstrated later with standalone rendering).

One more important note: you can effec-

tively combine sampling passes, but if the sam-

ple algorithm changes between passes (from

default sampling to the rasterizer, for example),

the samples will not align correctly.

A

B

C

output statements ■ 129

Figure 3.45

Images A and B rep-
resent the data that
has been stored in
sampling frame
buffers on disk.
Image C shows a
multipass merging
of these two passes
as well as the scene
(teapot).

08547c03.qxd 10/24/07 4:16 PM Page 129

Let’s look at writing and merging sampling frame buffers using 3ds Max and the cam-

era options for the .mi file. Figure 3.45 shows three stages of rendering, A, B, and C. A and

B represent pass files that were written to disk, and C shows how both those pass files,

including an additional element from the “live” scene (the teapot), are all merged.

To re-create this for yourself, create a scene with various intersecting elements and

three layers (optional). Hide any objects that shouldn’t get rendered into the first-pass

“partition,” seen as A in the figure. The first stage requires writing the pass files to disk

using mental ray’s pass write option. The option to write sampling frame buffers to disk

is entered under the camera declaration block as follows:

pass write “file path and name”

In 3ds Max this process is applied as follows:

1. Under the Render Scene: mental ray Renderer ➔

Processing tab ➔ Render Passes section (seen in

Figure 3.46), open the file browser (…) , specify a

name and path, and enable the Save parameter.

Render the scene.

2. In the specified directory, a new file has been created

that contains the sampling information; it is not a

viewable file.

3. Toggle the visible objects in the scene with the hidden ones, rename the pass file from

the Save option (so you won’t overwrite the previous pass file), and render again.

Leave at least one other object invisible for a third pass.

Currently these pass files represent the different objects in the scene, as seen in Figure 3.45

images A and B, each represented in a separate pass file.

Now let’s merge them together, as well as with additional objects in the scene, meaning

at three levels that include both pass files and any other objects in the scene. To read passes

from disk as well as render in the current scene elements, the following pass statement

is used:

pass merge

read [“”, “pass file 1”, “pass file 2”]

The first set of double quotes refers to the current scene, meaning the visible objects,

and in the case of Figure 3.45, it refers to the teapot (in image C), which was not available

in both pass files.

To apply the new pass files, simply enable the Merge parameter and load them in using

the Add button (they are seen loaded in Figure 3.46) and render. Once the render has

completed, you should have successfully merged all the pass files with the scene elements,

as seen in Figure 3.45 image C.

130 ■ chapter 3: mental ray Output

Figure 3.46

3ds Max multipass rendering
export and merging options,
where we can effectively split up
heavy scenes into separated
sampling frame buffers

08547c03.qxd 10/24/07 4:16 PM Page 130

Camera Fundamentals

Our understanding of real-world lighting and photography significantly

influences our approach to rendering practices, image formats, and output displays. Pho-

tography normally attempts to reproduce images that represent real-world conditions as

seen by the human eye. Learning how images are reproduced with real-world photogra-

phy leads us to a better understanding of the requirements for creating such images from

scratch when using 3D software. The process of rendering plays two significant roles: it

must re-create the environment (with advanced rendering algorithms) and re-create the

effects of the camera. The amount of work you invest in an animated short or still image

will take you only so far if you can’t use the camera.

In this chapter, you will learn fundamentals of the camera and how to apply that

knowledge in practice using the mental ray camera. This chapter includes the following

topics:

■ Camera Basics and Aspect Ratios

■ Camera Lenses

■ Host Application Settings

C H A P T E R 4

08547c04.qxd 10/24/07 4:18 PM Page 131

Camera Basics and Aspect Ratios
One of the most important aspects of film production—whether it’s a short independent

film or a high-tech feature film—is the camera. The better a virtual camera can simulate

a realistic camera’s photographic abilities, the more the viewer will be convinced that the

shot is genuine. Virtual cameras used to superimpose computer-generated imagery on

live-action shots need to match the same image aspect ratio, focal depth, perspective, and so

forth as the live-action camera. But that’s only part of the equation. You also need to make

sure that render settings correlate to equivalent camera settings within the 3D host appli-

cations. That is, each application (Maya and XSI more than 3ds Max) provides separate

controls over render settings and camera settings. The camera settings provide control

over simulating real camera characteristics and render settings simulate display devices so

that, ideally, the virtual camera and render settings are parallel to real-world cameras and

monitors, where one deals with acquisition and the other with display.

Understanding real-world cameras will help you simulate photographic qualities. For

example, good slow-motion photography is typically recorded at faster speeds, and thus

there will be less motion blur as well as less focal depth, both topics further discussed in

the following sections.

Before examining the internal settings within each host application, let’s examine some

camera fundamental mechanics and terms and then examine how those fundamentals are

applied within host applications.

The Transport Mechanism
We use the term camera transport mechanism to describe the internal process within a

camera. A basic camera model consists of a film back, film gate, claw, shutter, lens, and film

or digital sensor. In Figure 4.1, you can see a basic illustration of the camera’s transport

mechanism. The claw (not illustrated because it has no equivalent in computer graphics)

is used to pull down the film using the sprocket holes (along the film’s sides) while the

shutter is closed so that the next frame (film) gets placed between the film gate and the

film back. The film back, which is the area directly behind the film, defines the size of the

film or digital sensor—35mm, 16mm, and so forth. As you can see in the figure, the film

gate acts as a window through which each frame is exposed to light that penetrates through

the lens. Hence, the film gate defines the area on film that is exposed to light, and thus the

frame’s horizontal and vertical (X, Y) scale.

The Transport Speed
Transport speed is commonly measured as frames per second (fps). It defines the time

interval in which the transport mechanism can perform a cycle of loading a frame, open-

ing and closing the shutter, and then repeating the process. In essence, the transport speed

makes the illusion of motion possible because the human brain retains images for a fraction

of a second, allowing a new image to be “loaded” into memory between exposures. This is

132 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 132

known as persistence of vision; it enables the illusion of motion that the mind perceives while

watching alternating still images projected on a screen. This book’s discussion of CG will

deal with the time interval the shutter remains open, exposing the film to light, and, and

capturing motion blur effects on film. Controlling that time interval enables you to con-

trol the amount of visible motion blur by means of customizing shutter time and shutter

angle characteristics, all topics discussed in this chapter and in Chapter 8, “Motion Blur.”

For slow motion, special cameras film at higher speeds, such as 48fps, and the film is

then projected at the normal speed of 24fps. Essentially, this means that if you render an

animated sequence at a higher frame rate, you can also reproduce quality slow motion by

playing the sequence back at normal frame rates.

Shutter Speed, Shutter Angle, and Motion Blur
A shutter is a device that, based on a shutter speed, opens and closes in front of the film

gate, exposing the film to light. With still cameras, the shutter typically operates like an

opening door or a sliding curtain that can rapidly open and close. For simulating real

motion cameras in CG, the shutter interests us to the extent that it influences some pho-

tographic phenomena, mostly motion blur and depth of field. Depth of field is not influ-

enced by the shutter, rather by how the shutter and iris are balanced together to produce

an exposure level. With cameras, motion blur is visible in images because, during the

exposure time, the film captures moving objects at different stages of their motion and,

as the exposure time increases, so does the amount of visible motion blur. Both depth

of field and motion can be simulated in a very realistic manner with mental ray. In this

chapter, you’ll look at simulating depth of field, and in Chapter 8 you will learn more

about motion blur.

Shutter

Film gate

Film back

= Film aspect ratio
x

y

y

x

Figure 4.1

The transport
mechanism

camera basics and aspect ratios ■ 133

08547c04.qxd 10/24/07 4:18 PM Page 133

Typically, with motion cameras, the shutter is a circular disk mechanism, known as a

rotary disk shutter, that constantly rotates in front of the film, as illustrated in Figure 4.2.

The two images on the top illustrate the shutter at two different points during the expo-

sure time. Further, the shutter’s shape (seen as the gray triangle that is pivoted to rotate

around the polygonal shape) may be open to a greater or lesser degree based on the shutter

angles value, measured in degrees. Thus, the number of degrees the shutter is open, as with

the different examples on the lower portion, regulates the amount of time film is exposed

to light during the time a full 360° cycle is performed.

Obviously, larger shutter angles, as with the 180° compared to the 30° shutter angle,

permit more light to enter the camera during the shutter cycle. For our purposes this

cycle is referred to as the time interval, which determines the shutter speed, and will be

examined in detail in Chapter 8.

In essence, the relationship between the shutter speed (cycle time) and shutter angle

define the amount of light that penetrates during each cycle (the time interval). For example,

a shutter angle of 180° will expose the film to light throughout half of the time interval

(cycle), and a 90° shutter angle will expose the film to light for one quarter of the time

interval, thus the relationship between shutter angle and shutter speed help regulate the

amount of light that is exposed to film.

Further, the combination of the shutter speed, shutter angle, and the aperture f-stop

defines the exposure level, a term used to describe the overall light exposure to film, based

on all the influential mechanisms that take part in regulating light exposure. Let’s look at

the aperture settings next. In Chapter 8, you will learn how to simulate a virtual shutter

angle with mental ray.

Shutter angle

180° 90° 30°

Figure 4.2

Shutter angle

134 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 134

Apertures and Image Aspect Ratios
The aperture determines the amount of light that can pass thorough the lens. In essence, the

lens uses an internal iris diaphragm, which is a thin metal plate that has a small opening in

the center that regulates how much light can penetrate through the lens, measured in f-stops

(f-stops are further discussed in the section “Camera Lenses” later in this chapter). The

diameter of the opening is then the aperture size, measured in f-stop values. However, the

term aperture can also be used in reference to the film aspect ratio. In 3D applications, this

second meaning is confusingly distorted. With CG the “aperture” refers solely to the film

gate’s X and Y measurement scale, not the film aspect ratio or the aperture’s f-stop value.

With mental ray, as you will see later, the camera declaration aperture [n units] option is

measured as the horizontal axis of the aperture (the film gate’s horizontal axis) in camera

space units.

The film aspect ratio is acquired by dividing the film gate’s horizontal scale by the

vertical scale (X/Y), as seen in Figure 4.1. This aspect ratio is also commonly referred

to as the image aspect ratio within host applications. The aspect ratio value describes

the relationship between the horizontal and vertical axes of the film gate’s opening,

which is also referred to as the film aperture with film cameras. Thus, film aperture

may represent an f-stop value or a film gate ratio. Typically, this ratio is either 4:3 (1.333

image aspect ratio), as with most video formats, or 16:9 (1.77 image aspect ratio), as

with HD formats.

Changing either the film gate ratio or film back size will have several effects on cam-

era characteristics, including image aspect ratio, field of view, focal depth, perspective,

etc. A change to any of these settings will affect all of the other settings proportionally

to accommodate the new settings. For example, if you change the X, Y scales for the film

gate, then you will see the aspect ratio automatically correct itself for these new values.

We further look at defining the aperture in CG in the tutorials later in this chapter,

where you will see how your host application implements these terms for simulating

film back, film gate, and the aperture (aspect ratio), and the relationship that exists

between these settings.

With respect to proportions, note that if you double the aperture scale (X and Y), you will still

maintain the same aspect ratio; however, the film back scale has actually increased and will

affect the field of view, as discussed in the “The Film Back” section later in this chapter.

The iris is a lens-specific mechanism, whereas the shutter is a camera-body mechanism; both

regulate light exposure, commonly referred to as the exposure level.

camera basics and aspect ratios ■ 135

08547c04.qxd 10/24/07 4:18 PM Page 135

Pixel Aspect Ratio
Typically, if you are using the same format to film as well as to project, you would want

the render settings and the camera settings to match in size proportionally so that they

both use the same image aspect ratio. When dealing with computer monitors, film for-

mats, and even HD formats, pixels are said to have a 1:1 aspect ratio, and thus are known

as square pixels.

Other output media, however, don’t use square pixels. With digital

video recording (DV) devices and NTSC and PAL televisions (VHS),

the pixels are compressed in a way that they are either taller than they

are wide (NTSC) or wider than they are tall (PAL), as illustrated in

Figure 4.3. Complications arise when we create graphics on computer

displays using square pixels and then output to one of these devices

that use non-square pixel ratios.

Notice that with square pixel ratios, the pixel aspect ratio, like the

image aspect ratio, is derived by dividing the horizontal axis by the

vertical axis:

X ÷ Y (horizontal/vertical) = pixel aspect ratio

With NTSC and PAL displays, you must compensate for their non-square pixel aspect

ratios. When outputting images, there can be only one image aspect ratio; you don’t

output two separate ratios. Thus, before rendering, you must specify an aspect ratio that

accounts for the pixel aspect ratio’s effect on the image aspect ratio. mental ray then will

compare the aspect ratio derived from the render X and Y resolution settings (which is

based on square pixel ratios) with the provided aspect ratio. When pixels are non-square,

the provided aspect ratio is derived by multiplying the pixel aspect ratio by the image

aspect ratio, a topic further explained later in this chapter. To clarify, if the render reso-

lution aspect ratio (derived from the X and Y render settings) is different than the provided

aspect ratio, it means that mental ray still needs to “stretch” the resolution pixel array so

that it fits within the provided aspect ratio the same number of X and Y pixels, and by doing

so mental ray outputs pixels that are non-square. Figure 4.4 shows a simple example of

how this equation is used to derive the pixel aspect ratio for NTSC D1 video.

The line next to (a) refers to the standard used with NTSC video, which is the 4:3 ratio,

equal to a 1.33 image aspect ratio (based on non-square pixels). Images rendered for NTSC

video should have the same 1.33 image aspect ratio. Under (b), you see the standard NTSC D1

resolution of 720×486, which when divided provides for a 1.48 image aspect ratio, which

is different than the 4:3 standard ratio. Thus, this aspect ratio obviously does not match

the NTSC standard aspect ratio; so why is this resolution used as the standard for render-

ing NTSC D1 video? If you look at the figure, you can see that when (a) is aligned over

(b), the NTSC standard (a) is taller than the render resolution (b) because NTSC pixels

are taller than they are wide. Thus, you correct the NTSC render for the NTSC standard

136 ■ chapter 4: Camera Fundamentals

NTSC

y

x

PAL

y

x

x
y

= 0.9
x
y

= 1.067

Pixel aspect ratios

Figure 4.3

Pixel aspect ratios

08547c04.qxd 10/24/07 4:18 PM Page 136

by multiplying the image aspect ratio by the pixel aspect ratio, arriving at the new cor-

rected image aspect ratio, which essentially matches the NTSC standard 4:3 ratio (1.333),

stretching the pixels to match that new aspect ratio.

When rendering, you can provide the image aspect ratio and the pixel aspect ratio sep-

arately. The host application translator does the math behind the scenes so that it provides

mental ray with a correct aspect ratio value.

The Film Back
One of the main characteristics of photography that influence an image’s appearance is

the camera’s field of view (fov). The field of view describes the camera’s visible viewing

range, a value derived from the film back, the film gate aspect ratio, and the lens’s focal

length. Let’s first examine the impact that film back size has on the field of view.

Figure 4.5 illustrates the relationship between the film back and the field of view. As

the film back scales up, so does the field of view, because there is a larger region within the

camera’s body that can receive light penetrating through the film gate. Within each host

application, you can specify either a larger film back or a larger film gate (seen in the tutori-

als later in this chapter) and have the same effect as increasing the field of view. For clarifi-

cation, in 3D host applications the film gate’s horizontal and vertical scale (typically in mm)

and film back are tied together so that essentially an increase in size for either component

If you forget to correct for video aspect ratios, the result will be that round objects will appear

stretched along the Y axis with NTSC and squashed along the Y axis with PAL, even though

on your monitor they appear correctly. Remember, your monitor uses square pixels, so

essentially, if something appears incorrectly on your display, chances are it will appear cor-

rectly on the output monitor.

4
3

= 1.333 Video 4:3 standard =

720
486

= 1.48 = NTSC 4:3 standard =
(when the pixel aspect ratio = 1)

image aspect ratio

(a)

(b)

NTSC 4:3 standard uses a 0.9 pixel aspect ratio =
Image aspect ratio x pixel aspect ratio =
1.48 x 0.9 = 1.333 new adjusted image aspect ratio

(c)

(a) (b)
(b over a)

(c over a)

(a) (c)

Figure 4.4

Derived pixel aspect
ratio in NTSC

camera basics and aspect ratios ■ 137

08547c04.qxd 10/24/07 4:18 PM Page 137

results in an increase of the other component (film gate or film back), as well as an increased

field of view. Thus, you can conclude that larger X, Y aperture settings provide for larger

film backs and gates and thus a larger field of view.

Camera Lenses
There are three commonly used types of lenses: normal, wide-angle, and telephoto.

(Other lenses, such as fisheye, are not commonly used in 3D.) Lenses are classified based

on their focal length, which is the distance from the lens to the film and defines the lenses’

magnifying abilities as well as influences the field of view and focal depth. Focal depth

simply refers to the region within perspective where focus is maintained, defined as the

distance between the closest point to the camera that is in focus and the farthest point in

focus. The following sections look at the topics of focal length and depth, field of view,

and the role of f-stops before turning to the lens shader that mental ray provides for

controlling depth of field.

Focal Depth and Perspective
As described earlier, a camera’s focal length is the distance between the lens and the film,

measured in millimeters. The focal length determines the perspective and focal depth of

the shot. Perspective refers to the perceived distance between subjects in the shot. With a

wide-angle lens, subjects appear unnaturally far from the camera, as well as farther from

each other, and thus wide-angle lenses exaggerate perspective, distorting subjects. Tele-

photo lenses have the opposite effect, bringing subjects closer to the camera as well as to

Field of view

Field of view

Figure 4.5

The camera’s film
back size is one of

the factors that
determine the visi-

ble field of view.

138 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 138

each other, and thus “flatten” perspective. Figure 4.6 demonstrates the influence focal

length has on focal depth using different lenses.

Telephoto lens

Wide-angle lens

Normal lens

Figure 4.6

The effect of a
camera’s focal
length on focal
depth and
perspective

camera lenses ■ 139

08547c04.qxd 10/24/07 4:18 PM Page 139

As you can see, telephoto lenses (top image) are good at rendering with less distortion as

well as less depth of field. Notice how the distance between objects, as well as the overall dis-

tance from the camera to the end of the scene, appears relatively smaller than with the wide-

angle lens (shorter focal length), seen on the bottom. Again, focal depth, or depth of field, is

largely based on the lens type, thus a telephoto lens produces a shallower focal depth, pro-

viding for a smaller region in focus. In contrast, a wide-angle lens has a greater focal depth,

providing for more focus in the shot. Thus the shorter the focal length (wide-angle lens), the

more exaggerated the distance will appear between subjects and the greater the focal depth,

as opposed to telephoto lenses that contract distance and provide less focal depth. The next

section looks at measurements that range from telephoto to wide-angle lenses as well as their

effect on the field of view.

Field of View
Field of view is another component that is significantly influenced by both the film back

size and the focal length. Earlier you learned about the influence of the film back dimen-

sions, and now you can add the lens focal length into this equation. Normal lenses use an

average horizontal width field of view of 20° to 25°. Because the film gate’s horizontal and

vertical scales differ, they dictate a different field of view value along either axis, unless of

course you use a theoretical square film gate. Typically, in the host applications, the field

of view is based on the horizontal axis.

Film back corresponds directly to different film stocks, and the focal length value cor-

relates to lenses such as wide-angle or telephoto lenses, so you may conclude that smaller

film stocks use shorter focal lengths to represent a normal lens; larger film stocks require

longer focal lengths to reproduce the same perspective. For example, 35mm film using a

50mm focal length provides for a normal lens at about 23° of field of view; however, if

you use a 16mm film with the same 50mm lens, then the field of view changes to about

12°, creating the effect of a telephoto lens. Figure 4.7 demonstrates the effect different

focal lengths have on field of view (using the same film back), and as you can see, the

shorter the lens, the wider the viewing angle.

Z O O M I N G A N D D O L L Y I N G

A zoom lens allows you to adjust the focal length by shifting the lens’s distance from the film

within a given range. Hence, when you perform a zoom as opposed to a dolly, you are chang-

ing the camera’s focal length and thus changing several camera characteristics, such as the

depth of field and perspective. So when you need to translate a camera’s position in a CG

scene, you should always dolly (physically move the camera) unless you specifically want to

animate a change in perspective.

140 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 140

Common focal lengths for 35mm, 16mm, and 8mm

cameras are listed in the following table:

L E N S 3 5 M M 1 6 M M 8 M M

Wide-angle 25mm 15mm 9mm

Normal 50mm 25mm 12mm

Telephoto 65mm 45mm 25mm

All three host applications provide means for sim-

ulating the relationship between the focal length and

the field of view. As the camera’s focal length changes,

or the film type (film back or film gate) changes, the

field of view (also referred to as angle of view in some

applications) will automatically adjust to accommo-

date the changed setting. However, notice that if you

increase the focal length, as with a telephoto lens, the

field of view gets narrower but the film back will not

change because the change in focal depth influences

only field of view, the perception of perspective, and

depth of field. Conversely, changing the field of view

will force the application to adjust either the focal length

or the film back to accommodate the new angle, and

typically the change would influence the focal length

but not the film back because the film back is a more

static setting.

Depth of Field and F-Stops
Within the camera lens, the iris simulates a pupil’s iris expanding and contracting based

on sensitivity to light. The iris then controls the aperture’s diameter, controlling the

“pupil’s” size. What the term f-stop really describes is a relationship between the aperture

diameter and the focal length of the lens.

A stop is said to halve the light intensity that can penetrate the lens, “stopping” a por-

tion of light from reaching the film. Typically, f-stop values are provided in increments of

one stop, so that each change doubles or halves the amount of light based on the power

of 2. The aperture’s diameter opening in millimeters can then be derived by dividing the

camera’s focal length by the f-stop value; thus as 50mm lens, using an f-stop value of 11 (f/11),

provides for an aperture opening of 4.5mm. Essentially, higher f-stop values provide a

smaller aperture opening. More-advanced cameras allow you to change the stop incre-

ment by a third, or half stop, rather then a full stop. In CG, because you can basically enter

any value, you have the opportunity to choose any range for the f-stop value.

camera lenses ■ 141

Field of view

Figure 4.7

The effect of focal
length on field of
view when used
with the same
film back

08547c04.qxd 10/24/07 4:18 PM Page 141

With respect to camera phenomena, the f-stop value defines to a great extent the focal

depth of the image. Depth of field is then said to be broader with higher f-stop values and nar-

rower with lower f-stop values; the higher the f-stop value, the smaller the aperture and the

more in focus the image will appear. Common f-stop values start at 2.8 and range upward,

generally between 5.6 and 12 with motion cameras. Figure 4.8 shows two renders of the same

image using different f-stop values. An f-stop value of 2.8 was used for the image on the left,

and more of its apparent depth is blurry; for the image on the right, an f-stop value of 11

was used, providing a smaller diameter and an image with more focal depth.

Exposure Levels
By now it is clear that real cameras enable us to use different methods to control light

exposure, and the shutter speed and shutter angle (discussed earlier) and the aperture f-stop

to regulate it. These settings provide unique methods for tweaking different photographic

phenomena such as motion blur and depth of field. Ideally, you can reach the same specific

exposure level balancing the shutter and f-stop values. With respect to exposure level,

photographers will argue that there can be only one right exposure for each shot. If you

consider that focal depth really refers to the range in focus within a shot (defined by the iris)

and motion blur obviously refers to the amount of blurriness motion objects have (defined

by the shutter), both shutter and aperture provide for controlling very different photo-

graphic phenomena. As each of these mechanisms regulates light, they can be balanced so

that one phenomenon is more (or less) pronounced than the other. You can then conclude

that while simulating a real camera, if there’s fast motion (a horse running) and the shot

has very little motion blur, you would also expect to see very short focal length because the

iris would be larger to provide more light, compensating for the small shutter angle (or

fast shutter speed).

The iris also defines the light contrast ratio that can be acquired during the exposure

time, a topic discussed in more detail in Chapter 9, “The Fundamentals of Light and

Shading Models” as it directly relates to HDR imaging and lighting characteristics. Ideally,

you balance the shutter settings with the iris to reach the perfect exposure level for a shot.

Figure 4.8

The effect of chang-
ing the f-stop value

on the focal depth in
a frame: (left) f/2.8;

(right) f/11

142 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 142

In the following sections, we will look at controlling these settings with mental ray and

within host applications.

mental ray Depth of Field Lens Shader
mental ray ships with a physical lens shader that accurately mimics depth of field. The

shader, seen as a lens shader (camera shaders are discussed in Chapter 3, “mental ray

Output”) under the camera’s declaration block, is relatively simple:

camera “myCam”

…

lens “physical_lens_dof” (

“plane” -10.0,

“radius” 0.1,

)

end camera

The shader takes in two parameters, plane and radius. The plane option defines the dis-

tance from the camera in camera space. Cameras always look down their negative Z axis,

so if an object appears 10 units away from the camera in a direct line of sight, you would

enter -10 for the plane value. The radius value defines the amount of focal depth that will

be visible. In essence, radius defines the diameter for the aperture’s opening—the lower

the value, the smaller the aperture—and thus we can say that lower values are equivalent

to higher f-stops, both providing small apertures. Good values range from 0.1 to 1. All

three host applications provide similar settings, as well as more custom-made settings that

drive this shader in a logical manner. For example, within host applications, you can also

define the aperture by specifying f-stop values rather than using a radius value.

When the physical lens shader is used with any host application, depth of field will always

account for the relationship between focal length and the aperture f-stop, as discussed. So if

you specify an f-stop and then change the focal length, this consequently will affect the visible

focal depth during rendering; hence, lens shaders achieve realism. This holds true whether

you are using the host’s depth of field settings or mental ray’s physical shader specifically (see

the host-specific tutorial later in this chapter for examples on using depth of field).

On cameras, if you increase the f-stop by one stop and decrease the shutter speed by one

step, you are said to achieve the same exposure level. However, the difference will be in the

photographic phenomena that are emphasized, and thus balancing these two can produce

the same exposure level but provide different photographic characteristics. For fast motion,

photographers prefer using faster shutter speeds and thus fast motion usually has less depth

of field and less motion blur because a larger iris diameter compensates for the faster expo-

sure time. Such characteristics should be considered when attempting realistic camera simu-

lation with CG.

camera lenses ■ 143

08547c04.qxd 10/24/07 4:18 PM Page 143

Rendering Depth of Field

As discussed in Chapter 3, lens shaders (including mental ray’s depth of field shader)

require raytracing, so even if you disable raytracing when using (most) lens shaders, they

will re-enable raytracing. For example, the following excerpt from a Maya render shows

the mental ray output messages at render time.

SCEN 0.2 progr: begin scene preprocessing for frame 1

PHEN 0.2 info : shader “maya_dof” sets scanline off

PHEN 0.2 info : shader “maya_dof” sets trace on

Before this render was submitted, raytracing was disabled, and as you can see, mental

ray automatically enabled raytracing and disabled scanline rendering because each pri-

mary ray is required to be a raytrace ray and so scanline rendering is insignificant, as

discussed in Chapter 2. This behavior occurs with each host application because it is a

mental ray characteristic and not host specific.

The Price of Power

Depth of field is a very powerful and very expensive raytrace shader that requires taking

more samples for visually pleasing results (samples are discussed in Chapter 5, “Quality

Control”), and thus you will find that you may use high-quality settings and experience

very slow render times. The reason higher samples are required will become clearer as

you examine light paths, particularly with glossy shaders and environment sampling.

This hit in render performance is one of the reasons we may prefer using a 2D post-

process depth of field shader. Alternatively, we can export the Z depth pass and use a

depth of field (Z blur) effect within a composting package; this provides a visually inter-

active method for tweaking depth of field, but with less accuracy. Don’t forget that in

most cases, you’re looking for a visually pleasing, time-sensitive result, not exact optical

simulation.

Host Application Settings
Now we are ready to look at the host applications’ camera settings for aperture, film back,

film gate, lenses, and depth of field.

As you saw in the previous chapter, mental ray uses a few simple lines to describe the

camera’s render options. Each host application provides several options for controlling

camera settings based on its own approach to camera render options and then behind the

scenes uses the translator to convert these settings to render settings. Regardless of the

application, the result is the same because the renderer (not the host application) defines

the render abilities. In the case of cameras and render settings, all three host applications

offer a multitude of options for tweaking these related settings. Note that as mental ray

simplifies these settings, the host applications have customized theirs to provide you with

more-intuitive settings. Let’s get started.

144 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 144

Film Aspect Ratios
When film aspect ratios are delivered on SD (4:3 TV, standard definition), the film is

adjusted to fit the screen by matching either the horizontal or the vertical axis with the

display’s equivalent axis. Typically, film is shrunk into the screen by matching the hori-

zontal axis. This approach, also known as letterboxing, results in black bars on the top and

bottom of the TV screen, as illustrated in Figure 4.9. It’s used because we do not want to

distort the image by forcing the film to conform to video standards, so we normally prefer

a smaller but undistorted image, as seen with common wide-screen DVDs when viewed

on 4:3 standard TV sets. Figure 4.9 also shows the cropping used to maintain the vertical

axis on a 4:3 TV screen and the pillar boxing used to display a 1.77:1 HD format on a

1.85:1 wide-screen film screen, theatrical display.

As seen in Figure 4.9, an alternative to letterboxing would be enlarging and cropping the

image along the vertical lines. Obviously this is less attractive because portions of the film

are cropped out of view. Typically this sort of alignment can be found with non-wide-screen

DVDs that have been adjusted for TV display. Personally, it’s the reason I prefer getting

wide-screen DVDs; although the image is smaller, I get the entire picture rather then a

cropped-down version. I’m surprised film producers haven’t outlawed this sort of crime.

Image aspect ratios

Letterboxing

Pillar boxing

Cropping

TV (4:3) 1.33

HD (16:9) 1.77

HD

HD

TV

Film 1.85
HD 1.77

Figure 4.9

Image aspect ratios

Letterboxing is getting more common as displays get bigger, but when viewing on a small

screen, there’s a big trade-off for maintaining the true aspect ratio with wide-screen films. Try

watching Lawrence of Arabia on a 20-inch TV.

host application settings ■ 145

08547c04.qxd 10/24/07 4:18 PM Page 145

When converting HD to 35mm 1.85 projection, a common practice nowadays, the

HD’s vertical axis is matched with the film’s vertical axis, and the horizontal is then cen-

tered and slightly smaller than the film’s scale. This makes HD a possible format for film

because HD’s and film’s aspect ratios are relatively similar; HD uses a 1.77:1 aspect ratio

compared to a 1.85:1 aspect ratio with film. Both formats also use 24fps, and HD supports

progressive formats, which are non-interlaced images, so each frame is a high-resolution

still image, as with film. Once HD has been matched along the vertical axis, there are black

bars along the side of the image, making up for the smaller horizontal length. This format

is known as pillar boxed, as seen in Figure 4.9.

Maya
With Maya, the camera settings provide several controls for fine-tuning the camera. Let’s

take a quick look at some of the relevant settings, shown in Figure 4.10. To access these

settings, select the camera and look at its shape node in the Attribute Editor window.

Camera Attributes

The Camera Attributes rollout provides general settings for the camera’s field of view

as well as the render clipping planes. The Angle of View attribute directly correlates to

the camera’s field of view. The Focal Length attribute dictates the size of the camera’s

lenses. Notice that when you change one of these settings, the other automatically con-

forms to the new setting, as discussed earlier in this chapter in the section “Camera Lenses.”

Because the field of view is based on the camera’s focal length and the film back size

(Maya’s Camera Aperture attribute), if you change the Angle of View attribute, either the

Focal Length or the Camera Aperture size will need to conform, and in this case Maya

automatically adjusts the Focal Length attribute, maintaining the camera’s aperture size.

Figure 4.10

Maya’s camera set-
tings enable us to

control the three pri-
mary camera charac-

teristics: aperture,
film aspect ratio,

and film gate.

146 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 146

The Auto Render Clip Plane option should in most cases be disabled; it is better to con-

trol the clipping planes yourself during scanline rendering than to allow Maya to automat-

ically dictate a different range for each consecutive frame. When Auto Render Clip Plane

is disabled, the Near and Far Clip Plane attributes below it define the camera’s visible

range, a topic further discussed in the section “mental ray Cameras, Depth Sorting” in

Chapter 3.

The Maya Film Back

The Film Back rollout provides essential settings that dictate the camera’s film characteris-

tics. Notice that there is no specific film back setting; rather, the film back size is derived

from the Film Gate attribute and the Camera Aperture attributes. If you look at the Film

Gate drop-down menu, you can see that there are several presets for cameras. If you need

HD, however, you would have to create custom settings because these presets cover a

small range of cameras. If you select the 35mm 1.85 Projection preset, notice how Camera

Aperture, Film Aspect Ratio, Angle of View, and Focal Length all update to represent that

camera type and lens. Essentially, the Camera Aperture scale dictates the film size, so if

you increase these values proportionally (X and Y axes seen with the two numerical

inputs next to the Camera Aperture attribute), you will maintain the Film Aspect Ratio

(also referred to as film aperture in the discussions earlier) and the same Focal Length

value; however, the Angle of View value will change, as discussed earlier. Clearly the field

of view is dependent on the camera lens focal length and the film back. To quickly exam-

ine the relationship between different camera components with Maya, you can try the

following:

1. Set Camera Aperture to 0.5 and 0.4 and Focal Length to 50.

2. Note that as you defined the film gate’s X, Y relationship using the Camera Aperture

setting, the Film Aspect Ratio setting updates to represent that ratio automatically (1.25).

3. Note that the angle of view should now be equal to 14.48°.

4. Change Camera Aperture to 1 and 0.8.

5. Notice how the field of view in the camera view has changed. The new Angle of View

value is set to 28.50°.

6. The change in Camera Aperture scale has changed the cameras lens type from a tele-

photo lens to a normal lens by scaling up the field of view. As the film back size grows,

so will the field of view for a given lens (unchanged Focal Length). This topic is fur-

ther discussed in the section “Camera Lenses” earlier in this chapter.

Try individually changing each of the camera attributes discussed in this section while exam-

ining their affect on other attributes.

host application settings ■ 147

08547c04.qxd 10/24/07 4:18 PM Page 147

The Lens Squeeze Ratio attribute is used to simulate anamorphic cameras by “squeezing”

twice as much data within the film’s horizontal axis, which is then “unsqueezed” during

projection, providing an expanded wide-screen image. Notice that if you select the 35mm

Anamorphic Film Gate preset, the Lens Squeeze Ratio value changes to 2. Also, you can

see from under the Film Gate drop-down list that a 35mm film back can have different

film gates and image aspect ratios, as discussed earlier in the chapter.

Display Options: Matching Resolutions

Maya provides a few ways of displaying the film and render resolutions in your view, as

well as the relationship between them. Because the camera and render settings are in fact

separate from each other, the ideal is to match them so that the render provides a correct

image. You enable these displays via the view’s drop-

down list, as you probably already know. Figure 4.11

shows another method: the Display Options settings

available in a camera’s Attribute Editor window (scroll

down to see them). Use these options to see if your

render settings and camera settings align properly.

Let’s use a small tutorial to learn more about film and render aspect ratios.

1. Select from the camera Film Gate drop-down list the 35mm 1.85 Projection setting, as

shown in Figure 4.10. Also, create a plane and a couple of basic primitives for refer-

ence in the scene.

2. Set the preset render setting Image Size ➔ CCIR 601/Quantel NTSC, which can be

found in the Render Settings window under the Common tab.

3. In the camera’s Display Options rollout, enable the Display Film Gate and Display

Resolution attributes (seen enabled in Figure 4.11), and look in your view (you

should maximize the camera view).

4. Change the Overscan attribute to 2.000, and notice how both film gates shrink in the

view. The Overscan attribute does not affect any camera characteristics; it just enables

you to view film gates that might be hard to see, essentially expanding the view but

maintaining the camera’s proportions to the scene. Notice how the film gate appears

as a dotted white line, which, not surprisingly, does not match the resolution gate

(solid white line) image aspect ratio.

5. Under the camera Film Back attributes, shown in Figure 4.10, you may use the Fit

Resolution Gate drop-down list to control how the film gate is scaled (enlarged or

shrunk) with respect to the resolution gate, as an attempt to match resolutions with-

out distorting the film aspect ratio. Select the Horizontal option (which should be the

default).

148 ■ chapter 4: Camera Fundamentals

Figure 4.11

Maya’s camera Dis-
play Options rollout
provides options for
comparing how the
render and camera

settings align.

This produces letterboxing (discussed earlier) as the horizontal (X) axes of both the

resolution gate and the film gate are matched. Thus, they have the same horizontal length

and their aspect ratios are maintained, but their vertical axes differ.

6. Now try selecting Fit Resolution Gate ➔ Vertical to match the vertical axis (Y) for the

film and resolution gates. Notice how the film gate now extends outward, along the

horizontal axis, passing the resolution gate’s border lines (also discussed earlier),

resulting in the film’s sides being cropped to match the resolution gate.

Device and Pixel Aspect Ratios

As discussed earlier, digital video (D1) pixel aspect ratios are non-square. To derive a cor-

rected aspect ratio for non-square pixels, the film aspect ratio is multiplied by the pixel

aspect ratio.

With Maya, you can find the Film Aspect Ratio attribute under the camera Film Back

attributes, as seen earlier in Figure 4.10, and the Pixel Aspect Ratio attribute under the

Image Size rollout in the Render Settings window, shown in Figure 4.12.

The Device Aspect Ratio attribute is used to represent the corrected aspect ratio. Thus,

mental ray is interested in this attribute only when rendering. The device aspect ratio is

automatically calculated based on the pixel aspect ratio and the render resolution Width

and Height values aspect ratio. To clarify, let’s use a simple test:

1. Set the Presets attribute drop-down list to CCIR 601/Quantel NTSC.

2. Set Pixel Aspect Ratio to 1.

Notice how the Device Aspect Ratio value has change to 1.48, which is the correct ratio

for 720/486, as discussed earlier in the section “Pixel Aspect Ratio.”

Note that when you’re using square pixels, the Device Aspect Ratio attribute should

match the camera’s Film Aspect Ratio attribute, in which case both render and camera

aspect ratios will match. This is the ideal method for matching camera settings with render

settings. For example, if you select the 35mm 1.85 Projection preset for the camera (as we

did earlier) and for render settings select the HD 1080 preset, you will see that the gates

almost match perfectly. To get a perfect match, under the camera

settings change the Film Aspect Ratio attribute to match the HD

Device Aspect Ratio that represents an HD image’s aspect ratio of

1.777. The moment both aspect ratio attributes are matched, you see

a perfect overlap in the view for the resolution and film gates (pro-

vided the Pixel Aspect Ratio attribute is set to 1.0). Thus, the only time

you should not enter the same value for the Film Aspect Ratio as the

Device Aspect Ratio attributes is when pixels are non-square. In that

host application settings ■ 149

Figure 4.12

Maya Render Set-
tings window for
specifying the image
aspect ratio and res-
olution settings

08547c04.qxd 10/24/07 4:18 PM Page 149

case, you need the Width and Height settings (as shown in Figure 4.12) to represent the

same camera ratio, and then the Device Aspect Ratio value will be derived by multiplying

this ratio by the Pixel Aspect Ratio value.

Because the camera will always use square pixels, you can’t get a perfect overlap for the

same aperture size (film gate) and render resolution settings, due to non-square pixels.

Thus, with NTSC or PAL formats, the camera gate should be set to match as close as

possible, for example a Film Aspect Ratio of 1.48, and then the resolution (1.33 with D1

video) gate should be used as a visual reference for the render region. Essentially, this

allows you to mimic more accurately a DV camera with proper perspective, accounting

for non-square pixels during the render.

Depth of Field

Maya, unlike XSI, doesn’t have any postprocess 2D depth of field effects because it doesn’t

ship with any 2D output shaders, so you can only use the physically correct (but more

time-consuming) raytrace lens shaders. In the Hypershade window under Create mental

ray Nodes under the Lenses rollout, you will find the physical_lens_dof shader. This

shader can be connected as a camera’s lens shader in the camera’s Attribute Editor under

the mental ray rollout ➔ Lens Shaders input attribute, as seen in Chapter 3 (in the section

“Output, Volume, Environment, and Lens Shaders”). This is mental ray’s depth of field

shader, with the characteristics and settings discussed earlier.

Alternately, Maya’s custom depth of field shader, which is based on the same lens shader,

provides a nicer approach to controlling depth of field. Navigate through the camera’s

Attribute Editor to the Depth of Field rollout, shown in Figure 4.13. Maya’s Depth of

Field attributes reflect real camera settings rather

than the erroneous values used to define the

aperture opening, as with mental ray’s Radius

option.

The Depth of Field check box enables a custom mental ray lens shader. When Maya

renders, it attaches a Maya mental ray custom shader as a lens shader under the camera’s

statement block using the following declaration:

camera “perspShape”

…

lens “maya_dof” (

“focusDistance” 14.3246,

“fStop” 5.6,

“focusRegionScale” 1.,

“lensSamples” 4

)

end camera

150 ■ chapter 4: Camera Fundamentals

Figure 4.13

Maya Depth of Field
camera settings

08547c04.qxd 10/24/07 4:18 PM Page 150

Notice how Maya’s depth of field attributes appear as options under this custom lens

shader within the camera’s declaration block. If you are using the stand-alone renderer,

you could also try improving render quality by increasing the Lens Samples option value

within the .mi file.

D E P T H O F F I E L D S E T T I N G S

In the Attribute Editor, the Focus Distance attribute simply represents the focus point in

the scene, and thus the point with the sharpest focus, known as the focus plane. The F Stop

attribute relates to realistic f-stop values, so you typically would try using a range from

2.8 to 11 as discussed earlier in the section “Depth of Field and F-Stops.” The Focus Region

Scale attribute simply enables you to visually scale the “circle of confusion,” increasing the

area within focus by a more “creative” means.

To determine the focus distance, you should either select an object in the center of the

desired focus region or place a locator at that position. With the object selected, enable

the Heads Up Display ➔ Object Details attribute from under the top menu bar Display

menu item, which reveals a collection of settings info in the viewport window, including

Distance from Camera.

The Distance from Camera value is the value you need, so by selecting the object at the

focus point, you can easily retrieve the distance value from the viewport. Make a note of it

and then enter it manually for the Focus Distance attribute under the camera’s Depth of

Field rollout.

C R E A T I N G A C O N T R O L F O R A N I M A T I N G T H E F O C U S D I S T A N C E

With animation, you may prefer to use a locator to determine the focus distance automat-

ically instead of constantly copying values into the Focus Distance attribute. That is, it

may make more sense to visually place a locator in the scene, or even animate it, and then

have the Focus Distance value automatically update, opening the door to some nice “in

and out” of focus animation.

Let’s look at some simple steps to achieve this sort of control. You can refer to the

scene Maya_Animated_DOF.mb in the Chapter 4 Maya folder on the CD as a reference.

1. Create a new scene and place some primitives and a floor plane within it.

2. Create a distance-measuring tool by choosing Create ➔ Measure Tools ➔ Distance

Tool, and then click twice within the scene to place the two locators that are used as

both ends of the measured distance. The two locators and a distanceDimensions

node appear in the Outliner window.

3. Select locator1 and parent it under the camera; then zero out its Translate X, Y, and Z

transforms in the channel box so that it is centered in the camera.

host application settings ■ 151

08547c04.qxd 10/24/07 4:18 PM Page 151

4. With the second locator (locator2) you have two options: parent it under an ani-

mated object so that it follows it during the animation, or manually place (or ani-

mate) it at the desired focus plane in the scene.

5. You now want to connect the Distance attribute from the distanceDimensions node

to the camera’s Focus Distance attribute. You can easily access the Distance attribute

through the Connection Editor window, or use a bit of MEL (Maya Embedded Lan-

guage) to drive these connections.

6. Enter the following code into the script editor all on one line, then highlight it and

press Ctrl+Enter to execute the command. Before doing so, consider the following

points:

• This is the Connect Attribute command, equivalent to using the Connection

Editor, and you can read about it under the Help ➔ MEL Command Reference.

• The attribute names need to match the names in your scene, so the distanceDi-

mensionShape1 should match the name in the scene, as should the camera name

match your camera. If you’re using the perspective camera (not likely, and not

recommended), then just make sure to reparent the locator under the camera

when you reload the scene, as that hierarchy will typically disconnect.

• When the attribute names are correct, you can execute the script (note a space is

required between the locator and camera names in the script).

connectAttr -f distanceDimensionShape1.distance

cameraShape1.focusDistance;

At this point, you should be able to verify that as you move locator2 in the scene, you can

see the Focus Distance under the cameras attributes update. Note that you can open the

Attribute Editor and disable the option under List (Attribute Editor top menu) ➔ Auto Load

Selected Attributes so that the Attribute Editor remains focused on the camera attributes

as you translate the locator in the scene without the Attribute Editor switching back to the

locator attributes. Further, you can run some render tests to verify that as you move it

around, different areas in the scene fall into focus, as with the provided scene file.

XSI
With XSI, camera settings provide several controls for fine-tuning the camera. Let’s

examine some settings relevant to our earlier discussions. You can navigate to these

settings by selecting the camera in the Explorer window and pressing Enter on the key-

board. Alternatively, because with XSI each pass is associated with a camera, you can

open the camera settings through the current pass by choosing Edit ➔ Edit Current Pass

from under the menu bar Render menu, and then press the Pass Camera ➔ Inspect button,

revealing the Camera property window. Look under the Camera rollout ➔ Primitive tab,

shown in Figure 4.14.

152 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 152

The Primitive Properties Tab

The Primitive tab provides general settings for the camera’s field of view

as well as the film format. The Field of View ➔ Angle option directly cor-

relates to the camera’s field of view. The Horizontal option below it dic-

tates whether the Angle value represents the vertical or horizontal field

of view. Typically, field of view refers to the horizontal axis.

The Format ➔ Standard option provides several presets for cameras.

If you select the NTSC D1 4/3 720x486 preset, notice how the Pict. Ratio

and the Pixel Ratio options automatically update to represent the correct

settings for non-square pixels and image aspect ratios. With XSI, the Pict.

Ratio option represents the corrected aspect ratio, correcting for non-

square pixel aspect ratios when need be. The Pixel Ratio attribute below it

has no significant effect on the renderer and is not used to derive pixel

aspect ratio information for correcting the picture aspect ratio. Instead,

it’s used only for rotoscoping. Thus, if you had imported a rotoscope

footage sequence that has non-square pixels, this Pixel Ratio option would

need to be set to match the imported footage’s pixel aspect ratio in order

for you to match 3D with live action correctly.

The Projection Plane Properties Tab

Before we can examine the influences of camera focal lengths and film backs with XSI, you

need to become familiar with an additional window. Figure 4.15 shows the Projection

Plane tab in the Camera properties window.

The Focal Length option dictates the camera’s lens size. Notice that

after enabling the Enable check box, you can manually adjust the aper-

ture size from under the Film Aperture X and Y options. The Film

Aperture options refer to the film gate’s X, Y scales, and film back size, as

discussed earlier in the chapter.

Because the field of view is based on the camera’s focal length and the

film back size, if you change either the Focal Length value or the Film

Aperture X and Y options, the field of view will need to conform. When

you change the Focal Length setting, the Field of View Angle option

(on the Primitive tab) automatically updates, conforming to the lens’s

new focal length. Conversely, if you change the Angle option (Field

Notice that the camera’s clipping planes for both the near and far distances can be set at the

lower portion of this tab, as seen in Figure 4.14. This correlates to the discussion on depth

sorting in the section “mental ray Cameras” under “Depth Sorting” in Chapter 3. You can either

set it manually or use one of the three auto-evaluation buttons on the right.

host application settings ■ 153

Figure 4.14

XSI camera settings
enable you to
control the three
primary camera
characteristics: aper-
ture, image aspect
ratio, and film gate.

Figure 4.15

The XSI Camera settings Projection Plane
tab, where you can further customize cam-
era characteristics such as the aperture and
focal length

08547c04.qxd 10/24/07 4:18 PM Page 153

A P P L Y I N G T H E O U T P U T S H A D E R

With XSI can you can choose to use the mental ray 2D output shader. To select the out-

put shader, navigate through the Render menu, Edit ➔ Edit Current Pass, and then select

the Pass Shaders tab in the properties window. Under Output, select the Add property

and load the 2D_depth_of_field shader. Once it’s loaded, select the shader in the shader

stack and click Inspect to load its properties, shown in Figure 4.19.

The 2D_depth_of_field will render the depth

of field using the Z depth frame buffer to deter-

mine scene depth. As this is an output shader, the

settings are all defined within this tab and not

derived from the camera’s aperture, focal length,

and f-stop (as they are with the lens shader, dis-

cussed later). You can use the Flength attribute to

define a focal length, Naperture to specify an f-stop aperture (as discussed earlier), and

Fpoint to select the focus plane within the image. For the focus plane, you should use the

value you derived for distance from camera, as described earlier. The rest of the settings

are creative tools to fine-tune the effect. Both Scale and Max are used to exaggerate or tone

down the effect by controlling the circle of confusion, which refers to the areas outside the

focal depth region, meaning the areas that gradually go out of focus. As with f-stops, a higher

value in this case will produce more blur, and lower values will maintain more focus.

Note that the first three settings are meant to specify the camera’s characteristics, as we

discussed in the sections earlier, so that the effect

mimics a realistic camera. Even so, when you’re

rendering 2D depth of field, the result will not be

as accurate as it would be if you used the lens

shader, discussed later, but may prove to be a

very fast compromise that looks just as good.

T H E L E N S S H A D E R

From the Explorer window, reveal the camera

and navigate to the Lens Shader properties tab

(discussed in Chapter 3). Select Add to reveal the

available lens shaders, and add the Depth_of_field

shader. Once it’s loaded, select the Depth_of_field

shader in the shader stack and click Inspect to

reveal the properties seen in Figure 4.20.

Switch to Bounding Box display to clearly see the distance value; it can become hard to see

through surrounding geometry.

host application settings ■ 157

Figure 4.19

XSI depth of field
2D output shader
properties

Figure 4.20

XSI Depth_of_field
lens shader settings
provide various
ways for controlling
the depth of field.

08547c04.qxd 10/24/07 4:18 PM Page 157

XSI provides three approaches to specifying the depth of field for the physically accu-

rate depth of field shader. Located in the Depth of Field Mode drop-down menu, they are

the automatic, custom, and lens modes.

Automatic Mode This mode utilizes the same options as with mental ray’s physical shader.

The Depth of Field Strength option refers to the mental ray radius option; good values

range from 0 to 1. The Focal Distance in Inches option refers to the plane option, determin-

ing the distance from the camera to the and the surface in most focus.

Custom Mode The custom mode is a more visual way to control depth of field. You spec-

ify the near and far ranges for the focal plane using the Near and Far Focus in Inches

options. The Circle of Confusion in Inches setting defines the falloff region where objects

fall out of focus; higher values will increase the region and produce more blur.

Lens Mode Lens mode is my preferred mode. In lens mode, you specify these attributes

based on your understanding of camera characteristics. The Focal Distance is the distance

to the focal plane. As with the other options, this value should be derived based on the dis-

tance from the surface to the camera. You can use the Focal Length value to override the

focal length you specified for the camera. To avoid doing that, consider copying your

camera’s Focal Length value (under the Projection Plane tab) to this option. Circle of

Confusion, as with the other settings, is used to specify the scale of the region in focus, so

you can creatively scale the intensity of the effect. With XSI you can creatively scale the

depth of field effect interactively while viewing the render region update—again, one of

XSI’s best features.

A N I M A T I N G D E P T H O F F I E L D

With XSI, you can attach the Focal Distance in Inches option to any object in the scene so

that, as the object moves, the focal distance updates, enabling you to easily animate in and

out of focus effects. Once you have the lens shader inspection window open and you can

see the Focal Distance in Inches option, you can use the following steps to apply this con-

nection. (you may examine the scene XSI_DOF from the Chapter 4 XSI folder in the com-

panion CD).

1. Right-click over the animation icon to the left of the option, and select Set Expression.

2. In the Expression Editor, remove the value that appears in the editing pane (the bottom-

half input area). Then from the command bar menu, select Function ➔ Distance ➔ To

If you load the lens shader’s Property Editor window and lock the settings, you can then select

the sphere in the scene to compare the distance value in the viewport with the one applied

with the Focal Distance in Inches option. If you tumble the view, you will notice that the value

doesn’t automatically update in the Property Editor window. In order for this value to update,

you must change the time (move the time slider to a different frame), which refreshes that

distance value.

158 ■ chapter 4: Camera Fundamentals

08547c04.qxd 10/24/07 4:18 PM Page 158

Camera, which loads the following script into the editing pane (you can also type it in

directly):

ctr_dist_cam(<elem1>)

Replace the <elem1> placeholder code with the name of

the object you want to use as a target distance. In this case

I used sphere8, as shown in Figure 4.21. (Note that you

must either enter the name of the object postfixed with a

period as in the figure, or select the object from the com-

mand bar Object menu button.)

3ds Max
With 3ds Max, the camera settings provide little control over fine-tuning the camera sepa-

rate from using the render settings, and in fact the camera doesn’t have any explicit film

gate or film back settings. Settings such as the film aperture are derived from the render

settings, and thus render settings automatically “update” the camera. With 3ds Max, you

still have all the abilities to specify particular cameras, but using a narrower approach than

with Maya or XSI.

Let’s take a quick look at the relationship between the render settings and the camera

settings. Figure 4.22 shows the settings in the Modify tab for a selected camera (you must

first create a camera).

Parameters

Let’s look at the top section under Parameters, where you see the main camera lens settings.

The camera’s characteristics divide into two equally important factors: the film back and

shutter (hence the camera body), and the lens and iris. With 3ds Max, these camera settings

are then used to control the lens, providing general settings for specifying the camera’s

field of view and focal length as well as render clipping planes. The Stock Lenses options

provide a few common lens focal lengths that you can choose from. When you select one,

it updates the Lens field to display that lens’s focal length and updates the FOV value to

represent the new field of view.

With respect to the Clipping Planes options, you should always verify that these settings

are optimized when using scanline rendering. Notice that by default Clip Manually is

enabled. If you disable Clip Manually, you’ll see in your scene the influence of Near and Far

Clip, and you can adjust those settings visually until both settings are optimized, as discussed

in Chapter 3 under “mental ray Cameras” in the “Depth Sorting” section. It is always better

to manually set these ranges than to allow the host application to automate them.

The FOV option directly corresponds to the camera’s field of view, and the Lens option

dictates the camera’s focal length. Notice that when you change one of these settings, the

other automatically updates, conforming to the new setting. Because the field of view is

based on the camera’s focal length and the film back size, if you change the FOV option,

host application settings ■ 159

Figure 4.22

3ds Max camera set-
tings enable you to
control the camera
lens focal length.

Figure 4.21

XSI’s Expression
Editor window
allows you to apply
custom connections;
in this case, it is used
for animating depth
of field.

08547c04.qxd 10/24/07 4:18 PM Page 159

either the Lens setting or the camera’s aperture size (within the render settings) will need

to conform. In this case, 3ds Max automatically adjusts the Lens option, maintaining the

camera’s aperture size. Conversely, if you change the Lens setting, the FOV will also update,

conforming to the new value. Thus with 3ds Max, you

can see that the camera settings are really lens controls,

and the relationship between these settings and the

camera film type is then specified under the render set-

tings, as shown in Figure 4.23.

Render Settings (Output Size)

In the render settings under the Common tab, you can find the Output Size options that

specify the aperture. In Figure 4.23, I have selected Custom as an output option, which will

be discussed shortly. You can select common presets such as the 35mm 1.85:1 (cine) preset

camera from the Output Size drop-down list. Also notice that the Image Aspect ratio and

Pixel Aspect ratio are provided. If you choose the NTSC D-1 (video) preset, you will see

the Pixel Aspect ratio update to 0.9 and the Image Aspect ratio update to 1.333. The Width

and Height settings then provide you with further control over the aspect ratio you want

for rendering and thus can be used to specify the aperture size. The following steps show

more about the powerful relationship between these render settings and your camera.

1. Create a new scene with a plane and some primitive geometry for reference, as well as

a new camera. Set the viewport so the camera’s view is visible, and keep the camera

selected and its Parameter options visible in the Modify tab. Right click over the

Camera name in the viewport and enable the Show Safe Frame parameter.

2. Open the render settings so you can adjust settings there, and view the influence on

the camera.

3. Select the 35mm 1.85:1 (cine) preset camera. Notice that under the camera settings,

only the Lens value updates. For example, change the camera preset to the NTSC for-

mat and you will see that the Lens value changes. Then, when you change it back, it

will update again.

When you change the camera type through the render settings, the lens updates to

maintain the same field of view. With 3ds Max the field of view is prioritized so that if

you change render settings, you still maintain the same FOV value. However, the Lens

value must change to provide the same FOV value when a different film back is used.

Thus, as the Aperture Width value displayed in the render settings window changes, the

lens also changes to accommodate that change. In this way, 3ds Max respects all the camera

You can enable the Lock Selection icon on the bottom of the max screen to keep the camera

selected.

160 ■ chapter 4: Camera Fundamentals

Figure 4.23

3ds Max render set-
tings control the

camera’s film aper-
ture size.

08547c04.qxd 10/24/07 4:18 PM Page 160

fundamentals we discussed earlier under “Field of View”. And when using depth of field,

or any other lens shader, these camera render characteristics affect the result.

4. Select the Custom preset as seen in Figure 4.23. Notice that with Custom selected, all

the grayed-out options are now available. Essentially, enabling you to control the film

back, focal length, and field of view for the rendered camera.

5. Either set the Image Aspect ratio to 1.77 or change the Width to 1280 and Height to

720 to specify a common HD format. Notice how when you specify one of these set-

tings, the other updates. Pixel Aspect should be set to 1.0.

6. Set Aperture Width to 25 and look at the camera settings. As you can see, the FOV is

set to 50°, which provides for a wide-angle lens using a 26mm focal length.

7. Set Aperture Width to 35 (the FOV is maintained) and set Lens to 26mm, matching

the previous lens. Notice how the FOV has now grown to 67°, confirming the relation-

ship we discussed earlier between the film back size (Aperture Width), focal length,

and field of view.

8. You can use the drop-down options to the right of FOV to select whether the FOV

output value represents a horizontal, vertical, or diagonal field of view. This has no

effect on the camera, just the value you wish to view, and as noted, usually these

terms refer to horizontal fields of view.

Depth of Field

3ds Max has several options for depth of field, not all of them meant to be used with men-

tal ray. There are only two relevant options that work well with mental ray. These options

are lens shaders that render depth of field. Let’s quickly take a look at their settings.

C A M E R A D E P T H O F F I E L D

In Figure 4.22 (camera settings), notice the Multi-Pass Effect area. When Enable is

checked, you can select the Depth of Field (mental ray) option from the drop-down list.

Once this is selected, the Depth of Field Parameters area reveals the mental ray relevant

settings, in this case only an F-Stop value for the camera. As you know, you must also set

the camera focus so that it knows where the focus plane is. This is set with the Target

There is an additional postprocess 2D depth of field that you can select from the Effects win-

dow, but I will not discuss it here because it applies its effect on a premultiplied image, resulting

in black outlines, so it is not really useful to us.

Note that these render settings determine the aperture for all cameras in the scene, so you

may think of render settings as the camera’s body and any cameras within the scene as addi-

tional lenses.

host application settings ■ 161

08547c04.qxd 10/24/07 4:18 PM Page 161

Distance option (below the Multi-Pass Effect drop-down list) and should be set as the dis-

tance from the camera to the center of the focal depth.

With 3ds Max, it is easy to control depth of field animation such as in-out focus

effects by animating the camera target. The Target Distance value is then derived from

the camera’s target so that translating or animating it in the scene enables you to visually

set the focus point in the scene. Note that you could also easily parent the camera target to

another animated object so that the focus plane will always be determined by that parent

surface.

P E R S P E C T I V E D E P T H O F F I E L D

Figure 4.24 shows the render settings Depth of Field (Perspective Views Only) area, which

can be found within the Renderer tab ➔ Camera Effects rollout under the Render Scene

window.

These settings are used to control depth of field when

the default perspective view is used for rendering, and

thus have no effect on other cameras in the scene. Once

Enable is checked, you can select two options for setting

depth of field from within the drop-down menu. The F-Stop option then provides two

settings, F-Stop and Focus Plane, which are exactly the same as the F-Stop and Target

Distance settings for camera depth of field.

For the perspective camera, you can also select In Focus Limits, which provides an

alternative option for specifying depth of field. This option simply enables you to manu-

ally set the focal depth circle of confusion, the area that falls out of focus, by specifying a

Near and Far (gradually decreasing) range. The focus plane can be specified using the

Focus Plane option, defining the center of focus.

As mentioned, 3ds Max provides several abilities for re-creating cameras and camera

effects. All these settings are then rendered with mental ray, so it is irrelevant how an

application determines the settings. Eventually they all go to the same renderer, which

will then render physically correct camera characteristics.

You can always convert a free camera into a target camera from under the camera’s Type

drop-down menu, then select the target and translate it.

162 ■ chapter 4: Camera Fundamentals

Figure 4.24

3ds Max Perspective
Depth of Field

display

08547c04.qxd 10/24/07 4:18 PM Page 162

Quality Control

When you are ready to start rendering final images, you will be challenged

with optimizing settings that control various aspects of image quality in light of the time

constraints you face. These settings include anti-aliasing, raytracing, geometry tessellation,

and advanced features. You’ll need to achieve acceptable render times while still properly

handling raytrace acceleration, flicker reduction, and problems like banding and moiré

patterns.

This chapter focuses on some of the more powerful render settings, which control how

colors are evaluated and how raytracing is optimized. Later chapters cover settings that

contribute to resolving other problems and in the context of specific topics. For example,

Chapter 13, “Final Gather and Ambient Occlusion,” shows how to resolve Final Gather

flickering. (The most common render problem, flickering is usually caused by very thin

objects, poor depth coherency, fine detailed texture maps or procedural textures, and

advanced lighting techniques.) The first part of this chapter clarifies the intricacies of sam-

pling and filtering and shows how to optimize these settings. The second part focuses on

improving render times by tweaking raytrace acceleration, particularly the BSP tree for

optimal rendering times. The chapter covers the following topics:

■ Sampling and Filtering in Host Applications

■ Raytrace Acceleration

■ Diagnostic and BSP Fine-Tuning

C H A P T E R 5

08547c05.qxd 10/24/07 4:19 PM Page 163

Sampling and Filtering in Host Applications
Anti-aliasing is applied during rendering to resolve flickering and artifacts. To control the

anti-aliasing quality, we apply sampling and filtering techniques that help blend colors

together so they appear consistent over a series of frames. The key function is that of aver-

aging colors so that several points from the scene are “consulted” when determining a per-

pixel color, thus eliminating the possibility of getting different results every frame for the

same surface area.

Sampling and Filtering Settings
Sampling and filtering instructions are set within the .mi file’s options block or in the host

application’s render settings or overridden on the command line with mental ray stand-

alone rendering.

Host applications mostly provide the same sampling and filtering options, located in

similar tabs with similar labeling. The relevant settings are Samples Min and Max, Jitter,

Sample Lock (in XSI called Same Sampling Pattern on All Frames), Contrast Threshold,

and Filtering (type and size). Figures 5.1, 5.2, and 5.3 illustrate these settings within each

host application. These settings can be found within each application under the following

paths:

H O S T P A T H

Maya Render Settings ➔ mental ray ➔ Anti-aliasing Quality rollout

XSI Render ➔ Renderer Options ➔ Rendering and Framebuffer tabs

3ds Max mental ray Renderer ➔ Renderer ➔ Sampling Quality rollout

Figure 5.2

XSI sampling (A) and filtering (B) properties

Figure 5.1

Maya sampling and filtering attributes

164 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 164

Anti-Aliasing
The main purpose of sampling and filtering is to control the anti-aliasing quality of the

rendered image to provide the best possible render quality for the 3D scene. Aliasing refers

to two primary types of artifacts (and motion artifacts)

that appear while rendering. The first is object aliasing,

which is the stair-step jaggedness along a surface’s edge

against a background or another surface. Anti-aliasing is

used to soften the edge and provide a better transition

between edges. Figure 5.4 shows this artifact on the left

and the result of applying corrective anti-aliasing on

the right.

The second type of aliasing artifact involves shading interpolation, where sharp changes

in contrast, caused by a texture’s characteristics, can appear jagged, meaning they may

appear more pixelated, not reproducing fine detail visible in the texture. The left side of

Figure 5.5 shows this effect, caused by using a noise procedural texture on a planar sur-

face; on the right is the result of corrective anti-aliasing. Notice how the aliased version

(on the right) appears as a low-quality image, and in the anti-aliased version the noise is

clearer, particularly the fine-detail high-frequency (grainy) noise.

Shader aliasing Shader anti-aliasing

Figure 5.5

(left) Shading
aliasing artifacts;
(right) the result
after applying cor-
rective anti-aliasing

Object anti-aliasingObject aliasing

Figure 5.4

(left) Object aliasing
artifacts along a
surface edge; (right)
the result after
applying corrective
anti-aliasing

sampling and filtering in host applications ■ 165

Figure 5.3

3ds Max sampling
and filtering settings

08547c05.qxd 10/24/07 4:19 PM Page 165

Shader artifacts, especially when there is motion in the scene, can cause flickering

because each frame may reevaluate a different color for the same surface points. That

is, with each frame a different color value may be sampled for the same surface area,

resulting in shimmering or flickering as the sampled colors change. Even if you apply

high-quality anti-aliasing settings, this sort of flickering may be hard to eliminate for

very high-frequency noise textures or several thin objects, especially if they are placed

in near proximity.

The left side of Figure 5.6 demonstrates several thin objects placed in near proximity,

creating moiré patterns over most of the image. You can see how low sample qualities

can misinterpret the scene, “skipping” the space between objects and applying one color

over several pixels, another example of poor aliasing. The moiré pattern is caused because

the surfaces don’t always appear when they should; thus, they appear to come and go

based on the samples that where taken, resulting in these pattern artifacts. The image

on the right demonstrates the difference after applying high-quality anti-aliasing set-

tings; the moiré patterns are gone, and each thin surface is distinguished from its neigh-

boring surface.

Anti-aliasing then is used to average neighboring sample colors for a given area,

evaluating a better per-pixel color on a per-frame basis and reducing the chances of

unwanted artifacts for both object and shading aliasing. As a user you have a lot of con-

trol over anti-aliasing. For example, you can produce a smoother, softer color solution

or a sharper one (as with sharpening filters commonly found in image editors). The

concepts for controlling anti-aliasing and relevant settings are the focus of the following

sections.

Moiré patterns High anti-aliasing settings

Figure 5.6

(right) Moiré caused
by the pattern of

fine lines, and (left)
the result after

applying corrective
anti-aliasing

Note that a better example for this figure is on the companion CD, not limited by print

constrains.

166 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 166

Sampling
Sampling is the primary step taken for determining the color value for a point within a

scene. As discussed in previous chapters, mental ray samples color values within the scene

using a set of primary eye rays that are either scanline or raytrace. Primary eye rays is a

theoretical term used to describe an observation of the scene from the camera’s perspec-

tive, which is achieved with scanline or raytracing algorithms, as discussed in Chapter 2,

“Rendering Algorithms.” These primary rays are the minimum requirement for rendering

and are always “cast” into the scene. After sampling, filtering methods are used to average

the sampled colors into per-pixel colors, determining the final per-pixel color value sent

into the image frame buffer based on a collection of primary rays’ sampled color values.

The sampled color may or may not have used additional raytracing rays (secondary rays)

for evaluating reflections, refractions, and shadows, among other raytracing abilities.

In Chapter 3, “mental ray Output,” we showed how mental ray uses two frame buffers:

one holds the final per-pixel values, and the other, an intermediate frame buffer, holds

sample values. Essentially, the render flow process begins with samples, which are stored in

the sampling frame buffer temporarily for each render tile (see the sidebar “Tiling Order

and Task Size” in Chapter 2). When each render job has processed all its required samples,

filtering commences. Thus samples for each render tile are filtered into per-pixel color

values that are then sent into the image frame buffer. The fact that sampling and filtering

are done per render job, and thus per tile, has important ramifications, further discussed

in the following section. Also note that, as discussed in Chapter 3, additional color instruc-

tions such as color clipping, premultiplication, and desaturation are further used to set

the final per-pixel color value for each pixel within the image before the value is stored

in the image frame buffer.

Sample Blocks

Sample blocks determine the relationship between sampling and pixels. mental ray samples

use square sample blocks. Each block represents one sample in the scene. These blocks

may contain any number of pixels (an approach known as infrasampling or undersampling),

or there may be several sample blocks within a pixel (an approach known as supersampling

or oversampling). Figure 5.7 illustrates the difference, using × symbols to mark sample

locations. The supersampling illustration demonstrates four samples within one pixel;

the infrasampling illustration shows one sample for four pixels. It is clear, then, that the

sampling setting determines the relationship between sample blocks and pixels. You can

also see that with mental ray, each block is sampled at its corner rather than in the center

as with other software’s sampling algorithms and the rasterizer (discussed later under

“The Rasterizer Alternative”). If the sampling setting is set to zero, which equals one sam-

ple per pixel, the sample block is the same size as a pixel; hence, in such a case, one corner

sample is taken for each pixel. By sampling the corners, mental ray provides a more effi-

cient approach to filtering and anti-aliasing.

sampling and filtering in host applications ■ 167

08547c05.qxd 10/24/07 4:19 PM Page 167

Because sampling occurs at block corners rather than in the center, the bordering edges

between the render tiles will share sample locations. These border samples are not shared

between the different render jobs, and thus sample information is not passed from one tile

to the next, resulting in the resampling along border edges seen in Figure 5.8. Although

this approach may seem time-consuming, it is not necessarily a disadvantage. With multiple

processors or with network rendering, it is less efficient to share sample information because

each tile is an independent process and it would defeat the purpose of having certain tiles

“wait” for values from other tiles to either complete rendering or pass information over

the network. This sort of sample overlapping is also influenced by filtering and is further

discussed in the section “Filtering” later in this chapter.

Figure 5.8

Overlapping sam-
ples at border

edges, between tiles

Supersampling

4 sample blocks per pixel

Infrasampling

4 pixels per sample block

Figure 5.7

mental ray infra- and
supersampling

168 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 168

Sampling and Adaptive Sampling

Sampling is controlled with two primary settings, Min and Max sample values, as well as

two additional optional settings, Default Min and Max sample values. Additional options

that fine-tune sampling are Contrast Threshold, Jitter, and Sample Lock. With respect to

their influence on sampling, Contrast Threshold is the most significant and influential

option. In stand-alone mental ray, the sampling command is inserted in the .mi file’s

options block or can be overridden on the command line with the following syntax:

-samples [min][max][defmin][defmax]

The sampling settings within host applications, as seen earlier in Figures 5.1, 5.2, and 5.3,

are set using the following options:

A P P L I C A T I O N L A B E L

Maya Number of Samples (Min, Max Sample Level)

XSI Sampling (Min and Max Level)

3ds Max Samples per Pixel (Minimum, Maximum)

The Min and Max values provide for an adaptive sampling range so that additional samples,

up to the maximum value, may be taken if the minimum value is not sufficient. The decision

whether sampling values are satisfactory or additional samples should be taken is based on

comparing color contrast between samples using a contrast threshold. Thus, mental ray sam-

pling is adaptive and can expand into finer sampled regions. Figure 5.9 illustrates the adaptive

sampling process; let’s follow the steps and, in the process, better define contrast threshold.

When sampling initiates, only as many samples as specified in the Min samples setting

are taken. You can see this in section A, using the upper-

left. The entire outer frame (A) represents one Min level

sample block. The other corner samples in gray on the

outer edges illustrate samples from the neighboring sam-

ple blocks (not illustrated). After each four neighboring

samples are taken, they are compared and evaluated

using the contrast threshold, which determines whether

additional samples, up to the Max sample level, should be taken. Assuming

you provided two sample levels, the first represents the first set of samples, seen

as the outer edge samples for each sample block, and the second represents

With Maya, the Sampling Mode attribute dropdown list, seen in Figure 5.1, allows you to

select a predetermined relationship between the Min and Max Sample Level attribute values.

When set to Adaptive Sampling, the Max Sample Level is automatically set at two values

greater then the Min Sample Level. At Fixed Sampling, their values are always equal (use for

fast motion blur, see Chapter 8). The Custom Sampling option allows you to define both

values independent of the each other.

sampling and filtering in host applications ■ 169

A B

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5.9

Adaptive sampling
with mental ray

08547c05.qxd 10/24/07 4:19 PM Page 169

the additional samples that can be taken, adaptively if required. In this case, the contrast

threshold required additional samples, and thus sample block A is divided into four more

sample blocks. After this division, only three additional samples are taken; they are repre-

sented by the dark gray (smaller Xs) samples long the center lines. Notice that each of these

additional samples represents the top corner sample of a sample block within the initial block.

Using the more detailed illustration seen in section B, we can further examine contrast

threshold. We can assume that each numbered block represents a sample block equal to

one pixel in size. Contrast threshold determines the adaptive nature of sampling by com-

paring contrast between samples for each color channel (RGB) and the alpha channel sep-

arately. Thus contrast threshold provides four option settings, one for each color channel.

The lower the contrast threshold value (see the section “Setting Contrast Threshold”), the

less contrast is allowed between samples, requiring additional samples to be taken for areas

with greater contrast. Let’s assume that blocks 7, 8, 11, and 12 are sampled and compared.

mental ray identifies the difference in contrast between the gray areas within samples 11

and 12 in comparison to samples 7 and 8. The result is that sample block number 7 is then

adaptively subdivided, and three new samples are taken. After the new samples are com-

pared (within block number 7), mental ray recognizes that the difference in contrast is still

higher than the allowable range.

For illustrative purposes, I left that area un-subdivided so you can see the adaptive process

continue under block 6, where the additional third-level subdivision is being sampled. Simi-

larly, the next block to the left (5) shows another level of subdivision. As long as you provide

a max sample value that supports additional subdivisions, mental ray will continue to com-

pare four samples and subdivide them, essentially forming a sub-pixel loop.

Every time mental ray recognizes that additional sampling is required, it will subdivide

into four new blocks and then start sampling each of them and comparing contrast, start-

ing with the first block. If the first block requires further subdivision, mental ray will sub-

divide it before moving on to the next block. Subdivision sampling proceeds recursively

through each block until either the max sampling level has been reached or the contrast

threshold falls within the allowable range.

S E T T I N G C O N T R A S T T H R E S H O L D

In stand-alone mental ray, you can set the contrast threshold options on the command

line or in the .mi file’s options block using the following options:

-contrast [R][G][B][A]

From within the host applications, you can set a contrast threshold for each color chan-

nel and the alpha channel, as shown in Figures 5.1, 5.2, and 5.3, using the following options:

A P P L I C A T I O N L A B E L

Maya Color Contrast and Alpha Contrast

XSI Sampling Contrast (RGBA)

3ds Max Spatial Contrast (RGBA)

170 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 170

In each host application you can see four sliders (and a color picker) that are used to

specify the contrast value. Essentially, if all four sliders are set to a value of 0.5, you may

expect very few additional samples to take place, as a high range of contrast between

samples is allowed. However, lower values greatly increase the chances of additional adap-

tive sampling taking in areas with changing contrast, and thus increasing the anti-aliasing

quality by examining color shifts in finer detail. You will learn more about balancing sam-

pling values with contrast threshold later in the chapter. For now, let’s clarify the sampling

arithmetic used to determine the number of samples equivalent to each sample level.

S A M P L I N G M A T H

The x number of samples allowed for both Min and Max values is based on the values you

specify for each option and the following equation, n being the value you provided:

22 × n

Table 5.1 illustrates the number of samples allowed with different sampling values and

their relationship to pixel resolutions.

N U M B E R O F

P I X E L S P E R S A M P L E

(I N F R A S A M P L I N G)

0 1

1 4 -1 4

2 16 -2 16

3 64 -3 64

4 256 -4 256

Clearly, increasing the sample value greatly increases the number of samples taken within

a single pixel. For example, with sample Min set to –1 and sample Max set to 2, mental ray

will first sample using 1 sample for 4 pixels. Then, if the contrast threshold requires addi-

tional samples, mental ray can recursively subdivide three more levels, for 16 sample blocks

within each pixel. Thus, if that area requires the maximum samples taken, sampling ranges

would be from 1 sample per 4 pixels to 64 samples within the same 4-pixel block. Particu-

larly with raytracing, there is a big difference in render time between 1 sample and 64 samples,

which leads me to the next point: the ability to recursively subdivide areas with contrast

change greatly improves render abilities. Suppose your image has one small region that has a

change in color (maybe centered in the image), while the surroundings share the same color

(for example, black). Why bother oversampling in those black areas when you can get away

with even 16 pixels within 1 sample block until the contrast threshold recognizes that change

in color near the center and transitions to 16 samples per pixel, saving you a lot of render

time? You’ll see this sampling process in action later in the chapter, in the section “Diagnos-

tic Sampling,” which takes another look at adaptive sampling using a diagnostic render that

visualizes the samples taken.

S A M P L E S E T T I N G

(N E G A T I V E

V A L U E S)

N U M B E R O F

S A M P L E S P E R P I X E L

(S U P E R S A M P L I N G)

S A M P L E S E T T I N G

(P O S I T I V E

V A L U E S)

Table 5.1

Sample Settings and
Pixel Resolutions

sampling and filtering in host applications ■ 171

08547c05.qxd 10/24/07 4:19 PM Page 171

J I T T E R

Jitter is another method of dealing with flickering or unwanted artifacts caused by banding

and moiré patterns. As shown in Figure 5.10, jitter offsets the sample location for a given

sample block so that it is no longer placed at the corner. The sample is then placed some-

where within the sample block randomly, so that the sampling pattern has some variation

in sample locations. This helps avoid banding, where changes in color may appear with

visible gradual changes rather than a smooth transition. And to minimize moiré patterns,

it helps offset the samples so that certain areas that may constantly be “missed” by the

sample algorithm can be picked up.

Jitter can be enabled in each host application using the Jitter setting, seen in Figures 5.1,

5.2, and 5.3. You can enable it in an .mi file’ s options block or specify it on the command

line using the following command:

-jitter [1(on)|0(off)]

S A M P L E L O C K

Sample Lock forces mental ray to “lock” the sampling pattern used when rendering motion

sequences. The same sampling pattern will be reused with consecutive frames, which can

force mental ray to reproduce similar sampling results and reduce flickering. Alternatively,

reusing the exact same sample pattern may reproduce moiré patterns or banding between

consecutive frames, in which case it should be disabled and Jitter should be used.

Sample Lock can be enabled in each host application using the Sample Lock option (Lock

Samples parameter in 3ds Max), seen in Figures 5.1, 5.2, and 5.3. With XSI, it’s enabled with

Max Sample level

Jitter

Jitter sample

Jitter regions

Min Sample
level

Figure 5.10

The jitter technique
offsets a sample

block away from its
corner to minimize

banding or moiré
artifacts.

High Max sample values greatly increase render times and should be used with care.

172 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 172

the Same Sample Pattern on All Frames property. Within .mi files, Sample Lock is enabled

in the options block or overridden on the command line using the following command:

-samplelock [on|off]

Default and Per-Object Sampling

Sampling values can also be applied on a per-object basis, under an object’s declaration

within an .mi file. Thus, you may specify sampling at three different levels: the main

(primary) global level, additional default values, and per object. This chapter mainly focuses

on the primary sampling values, which constrain the two other settings to the primary

sampling value range. Both default and per-object sampling may override each other based

on which provides higher settings, but both are limited to the bounds set by the primary

setting. Essentially, your primarily concern is with setting the Min and Max sampling

values and not as much with the additional default or object sampling values. In fact, as

this is being written, only Maya offers straightforward settings for both default and object

sampling values without the need to add custom text or manually edit .mi files. Note that

the per-object sampling values can be very beneficial for optimizing rendering, as seen

in the example in the section “Diagnostic Sampling.”

M A Y A U S E R S

Maya users can enable the object overrides in a shape node’s Attribute Editor window under

mental ray ➔ Min Max Object Sample Limits. Enabling this feature allows you to manually

set the limits for both Min and Max sample levels. With Maya, you can also change the

default sample values under the miDefaultOptions node attributes in the Attribute Editor

window, under Sampling Quality ➔ Sample Defaults ➔ Object Samples ➔ Min Object Samples

and Max Object Samples attributes.

Diagnostic Sampling

Diagnostic sampling is a method of visualizing the sample pattern within a rendered image.

It can help you verify that you are not “wasting” samples by oversampling in sparse areas

and helps you see if enough samples are being generated in detailed areas. Visually seeing

the sample distribution helps you learn a great deal about the adaptive nature of sampling.

Diagnostic sampling can be enabled on the command line, inside the .mi options block,

or from within the host applications. The command-line syntax is as follows:

-diagnostic samples [on|off]

The miDefaultOptions node can be selected in the Outliner window after mental ray is enabled

as the current render type and you disable the Display ➔ DAG Objects Only attribute in the

Outliner window.

sampling and filtering in host applications ■ 173

08547c05.qxd 10/24/07 4:19 PM Page 173

The paths to these settings are shown in the following list. Select the sample related

option for enabling sample diagnostics in each host, as seen selected in Figures 5.11 to 13.

H O S T P A T H

Maya Render Settings ➔ mental ray ➔ Diagnostics rollout

XSI Render ➔ Renderer Options. ➔ Diagnostic tab

3ds Max mental ray Renderer ➔ Processing ➔ Diagnostics rollout

Figure 5.14 illustrates diagnostic sampling in action. This tool helps us visualize several

sample-related components. The render tile size can be seen with a red line along the tile

boundaries (seen as black grid pattern in print), subdividing the render image based on

the tile render size. Visualizing the tile size can help you identify problematic areas where

one edge doesn’t follow through into the next tile, in which case you could change the tile

size (see the sidebar “Tiling Order and Task Size” in Chapter 2).

A B

Figure 5.14

Sample diagnostic
render of two identi-
cal images with and

without raytracing

XSI users can interactively tweak sampling values while viewing the diagnostic samples

update in the render region, making it easier to set the sample values, a great sample values,

a great benefit of XSI’s interactive render region!

Figure 5.13

3ds Max Diagnostics tab, with
Sampling Rate enabled

Figure 5.12

XSI Diagnostic tab, with View Sampling
enabled

Figure 5.11

Maya Diagnostics tab, with Diagnose Samples
enabled

174 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 174

Samples are visualized using a grayscale value. Areas in black have not been sampled at

all, and areas that appear grayscale have been sampled at some sample level; finally, areas

in white are areas that have been sampled at the Max sample value. You can learn a lot by

examining these images and testing different sample settings using simple primitives.

Notice the difference between A and B in Figure 5.14. Raytracing is disabled in the image

labeled A, and it’s enabled in the image labeled B. As you can see, it is easy to identify the

sample pattern in the mirror surfaces picking up the reflections and to clearly see how

samples follow edges along the surfaces.

In Figure 5.15, you see the sample pattern output for different Min and Max sample

levels for the same image. Image A was rendered with the same Min and Max level of -2.

This level means that for every 16 pixels, there will be one sample, and as both levels are

set to the same rate, there is no ability to further subdivide and thus no ability to sample

adaptively. Hence, image A appears identical throughout the entire image and does not

distinguish contrast changes. Similarly, image B is rendered with the same Min and Max

sample levels, and hence also is nonadaptive. In image B, the sample levels are set to zero,

thus generating one sample per pixel, and that is why the entire image appears white; each

pixel receives one sample, which is its max sampling level.

Image C demonstrates adaptive sampling using a Min level of -1 and Max level set to 2.

Clearly, in image C you can recognize the adaptive nature of sampling and distinguish the

areas where max samples were used to render this noisy texture, which is applied to both

the oval sphere and the plane surface. Thus, as the samples get brighter, more samples are

used in those areas.

In Figure 5.16, you can see the same three

images using the same Min and Max levels of 0

and 2. The differences in this figure are changes

in contrast threshold. Notice that all areas in the

image are at least at some gray level. Since the

Min level is zero, each pixel is sampled at least

once, and thus the entire image receives a gray

coating. However, areas that have been sampled

at the Max level are in white. A contrast thresh-

old of 0.1 was used in image A, 0.06 was used in

image B, and 0.03 was used in image C, for all

color channels in each case. As you can see, the

lower the contrast, the more samples used to

recognize the changes in contrast in the noise

texture. By now you should have a clear picture

of the relationship between sampling, contrast

threshold, and render tiles.

sampling and filtering in host applications ■ 175

A B

C

Figure 5.15

Adaptive and non-
adaptive sampling

08547c05.qxd 10/24/07 4:19 PM Page 175

One last example demonstrates how you can control sampling at the per-object level,

as discussed earlier in this chapter in the section “Default and Per-Object Sampling.”

Figure 5.17 demonstrates the difference in sampling after applying a lower per-object

sampling rate to the plane in image B. Image A has no overrides and uses the same global

settings as image B for Min and Max sampling. The image’s Min and Max sample levels

are set at 0 and 2, respectively. In image B, the floor’s Min and Max sample levels are set

to –1 and 1. Notice that although a –1 value was entered for the floor’s Min level, you can

recognize that all areas across the floor have received at least one sample, demonstrating

how the scene’s global settings define the range. Thus, setting the scene with a Min sample

level of zero acts as an override for the object’s ability to sample at less than zero, restrict-

ing it to the 0 to 2 range. Also, you can see that the floor’s samples are not white at any

A

B

C

Figure 5.16

How changing the
contrast threshold

value affects
sampling

176 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 176

point, showing that the Max level of 2 was never reached because the floor’s Max level is

set to 1. Also note that since the sphere is reflecting the floor, the samples on the sphere,

which include reflections from the floor, are also bound by the floor’s sample rate. There-

fore, only areas outside of the floor’s influence that are not limited by object sample over-

rides are able to reach the max sample level, in this case the top half of the sphere, outside

the plane’s reflective area.

Balancing Sampling Values and Contrast Threshold

A combination of high maximum sampling values and low contrast values provides for

higher-quality rendering as well as longer render times. To find the optimum balance

within your time constraints, you should always increase the contrast threshold sensitivity

(by decreasing the contrast values) before increasing the sampling level. This way, you make

sure that the current Max sample value is being properly used before increasing the num-

ber of samples. Use the diagnostic mode as shown earlier to verify whether max sampling

is being used effectively. If a lower contrast threshold value does not provide the desired

result, you can then increase the sample level by one. With the contrast threshold, you can

make changes that vary by some decimal point, but with samples, you always want to

increase one level at a time because there is a tremendous difference between, for example,

16 samples and 64 samples per pixel. Remember, each of these samples with raytracing

may lead to several secondary rays, bringing the render to a crawl, a topic discussed in

detail later in this chapter in the section “Raytrace Acceleration.”

Normally, good sampling testing values range from -3 to 0 Min, Max respectively).

For final render, typically 0 to 2 is sufficient and acceptable in terms of render time.

Contrast test values can range from 0.1 to 0.2 for each color channel. For final render,

you may use values below 0.1, in the range of 0.04 to 0.1. The alpha contrast value should

be set to a low value only if you need to use the alpha channel for compositing. If you will

not need an alpha channel, this value should ideally be set to 1 so that it doesn’t have an

impact on the render time by rendering a high-quality alpha channel. Preferably, you

can disable the alpha channel altogether, which may be the best thing to do in such cases,

depending on your compositing intentions.

A B

Figure 5.17

The effect of apply-
ing different per-
object sample
overrides

sampling and filtering in host applications ■ 177

08547c05.qxd 10/24/07 4:19 PM Page 177

E D G E F O L L O W I N G

mental ray supports edge following, which is a method of following contrast along an edge

until the end of the render tile. Thus, even if neighboring sample blocks have satisfied their

contrast lookup and found nothing, if a the lookup within a different sample block finds

an edge, it can follow that edge back into the previously sampled blocks, forcing them to

further subdivide within a given render tile. This backtracking is a smart mechanism to

ensure that thin objects, which can easily be missed, can be followed once they are identi-

fied in another block. The fact that it is restricted to a given render tile may cause a prob-

lem because the next tile may not pick up the object and then artifacts appear. In such a

case, you may try increasing the tile size, thus providing a better chance for thin objects to

be picked up as well as followed through a larger area. Aside for changing the tile size and

setting the global sampling, you have no direct influence on how mental ray executes edge

following.

Filtering
After the sampling phase has finished (for a given render tile), the samples are then filtered

into pixels. The filtering process is based on filter width and height values that dictate the

number of pixels contained within the filter, extending outward from the center of the fil-

ter. Essentially this means that a filter size of 1×1 pixels will contain one pixel and a filter

size for 2×2 will contain four pixels, spanning one pixel outward from the center of the

filter as shown in Figure 5.18. As you can see, the filter size is used to dictate how many

samples are used for filtering from within a filter region.

A

B

Filter samples outside
the render tile region

Render tile region

A samples 0 0, filter 1x1

B samples 1 1, filter 2x2

Figure 5.18

Filtering samples
into pixels and the

relationship
between filters and

render tiles

178 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 178

Filtering uses a weight value that represents the amount of influence each sample has

on the filtering process. The max weight is applied at the center of the filter region and

then gradually changes toward the filter edges, representing the influence of samples along

that path and, again, dictating their influence in the filtering process. Different filters have

an effect of either blurring or sharpening an image, based on the filter size and type. The

filter type dictates the relationship between the filter size and the sample weight (see the

section “Filter Types” later in this chapter). Thus, filtering is an essential phase in averag-

ing color samples into pixels based on the filter size and type.

Figure 5.18 demonstrates the filtering process and its relationship to render tiles and

samples. Let’s assume we are using a filter width and height of one pixel, as seen in section

A, which is then equal to the size of one sample block, covering one pixel in size. As you

can see, in this case, filter A will use four samples, one belonging to that pixel and an addi-

tional three samples from neighboring pixel corners, showing one of the advantages of

using corner samples with mental ray, a topic further explained later within this section.

Consider that the render tile is defined with the heavy black border labeled “render tile

region” and that samples from outside this region belong to neighboring render tiles.

What happens if we try filtering the samples at the lower-right pixel labeled B? Assume

that we increased the sample level to 1 using four samples per pixel and increased the filter

size to 2×2. There are not enough samples within this render tile to use with a 2×2 filter size.

In theory, mental ray needs to retrieve other samples from neighboring tiles to fill in the

gap, as illustrated by the lighter-gray bounding box, which extends outward from the filter

center, one pixel in each direction, thus extending outside the render tile region. But ren-

der tiles don’t share sample information, so in cases like this where the filter size along

render tile edges requires extending outward from the tile region, more samples are taken

to fill in the gap. With heavy renders, this can have significant impact; for example, if you

use a 10×10 filter region, it will resample several pixels that belong to other render tiles,

using the sample settings levels to define the number of samples taken, which may require

several sub-pixel samples. Also, keep in mind that if these additional samples require ray-

tracing for evaluating color, this can lead to a significant hit in render performance.

Thus, filtering forces mental ray to resample along tile borders, based on the filter size.

With heavy rendering, it is recommended that you keep filter sizes at their minimum

default rather than increasing them.

The fact that corners rather than centers (as with the rasterizer) are sampled for each

sample block benefits filtering. With a sample block of one pixel size, there are four sam-

ples along a pixel’s edge, one from its own sample and an additional three neighboring

samples. The filtering process is based on a size in pixels, so if a filter size (such as the Box

filter type) is equal in size to one pixel, it will use those four samples for filtering instead of

sampling and filtering in host applications ■ 179

08547c05.qxd 10/24/07 4:19 PM Page 179

just one. With the rasterizer, resolving this sort of problem requires increasing either the

number of samples or the filter size, as the rasterizer samples in pixel centers, and thus

a filter of one pixel in size would use only the available samples from within that pixel.

With the default corner sampling, however, we get more information about each pixel

without taking more (time-consuming) samples, using the neighboring sample blocks

samples.

Filter Settings

Filter settings are entered in the .mi file’s options block or overridden on the command

line using the following settings:

-filter [clip][box|triangle|gauss|mitchell|lanczos] [width] [height]

This command selects one of five filter types—Box, Triangle, Gauss, Mitchell, and

Lanczos—and defines their width and height in pixel sizes. The clip option clips negative

filter values to zero, as with the Mitchell and Lanczos filter methods (see Figure 5.19 in the

next section, “Filter Types”).

Within host applications the filter settings can be found in the same locations shown

earlier in Figures 5.1, 5.2 (label B), and 5.3. The relevant filter settings are filter type, where

the filter type is selected from a drop-down box, and the X, Y width and height for the

filter, in pixel units. These options are labeled as follows in the host applications, under

their filtering sections:

A P P L I C A T I O N L A B E L

Maya Filter

Filter Size

XSI Type

Filter Size

3ds Max Type

Width

Height

Note that the filtering values have default, recommended filter sizes; however, you are

not limited to these sizes and can change them. Settings above these recommended values

may increase render times and make images blurry or oversharpened. Essentially, you

should change the filter size only to correct artifacts or reduce blurriness. Note that the fil-

ter clip option is available only for stand-alone rendering and is not yet available within

host applications.

You should try rendering some detailed texture using different filter types and sizes and then

zooming in on the image and examining the different results.

180 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 180

Filter Types

Figure 5.19 illustrates the five different filter types you can use, and Table 5.2 summarizes

their effects.

F I L T E R T Y P E D E F A U L T S I Z E R E S U L T

Box 1×1 A square filter that evenly weights all samples during
filtering.

Triangle 2×2 A gradual linear transition; decreases the weight from
the center outward. Can result in a bit of blurring.

Gauss 3×3 Provides for a smooth falloff, resulting in a blurred result.

Mitchell 4×4 Higher-order filters that have the effect of sharpening
because they fall below the zero weight while filtering.

Lanczos 5×5 Same as Mitchell, but provides more sharpening.

All the filters except Box create some form of

gradual change in weight from the center, so

they should be used with filter sizes greater than

1×1. Their influence decays outward (as seen in

Figure 5.19), and thus they need more samples

to transition over or their effect is minimal.

Again, the default sizes are recommended start-

ing points for each filter, and normally you

would either leave them at that default value or

increase them. For example, the Triangle filter,

as it transitions over a 2×2 pixel area, will use

the full weight of the original center pixel and

half the weight over the neighboring pixels as it

gradually decreases to zero weight. Thus, when

filtering, it better blends the samples between

the center of the filter and the neighboring sam-

ples within the filters pixel size, resulting in a bit

of blurring.

The Rasterizer Alternative
The rasterizer uses a different non-adaptive

sampling algorithm. This algorithm is particu-

larly good at dealing with accelerating motion-

blur rendering and rendering scenes with several

polygons (such as hair or fur) that overlap in

Table 5.2

Filter Types and
Default Sizes

sampling and filtering in host applications ■ 181

Box

Filter weight
(pixel center)

0-Filter size / 2 Filter size / 2

Triangle

Filter weight
(pixel center)

0-Filter size / 2 Filter size / 2

Gauss

Filter weight
(pixel center)

0-Filter size / 2 Filter size / 2

Mitchell

Filter weight
(pixel center)

0-Filter size / 2 Filter size / 2

Lanczos

Filter weight
(pixel center)

0-Filter size / 2 Filter size / 2

Figure 5.19

Filter types and their
weight falloff influ-
ence from the filter
center outward

08547c05.qxd 10/24/07 4:19 PM Page 181

the same pixel space, as discussed in Chapter 2 in the section “Scanline Rendering in

Depth.” The rasterizer sample settings can be set in the .mi options block, overridden on

the command line, or set within host applications. Note that the rasterizer has changed

between mental ray versions 3.3 and 3.4. In version 3.3 the rasterizer was known as Rapid

Motion, and in version 3.4 it has been renamed the rasterizer and also changed. We will

look at these settings based on version 3.4.

Rasterizer Options

When the rasterizer is enabled, the following commands are used to control it:

-scanline [rapid or rasterizer]

-samples_collect [value]

-shading_samples [value]

-samples_motion [value]

The first line is used to enable the rasterizer. (For information on enabling the raster-

izer from each host application, see the section “Scanline Render Algorithms” in Chapter 2.)

Some of the other three settings can be found from within host applications under the fol-

lowing paths, which display the windows shown in Figures 5.20, 21 and 22. The following

table provides the paths to rasterizer settings within the host applications..

H O S T P A T H

Maya Render Settings ➔ mental ray ➔ Anti-Aliasing Quality ➔ Rasterizer Quality rollout

XSI Render ➔ Renderer Options ➔ Rendering tab

3ds Max mental ray Renderer ➔ Renderer ➔ Rendering Algorithms rollout

The labels used for the rasterizer options with each application, which are further dis-

cussed later, are as follows:

A P P L I C A T I O N M E N T A L R A Y E Q U I V A L E N T L A B E L

Maya Samples Collect Visibility Samples

Shading Samples Shading Quality

Samples Motion Motion Samples

XSI Shading Samples Shading Samples

Samples Collect Pixel Samples

Samples Motion Motion Samples

3ds Max Samples Collect Samples per Pixel

Shading Samples Shades per Pixel

Samples Motion Time Samples (Fast Rasterizer)

These settings are enabled in host applications only when the rasterizer (or Rapid) is selected

as the scanline algorithm; see Chapter 2 for more details about the rasterizer.

182 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 182

M A Y A

In Maya, the Motion Samples option is found under the mental ray default options

(miDefaultOptions node discussed earlier under “Default and Per-Object Sampling”) and

is not available from the Render Settings window. To display these options, as an alternative

to selecting the node in the Outliner window, make sure the Attribute Editor window is

open and mental ray enabled; then type the following command into the command line

or script editor and press Enter to execute:

select -r miDefaultOptions;

In the resulting Attribute Editor display, go to the Rendering tab, where you can now

see all three rasterizer options, including Motion Samples.

Rasterizer Sampling

The rasterizer differs significantly from mental ray’s default sampling algorithm. Sampling

is not adaptive with the rasterizer, and samples are taken in pixel centers rather than cor-

ners. The rasterizer also differs in its approach to sample collection by separating shading

samples from visibility samples. With the rasterizer, the Shading Samples option is tied to

the geometry tessellation. Instead of the usual method of sampling the scene with primary

rays, where at each point of intersection a shader is called to evaluate that point’s color,

with the rasterizer, mental ray first collects the shading information on a per-pixel basis,

shading triangles within a pixel dimension as many times as required by the Shading

Samples option. Once the shading has been distributed for all surfaces in the scene—that

is, once the surface has been subdivided into per-pixel-shaded triangles—those values are

cached with the geometry. This allows for a significant improvement in motion-blur ren-

dering as the shading samples “travel” with the surface. As objects move over a given dis-

tance within the time interval of one frame, these shaded triangles “drag” their shading

value with the surface and so the object does not have to be resampled several times within

a frame’s Shutter Open and Close time interval and along that motion path. You will learn

more about the rasterizer and motion blur in Chapter 8, “Motion Blur.”

After shading samples have been evaluated, the Samples Collect option is responsible

for defining the density of visibility samples taken within each pixel, sampling the shading

Figure 5.22

3ds Max rasterizer sample settings

Figure 5.21

XSI rasterizer sample properties seen
after the rasterizer is enabled.

Figure 5.20

Maya rasterizer sample settings

sampling and filtering in host applications ■ 183

08547c05.qxd 10/24/07 4:19 PM Page 183

samples from the geometry, much like the Samples option with the other mental ray algo-

rithms. The Samples Collect option is defined as the n number you provided multiplied by

itself, thus producing n × n samples per pixel, as shown in Figure 5.23.

When you set the rasterizer options, the default value for the Samples Collect option is

set to 4, generating 16 samples per pixel. The Shading Samples option is a linear (non-

adaptive) value also representing a per-pixel value, so in mental ray 3.4, you cannot take

fewer samples than pixels with the rasterizer (as you could in version 3.3).

The Samples Motion option dictates whether additional samples are taken with motion

blur. This option is needed because caching the shading values with the rasterizer can lead to

dragging of reflections across the scene. To reduce this problem, the Samples Motion option

allows you to increase the number of shading samples taken within a given time interval.

Thus, as the object moves within the shutter open and close time, additional shading samples

may be taken, up to the number specified by this option. The rasterizer sampling character-

istics with respect to motion blur are further discussed in Chapter 8.

To take advantage of multiple samples per pixel, you need to have multiple shading

samples per pixel. Since the sample-collection phase gathers samples for the filtering

process, if you specify a high Samples Collect value, then you should also increase the

Shading Samples value so they support gathering a collection of color samples during the

collection phase. Another point of consideration relates to filtering. As discussed earlier,

filters are applied on a per-pixel resolution, and because the rasterizer samples are taken in

pixel centers, a filter size of one pixel will have only one sample to filter. Thus, for filtering

to have an effect, you would need more than one sample per pixel or a larger filter size.

As the rasterizer is primarily a motion-blur acceleration method (or an alternative

algorithm for rendering dense geometry, such as hair), we will look at it in more detail in

Chapter 8. Note that the rasterizer can also be very good at rendering complex scenes that

have a lot of depth, as well as provide another way to offset the samples, if the default sam-

pling method produces artifacts.

Samples Collect values
(per pixel)

Samples Collect = 1
1sample per pixel

Samples Collect = 3
9 samples per pixel

Samples Collect = 2
4 samples per pixel

Figure 5.23

Samples Collect
sample distribution

for the rasterizer

184 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 184

Raytrace Acceleration
Chapter 2 introduced scanline rendering and the basic concepts of raytracing. This section

provides a closer look at raytracing and the three raytrace acceleration algorithms available

for calculating raytracing. The different scanline rendering algorithms affect image quality

as well as rendering time, but the raytracing algorithms are aimed only at improving render

times and have no effect on image quality. This might be one reason users are not as

familiar with these settings. After all, why bother learning about these algorithms if the

image will look the same? The answer is simple: knowing how to set raytrace algorithms

can reduce per-frame render times by a very significant factor.

Raytrace Algorithms
Raytracing requires the renderer to compare each ray with every triangle in the scene,

determining whether that ray intersects with a surface. With ray casting (primary rays),

the sampling number determines how many rays are cast into the scene, whether you’re

using infrasampling or supersampling. For example, if you set a sample level of 1, you will

cast four rays into the scene for every pixel, and each of those rays needs to be compared

with every triangle to find any intersections. You can see why raytracing requires so much

computation. Each ray must be compared with all the triangles, and not just those directly

in front of it because it has no knowledge of triangles in its path until it finishes the com-

parison process. So you may conclude that higher sampling forces more comparisons

between rays and triangles to determine intersections, increasing the render time.

BSP, Large BSP, and Hierarchical Grid

mental ray provide two algorithms for dealing with these ray-triangle comparisons in a

logical method: the Hierarchical Grid and Binary Space Partition (BSP) algorithms. The

BSP tree algorithm is mental ray’s primary raytracing algorithm, used in most cases, and

there is also a subset algorithm, known as Large BSP. These algorithms are responsible for

dividing the scene into smaller segments, so that a ray can be compared with fewer trian-

gles. The theory for good raytracing render times is to minimize the number of such com-

parisons. Thus the fewer ray-triangle comparisons, the faster the render.

These algorithms divide the scene into a collection of 3D “containers” that attempt to

separate triangles evenly based on two main factors that you control: the number of con-

tainers permitted and the number of triangles within each container. Once the scene is

subdivided into these containers, known as voxels, a ray can evaluate which voxels it passes

through while traveling through the scene. The renderer can then compare it only with

In order to focus exclusively on raytrace rendering, this discussion assumes that scanline ren-

dering is disabled. As the process of raytracing is discussed, however, the advantages of

using scanline rendering for primary rays should become clear.

raytrace acceleration ■ 185

08547c05.qxd 10/24/07 4:19 PM Page 185

triangles found within those voxels, significantly reducing the number of comparisons

required. I described this separation process as an “attempt” because mental ray is con-

strained to the number of voxels you provide. A voxel, then, can contain either additional

voxels or triangles. Voxels that contain only triangles are referred to as leaf nodes.

The Grid and BSP algorithms differ in their approach to dividing the scene into voxel

containers. Grid divides the scene into a grid of containers evenly, and each container can

then be further subdivided into smaller containers within it. BSP is an adaptive method

that has a treelike structure that subdivides the scene unevenly based on areas that require

more voxels. The Large BSP variant enables mental ray to use disk swapping more effec-

tively to balance the memory. Disk swapping basically enables mental ray to efficiently

swap the portions of the BSP tree that are available in memory, pushing and pulling data

in and out of memory as required. Large BSP utilizes the same BSP settings but with a

more complex tree structure that is better at handling large scenes and is a bit slower than

the BSP algorithm. The BSP method is the fastest rendering algorithm for single-processor

machines, and if the scene runs into memory problems or has millions of triangles, the ren-

der may come to a crawl, in which case it would behoove you to try using the Large BSP

algorithm as an alternative. The Grid algorithm is also fast, especially with multiprocessor

machines, and is efficient at handling large scenes and conserving memory, which is typi-

cally useful for scenes that have a fairly even distribution of triangles. In most cases, cer-

tain aspects of raytracing benefit from using the BSP tree, which provides more control

for minimizing the number of voxels and localizing them to solve complexity in random

areas of the scene, where a lot of geometry actually exists. In all cases, the voxel subdivision

process will terminate when all voxels have their leaf nodes, which contain the triangles, as

seen in Figure 5.24.

L

L L

L

L
L L

L L

L L

L L

V= voxel
L = leaf node

Grid algorithm BSP tree (5-level depth)

v

v

vL

L L

v L LL

v

Figure 5.24

BSP tree and Grid
algorithms illus-

trated in 2D, which
poses three dimen-

sions in reality

186 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 186

Voxel Depth and Size

With voxels you provide a depth (max subdivision) value, which represents a fixed limit

that mental ray will not exceed; no additional voxel subdivisions will occur past this num-

ber. For example, if the depth is set at three, then each voxel (in addition to the first pri-

mary voxel) can split twice, and thus with BSP the first voxel is split into two, dividing the

scene into two new voxels. Each of those voxels can also split into two, essentially creating

three voxel layers and four leaf nodes for the entire scene, as seen in Figure 5.24, which

shows five levels of depth. With the Grid algorithm, a limit of three means that each voxel

in the grid can subdivide twice, forming smaller partitions. However, to evaluate how

many leaf nodes exist, you would need to know the size of the grid in relation to the scene.

A grid of four cubes may produce eight leaf nodes after one subdivision, provided all the

voxels required subdivision.

Another component that you control is the max size of triangles within each voxel

(voxel size). If there are not enough voxels (voxel depth) to evenly distribute triangles based

on the triangle limit (the voxel size), mental ray will exceed the size limit, adding in more

triangles, but it will not exceed the number of voxels. Hence, mental ray ranks voxel (depth)

limits over triangle (size) limits. The result may be a voxel that has an excessively high

number of triangles since it has reached the max depth subdivision level.

An excessive triangle count means that as a ray enters a leaf node, a very high number

of triangles need to be evaluated. Balancing between the number of allowable voxels and

the voxel size (max number of triangles) can become a tedious trial-and-error process.

There are a few techniques and scripts you may use to make this process easier; they are

covered in the following sections along with the settings for each algorithm.

Larger depth values for voxels require more memory for storing as well as a longer

preprocessing stage. If memory use becomes excessive, mental ray is forced to unload data

temporarily to disk (disk swapping) and then reload it when needed, which slows down

operations. The Large BSP algorithm is better at handling such tasks. Also, as cited earlier,

the more triangles that exist within a voxel, the longer it takes to evaluate raytrace inter-

sections, which means that you need to find the right value for depth. In general, voxel

depth has a more significant impact on render time than the voxel size. As these topics are

discussed further, keep in mind that the values you use on one machine will not necessar-

ily be right for another machine because memory has a significant influence on how many

voxels can be created without disk swapping.

The remainder of this chapter focuses on mental ray’s primary acceleration method,

which is the BSP algorithm, and methods for fine-tuning BSP settings. The options and

settings for Grid are presented and are similar to the BSP settings, so an understanding of

BSP should suffice for understanding the Grid algorithm.

raytrace acceleration ■ 187

08547c05.qxd 10/24/07 4:19 PM Page 187

Raytrace Acceleration Settings
You can set raytrace acceleration within an .mi file’s options block or on the command line:

-acceleration [bsp|largebsp|grid]

The BSP options are as follows:

-bsp_depth [max depth value]

-bsp_memory [max memory in mb]

-bsp_size [max triangle per voxel]

-bsp_shadow [on|off]

And the following lines show the Grid options:

-grid_depth [max subdivision level]

-grid_resolution [x_res][y_res][z_res]

-grid_size [max triangle per voxel]

In the host applications, you can access the options shown in Figures 5.25, 5.26, and 5.27

via the following paths:

H O S T P A T H

Maya Render Settings ➔ mental ray ➔ Raytracing ➔ Acceleration rollout

XSI Render ➔ Renderer Options ➔ Optimization tab

3ds Max mental ray Renderer ➔ Renderer ➔ Rendering Algorithms rollout

Table 5.3 summarizes the equivalent settings within each host application:

M A Y A X S I 3 D S M A X

Raytrace Acceleration ➔
Method drop-down menu

BSP depth Bsp Depth Depth

BSP size Bsp Size Size

BSP shadow Separate Shadow Bsp Unavailable

BSP memory Unavailable Unavailable

Grid depth Max Depth Unavailable Depth

Grid resolution Resolution Unavailable Resolution

Grid size Max Size Unavailable Size
1 Acceleration method in XSI defaults to BSP, and no Grid option is available. When Dynamic BSP is enabled, the large

BSP acceleration algorithm is used.

BSP Tree Settings ➔
Memory Limit

Separate BSP for Shadow
Objects check box

BSP Tree Settings ➔
Max Leaf Size

BSP Tree Settings ➔
Max Depth

BSP Tree Settings ➔
Dynamic BSP checkbox1

Acceleration Method
drop-down menu

Acceleration [BSP |
Large BSP | Grid]

M E N T A L R A Y

O P T I O N S

Table 5.3

Raytrace Accelera-
tion Options in
mental ray and

Host Applications

188 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 188

Grid Resolution

This value determines the 3D dimensions for the grid. If only one value is entered, it is

used for the X, Y, and Z size of each voxel in the initial grid. Essentially, here lays the big

difference between Grid and BSP: where BSP initiates with one voxel,

subdividing where needed, Grid initiates with a grid of voxels based

on the scene size in these dimensions. Host applications offer only one

value, so by default it is not possible to provide three separate values

unless you use a stand-alone renderer. A value of zero allows mental

ray to compute a recommended scale during rendering.

Size (BSP and Grid)

Both algorithms have a size factor that controls the number of triangles to

be used per voxel. If the triangle count has exceeded this size limit within a

voxel, two additional voxels are created, provided the max depth supports

additional voxels.

Increasing this size value can have the following effects:

• It increases the render times, as more triangles exist within each voxel.

• As fewer voxels need to be generated, less memory is required. Essen-

tially, this means that on occasion you may consider increasing the size

to lower memory usage and thus improve performance.

• By increasing the size, you lower the max leaf size, which represents the

voxel that contains the most triangles. As cited earlier, the depth has

priority, so some voxels may greatly exceed the max size value. Increas-

ing the size helps lower that max value, distributing more triangles into

other voxels, as you will see in the section “Diagnostic and BSP Fine-

Tuning” later in this chapter.

Decreasing this size value can have the following effects:

• The BSP tree grows in depth as it tries to accommodate the size factor, thus

requiring more memory to store fewer triangles in more voxel leaf nodes.

• More voxels with fewer triangles also means fewer ray-triangle comparisons,

which can boost render times and increase memory usage.

• The max leaf size can grow, so there may be a few voxels in dense areas of the

scene that greatly exceed the max size value. This doesn’t necessarily mean

the render will slow down, since the value is low in most of the scene, but it is

one of the values you will try to reduce, as demonstrated in the “Diagnostic

and BSP Fine-Tuning” section.

raytrace acceleration ■ 189

Figure 5.26

XSI raytrace acceler-
ation found under
the Optimization
property tab

Figure 5.27

3ds Max raytrace
acceleration
algorithms

Figure 5.25

Maya raytrace accel-
eration algorithms

08547c05.qxd 10/24/07 4:19 PM Page 189

Voxel Depth (BSP and Grid)

The depth represents the number of voxel subdivisions, for both BSP and Grid algo-

rithms. As the depth factor scales up, more memory is required to hold these additional

voxels. Each voxel needs to remember which triangle is placed within it, and with

motion blur it also needs to remember which triangle is within it at a particular time

interval through the motion-blur shutter open and close time. Thus in the case of

motion blur, two or more voxels may be required to remember the same triangle that

passes through it during the motion-blur time interval. The impact of motion blur on

BSP statistics and tuning is further discussed in the “Diagnostic and BSP Fine-Tuning”

section. Regardless of motion blur, higher values can accelerate render times provided

the system has sufficient memory for the BSP tree. If the memory limit or the available

memory on the system is exceeded, mental ray is forced to write data to disk, slowing

down the render process. For resolving this problem, you can either decrease the depth

factor or try using the Large BSP algorithm. Additional influences and considerations

for setting the depth value are further discussed in the “Diagnostic and BSP Fine-

Tuning” section.

Memory Limit (BSP)

The memory limit is used to prevent mental ray from exceeding a specific value in megabytes

while recursively subdividing the scene. This essentially impacts the BSP depth as memory

increases. The default value of zero results in no specific memory limits, which in most

cases is fine. No memory limits also means that mental ray may use the max depth limit if

applicable.

Shadow BSP

As raytrace shadows also are evaluated using the BSP tree, a separate BSP tree can be

evaluated for shadow rays. The shadow BSP enables mental ray to further optimize

the render for evaluating shadow rays with fewer triangles because mental ray will create

a BSP tree structure only for shadow-casting surfaces. This reduces significantly the

number of triangles in each voxel and optimizes the number of triangles in the overall

solution.

The impact of too low a memory limit may unnecessarily force mental ray to start disk-

swapping data, resulting in a very noticeable impact on render times.

190 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 190

Diagnostic and BSP Fine-Tuning
When mental ray renders, if you set the translation output to info messages (verbose level 5;

see Chapter 1, “Introduction to mental ray”), you will see useful fine-tuning information.

Here is the output log for the BSP tree statistics:

RCI 0.3 info : main bsp tree statistics:

RCI 0.3 info : max depth : 30

RCI 0.3 info : max leaf size : 733

RCI 0.3 info : average depth : 23

RCI 0.3 info : average leaf size : 22

RCI 0.3 info : leafnodes : 14170

RCI 0.3 info : bsp size (Kb) : 1192

Each of these outputs provides further insight into the current BSP optimization and

its progress. Let’s examine each of the messages, which are briefly described in Table 5.4.

L O G G E D M E S S A G E D E F I N I T I O N

Max Depth The maximum depth level that was reached during the render

Max Leaf Size The maximum number of triangles contained within a voxel during the
render

Average Depth The average depth reach during the render

Average Leaf Size The average number of triangles per leaf node

Leaf Nodes The number of voxels used to store triangles; the higher the number,
the more memory require

BSP Size (Kb) The actual memory used for storing the BSP tree

The render was set with a BSP size of 25 and depth of 30, and as you see in the output

log, Max Depth has reached the maximum allowable depth value. You can also see in Max

Leaf Size that the densest leaf node contained 733 triangles, which is far greater than the

limit specified with the BSP size setting. Average Depth (23) shows that in most cases,

fewer voxels were created than the provided setting of 30. From Average Leaf Size (22),

you can see that on average, fewer triangles where placed inside voxels. All together,

14,170 leaf nodes were created for this render.

Fine-Tuning BSP
Once you have retrieved the BSP message log, you can analyze the results and test some

settings. There are many points to contemplate while choosing a good setting. In general,

you don’t want to have your leaf size set to a high value because it would defeat the pur-

pose of optimizing raytracing. That is, if the leaf size is set to 100, it is likely that the max

Table 5.4

Raytrace Accelera-
tion Output

diagnostic and bsp fine-tuning ■ 191

08547c05.qxd 10/24/07 4:19 PM Page 191

depth value you provided will never be reached. This means you’re not taking advantage

of that max value and you’re forcing more ray-triangle comparisons within each leaf node.

But suppose you set the leaf size to 1, provide a good depth value, and let mental ray do

the rest. This too will be very inefficient because mental ray will put one triangle in each

voxel until it reaches the max depth. Then, because they can not be further subdivided, the

remaining triangles will be placed in those last leaf nodes, forming a dense collection of

triangles in few voxels. This too would result in a very slow and inefficient rendering.

A good approach to optimizing BSP settings is usually to start with values from 10 to

20 for the leaf size and 30 to 40 for the depth size. Large scenes typically require more

depth, so you may try 40 to 50 as a starting point in such cases. Tables 5.5 and 5.6 show

the render values used for both BSP depth and size, the render time, and the resulting out-

put statistics from mental ray. The numbers in the Settings Used column in Table 5.6 refer

to the column headings (1, 2, 3, and so on) in Table 5.5.

O U T P U T S T A T I S T I C S 1 2 3 4 5 6

Max Depth 25 30 35 35 40 40

Max Leaf Size 4471 1873 961 961 531 531

Average Depth 21 26 31 31 34 32

Average Leaf size 35 16 9 12 8 13

Leaf Nodes 56,909 197,321 54,3578 375,138 860,342 330,054

S E T T I N G S U S E D S I Z E D E P T H R E N D E R T I M E

1 15 25 1:23.09

2 10 30 33.14

3 10 35 29.66

4 15 35 30.59

5 10 40 30.36

6 20 40 31.69

For fine-tuning BSP, you will normally follow a trial-and-error process that requires

applying specific settings, taking note of those settings, and re-rendering. After rendering

has completed, take note of the info messages results (as seen earlier), including the render

times. By comparing render times and the information from the info messages, you should

be able to reach the optimal settings.

In Tables 5.5 and 5.6, you can see that depth has the most influence by comparing 1

and 2. Typically, low depth values have the greatest influence on render times. At some

point, there will be a middle ground where render times will be relatively close, gradually

increasing as seen with 2 through 6. You can learn more about BSP settings if you look at

the first case (1). Notice that the average leaf size is greater than the size provided for the

Table 5.6

Render Settings
Used and Render

Times

Table 5.5

Render Statistics for
The BSP Tree

192 ■ chapter 5: Quality Control

08547c05.qxd 10/24/07 4:19 PM Page 192

render. Clearly this means that mental ray was forced to, in most cases, exceed the size

limit for the voxels. Normally, for the average leaf size you should aim for a value lower

than the one you provided for size; thus, large average leaf sizes are some form of a warn-

ing sign. From the other tests, you can see that as the depth increases, fewer triangles exist

in the max leaf size and more leaf-node voxels are created. In this case, the optimal setting

would have been numbers 3 or 4.

When you reach the point where an increase in depth results in slower render times,

you may try either increasing the leaf size at a lower depth or reducing the depth size. The

most important part for BSP fine-tuning is finding that point on both sides of the BSP

render settings range where any change results in an increase in render time. Thus, there

should always be some optimal setting that spans across a certain depth and leaf size that

will provide for an optimal render time.

Motion Blur BSP Settings

With motion blur, as cited earlier, a single triangle may pass through several voxels. This

means that the scene, for the purpose of the BSP depth, actually has many more triangles.

In this case, you may use different BSP settings to help deal with the increase in triangle

count. Normally the approach is to reduce the depth, as increasing it will not help with the

additional triangle count. Because the triangles may span several voxels in motion, it is

inefficient to increase the voxel depth; it would never be able to resolve the triangle count,

as voxels are not divided in time. In addition, the triangles exist only for a fraction of the

time within each voxel, which makes it even harder to estimate the results. Thus, you

should maintain a smaller voxel size, assuming the triangles are not always present in each

voxel, for a given time within the motion-blur time interval.

XSI

For fine-tuning BSP with XSI, there is a fantastic script that allows you to select an incre-

ment for the depth setting, start frame, and number of frames to render. These settings are

then used to run several consecutive renders. This script essentially allows you to specify

the range you think may contain the best settings and then execute the script, maybe as an

Note that changing BSP settings have an impacts only render times and does not influence in

any way the rendered image or its raytracing abilities.

Note that resolution and anti-aliasing settings have no effect on BSP settings, so while test-

ing, you should use lower settings to improve render times. You should also make sure scan-

line rendering is disabled so you can get a worst-case scenario while fine-tuning the settings.

diagnostic and bsp fine-tuning ■ 193

08547c05.qxd 10/24/07 4:19 PM Page 193

overnight render. The script executes these settings on top of your best-guess setting (the

depth value you had initially set), recording the results so that when it has finished pro-

cessing, it provides you with what it thinks will be the optimal settings. You can get the

script from the following path: Net View ➔ render ➔ BSP tree Tuner v.(x). The script

should open in your window as seen in Figure 5.28.

Diagnostic BSP Rendering
In addition to running your own BSP test renders, there is a visual tool that can be used for

diagnosing raytrace acceleration. the diagnostic options can be found in the same sections

where the sample diagnostics examples discussed earlier are found (see Figures 5.11, 5.12,

and 5.13). The following option can be used on the command line:

-diagnostic_bsp [depth|size]

And the options listed here can be used from within the host application:

A P P L I C A T I O N L A B E L

Maya Diagnostics ➔ Diagnose Bsp ➔ drop-down menu

(Depth or Size)

XSI Diagnostics ➔ View BSP Tree drop-down menu (Depth or Size)

3ds Max Diagnostics ➔ Enable checkbox ➔ BSP ➔ drop-down menu (Depth or Size)

The diagnostic mode presents a color scheme that goes from blue (lowest depth) to

green, yellow, orange, and red. The red sections represent the max depth level, meaning

areas that reach the max level you provided. Typically you would like to see orange-red

areas rather than a lot of red. Orange-red means those areas approach the max level, with

some leaves at max. Solid red probably means you should either increase the size or pro-

vide a larger depth value. Both BSP Depth and Size indicate the scene status using the

same color scheme; however, as depth also provides an indication for size, I find it the

more useful diagnostic method.

As you can see, these methods offer a means for visualizing the

depth and leaf size within the scene using this color-coded system.

In the Chapter 5 Color Images folder on the CD, the Diagnostic

Color Coding image has BSP Depth selected as the diagnostic

method. As you can see there, the scene is subdivided more in areas

that have more triangles. This colorful diagnostic method can help

you troubleshoot certain objects in the scene as well as find some

Because the BSP Tree tuner script is obtained online, its location or version may change, so

it’s best to let XSI find the URL.

194 ■ chapter 5: Quality Control

Figure 5.28

XSI BSP Tree tuner
script

08547c05.qxd 10/24/07 4:19 PM Page 194

good starting values for BSP testing. It is not an alternative to actually performing some

test cases to make sure you are on the right track, as with the examples presented earlier in

the section “Fine-Tuning BSP.” If you are determined to avoid any raytrace BSP testing,

you should at least run a few of these colorful diagnostic renders to help alert you to any

really bad settings or a very problematic surface. Again, the impact of the right settings can

become a matter of hours, not just seconds per frame!

In practice, you should rarely use high size values, and as cited earlier, good starting

points range from 10 to 20. For depth, if the scene is very large you should try ranges

from 30 to 50 as a starting point. For motion blur, reduce the depth size by 10 to 15 per-

cent. While rendering, you can examine these settings in the diagnostic mode and then

choose a few that you think will provide the best results and leave them as a batch render

overnight for testing.

When you run BSP tests, to get a real indication for the render times you must disable

the diagnostic modes. You cannot analyze the BSP statistics for render times while using

this diagnostic method because the diagnostic render time is more representative of how

long it took to preprocess the tree and provides output info on the render statistics. In

such cases, the render times are not in any way a representative of real rendering times.

For example, if you render two different depth values, such as 10 and 40, the preprocess-

ing phase for the 40 may be a couple of seconds longer and result in a slower render.

However, when you render in color you will find that the 40 may be 300 percent faster.

Thus, the diagnostic modes are good for visual interpretation and reading the statistics

for BSP settings.

diagnostic and bsp fine-tuning ■ 195

08547c05.qxd 10/24/07 4:19 PM Page 195

08547c05.qxd 10/24/07 4:19 PM Page 196

Lights and Soft Shadows

This chapter introduces light shaders, area lights, and soft shadows. You will

learn how the basic mental ray lighting models (infinite, point, and spot lights) are defined

and how more-complex lighting models, including area lights, are enabled. Area lights allow

for realistically simulating two significant light characteristics, light wrapping and distance-

based shadows, to form realistic soft shadows. In this chapter you will learn how to control

lights and raytrace shadows. In Chapter 7 you will learn more about raytrace shadow

algorithms (optimization settings) and shadow mapping, and in Chapter 12, you will use

area lights in practice, as well as other advanced indirect lighting techniques, to provide a

more complete light solution.

In this book I assume you are familiar with basic direct lighting scenarios such as three-

point lighting and the techniques for implementing lights within your host application. This

chapter provides a solid understanding of mental ray light shaders and their implementation.

It also looks at render considerations, especially with compute- and time-intensive features

such as area lights to simulate realistic light characteristics. For an introduction to lighting

techniques, I highly recommend 3D Lighting: History, Concepts, and Techniques by Arnold

Gallardo (Charles River Media, 2000).

The chapter covers the following topics:

■ mental ray Lights

■ Area Lights

■ Host Application Settings

■ Light Profiles

C H A P T E R 6

08547c06.qxd 10/24/07 4:20 PM Page 197

mental ray Lights
mental ray provides a basic light model through which you define various light types for

direct illumination. There are four common light types: point, spot, infinite, and infinite-

with-origin lights. If we look at a simple excerpt from an XSI light shader, you see the

simplicity of this “initial” lighting model:

light “Light” = “soft_light” #applied light shader

#base settings below

origin 0 0 0

direction 0 0 -1

spread 0.866025

#additonal (optional) settings for shadow maps and indirect

#illumination below

shadowmap on

shadowmap resolution 512

shadowmap softness 0.002

shadowmap samples 20

energy 7500 7500 7500

exponent 2

caustic photons 10000

globillum photons 10000

end light

Notice that we don’t explicitly declare a light type. Instead, we define the type by

declaring some combination of settings with the direction, origin, and spread options.

For lights specified within your host application, some combination of these three options

will be used to define a light model. In this example, because the host has declared all three

options, mental ray knows the light is a spot light. For point lights, only origin is provided.

If only direction is specified, it’s an infinite light, and if both origin and direction are

provided, then it’s infinite with origin. The infinite light casts infinite parallel rays within

a scene regardless of its placement, and infinite with origin is a directional light that has a

“back” side relative to its origin, so light will not cast on objects that are positioned behind

the light. (This type is not supported in all hosts.)

Light Shaders
The basic light model acts as a component shader so that complex lighting models can be

achieved by combining different component shaders to add effects such as texture projec-

tion, light effects, and light profiles (used to simulate real-world light models). The common

ground is that the base shading model selects one of four light types, and then additional

options or light shaders are appended for specific light characteristics. For example, the

excerpt in the preceding section created a spot light shader.

198 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 198

The basic light model handles five types of primary options:

• Basic light type options (defining the light type)

• Area light options

• Photon emission options

• Shadow maps

• An additional light shader through which other options are applied.

The base shading model excerpt in the preceding section used this statement: light

“Light” = “soft light” to incorporate a spot light shader. Here is the definition of the soft

light shader:

shader “soft_light” (

“mode” 1,

“color” 1 1 1 0,

“intensity” 0.75,

“shadow” on,

“factor” 0.75,

“atten” on,

“start” 1,

“stop” 100,

“spread” 5,

“use_color” off,

“energy_factor” 0.75)

This is XSI’s default light shader implementation, which is added with each light

type (point, spot, and infinite), providing additional light options. You can see that this

XSI shader provides more specific spot light settings, such as attenuation and cone

radius, as well as a light color. Various different light shaders can be appended to the

base light declaration through your host application, or by manually inserting them

within .mi files.

As you can see, both the light’s base declaration and the light shader (regardless of

the host application) have settings for the light’s falloff over distance, its spread, and its

penumbra falloff. The spread option in the base shader excerpt is simply a definition of the

light radius, providing the angle for projected light. Light shaders, in this case XSI, then

add additional properties such as the cone property (found under the lights property edi-

tor in XSI) that defines the second inner radius (the light penumbra), providing a softer

falloff along the outer cone radius. The factor option refers to shadow opacity, defining

the shadow transparency while superimposing shadows (the umbra) over surface colors.

All these and more are typical settings that can be achieved in any host application as seen

under “Host Application Settings” later in this chapter).

mental ray lights ■ 199

08547c06.qxd 10/24/07 4:20 PM Page 199

When shadows are enabled through the light shaders, they default to raytrace shadows

unless a shadow map is explicitly specified with the base model, as seen in the first excerpt.

Specifying a shadow-map option tells mental ray not to use raytrace shadows. Thus, once

shadows are turned “on” within the light shader, shadow-map options can then also be

enabled.

Another important light characteristic is light decay over distance. Light in host appli-

cations may simulate no decay, linear, or inverse square falloff decay, typically applied

using a light exponent falloff. With mental ray the exponent that describes a light’s falloff

is controlled in various ways by different light shaders, such as the mental ray spot, physi-

cal, photometric, and CIE D illuminant light shaders, to mention but a few. Typically,

mental ray’s basic light shaders use attenuation start and stop values to define the light’s

falloff range, and physically accurate light shaders, such as the physical light shader, use an

inverse square falloff decay as with real light.

Most native Maya and 3ds max light types have corresponding mental ray shaders, so

you can use them effectively; you can also connect alternative mental ray–specific light

shaders, which are all declared through the host during the render translation.

Umbra and Penumbra
The penumbra is the region where the terminator line divides light from shadow, as seen in

image A in Figure 6.1. The light penumbra is the partially occluded light region, transitioning

from fully occluded light (umbra) to un-occluded light. Penumbra transitions can be rela-

tively smooth, both from the shadow’s umbra to light and along the light’s terminator

line, as seen in image A in Figure 6.1.

With respect to shadows, area lights provide the benefit of simulating shadow falloff

more realistically than shadow maps or plain-vanilla raytrace shadows, which create shad-

ows that are either pixilated (a result of depth-map shadows), very sharp, or unrealistically

blurred. In Figure 6.1 B, the shadow simulates some form of penumbra falloff using an

area light’s soft shadow.

All host applications provide controls for determining whether a light affects diffuse shading,

specular shading, or both. This ability is especially important with lighting strategies and with

indirect illumination, where you may want to affect only a single shading component, such as

diffuse. One problem when using a complex lighting scenario involves multiple specular

highlights on objects. By default, all these light types affect specularity, so when you add fill

lights, you’re adding additional highlights into the scene. This sort of “artifact” is one of the

telltale signs of a poor lighting job because the objective of fill light is not to add highlights

but to help define form. In any lighting scenario, consider which lights should affect both dif-

fuse and specular and which should be diffuse only.

200 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 200

Area Lights
mental ray provides an additional set of options, which you can add to the base light shaders

options to enable area lighting, discussed later in this chapter in the section “Area Light

Settings.” Area lights can be enabled regardless of the light type (which is also an “option”);

however, the base light model should specify either a point or spot light type, and thus

area lights should not be used with infinite light sources.

Let’s first review some of the area light’s illumination characteristics.

Area Light Characteristics
Real-world light travels toward an illuminated point from various directions and of

course from light sources of various sizes and shapes. The light source may be as large as

an open window or as small as a lamp. When we apply lighting in CG, there is no real

representation of the light’s size or of light bounce (indirect illumination), which is why

we need to apply several fill lights, compensating for the misrepresentation of a light’s

physical characteristics.

One of mental ray’s advantages is its ability to apply area lighting instead of just light

from infinitely small light sources. The concept behind area lights is to define a region that

emits light from various points within it, similar to using an array of infinitely small lights.

Chapter 12, “Indirect Illumination,” will discuss physically accurate lighting in detail and will

look closely at using area lights for realistic light simulation.

A

PenumbraUmbra

Terminator line
(penumbra)

B

area lights ■ 201

Figure 6.1

Defining umbra and
penumbra regions

08547c06.qxd 10/24/07 4:20 PM Page 201

With area lights, mental ray distributes several lights within the defined area light region,

sampling their effect in the scene. We can control the number of lights that are randomly

distributed along the width and height (U and V coordinates) of the area light region. The

light region may take several forms, which may be either 3D (such as a sphere) or 2D

(such as a flat rectangular shape). You will learn more about light-distribution options and

shapes in the section “Area Light Settings” later in this chapter.

Figure 6.2 demonstrates the distribution of light from a light array (using infinitely small

point lights) in comparison to an area light. For the area light (image B), an array of 3 × 3

(samples) lights has been provided, similar to the 3 × 3 light array over the same area shown

in image A. Note that the white-bordered region and the circular shapes seen in image A

only identify the point light locations and region using simple shapes with a constant shader.

The standard point light array (A) doesn’t provide any smooth interpolation between shad-

ows, and shadows maintain focus through the chairs, forming sharp alternating stripes on

the floor, a typical characteristic of plain-vanilla raytrace shadows, which don’t diffuse

over distance. Notice that in both cases, the coverage “shape” the shadows form is similar;

it’s similar because the light’s spread behind the chairs is based on the effect of light emitted

to that direction from a given angle and with a given size. So you can see that the point

light array and the area light cover similar areas and cast similar shadow patterns. However,

the area light (B) provides for two significant improvements: First, both the light and the

shadows are softer because they are sampled in a much more effective way, providing a

more aesthetic solution that re-creates natural light spread, unlike the sharp shadows seen

in image A. Second, the diffused shadows also reduce the likelihood of flickering artifacts

that might be caused by the shadows’ sharp alternating lines, as seen in image A.

A B

The two primary advantageous of area lights are realistic light wrapping and distance-based

shadows. Both of these advantages are made possible by the light’s physical scale, unlike the

standard infinitely small light models typically used with 3D CAD applications.

202 ■ chapter 6: Lights and Soft Shadows

Figure 6.2

Area lights provide
for simulating an

array of lights from a
given region to

resemble a large
light source. They
utilize a more effi-

cient sampling
process than light

arrays and provide
more realistic results
for both soft lighting

and distance-based
shadows.

08547c06.qxd 10/24/07 4:20 PM Page 202

Light Wrapping

When light from a large area illuminates an object, it “wraps” around it, providing diffused

soft lighting, which usually provides aesthetic high-quality lighting, far more realistic than

the unsophisticated lighting of infinitely small source lights. Figure 6.3 shows why. With

infinitely small source lights, the light “rays” travel from a given point only (A) rather than

from a large region (as with B and C). Because we can define a region with area lights, we

can then better simulate soft lighting that wraps around surfaces, illuminating what other-

wise would fall into umbra regions and thus providing both softer lighting and shadows.

As you can see, the rays from both corners of the area lights in B and C wrap around the

cylinder based on the light’s scale. You can conclude that a given point on a surface is

influenced by several light rays cast from different emission points (from the area lights

region), some of these rays may travel in an unhampered direct line, or alternatively pass

occluding (shadow-casting) surfaces; others may even transmit through transparent (e.g.

colorful glass) surfaces, and thus the total incoming light (irradiance) at a given point may

be influenced by several different color-influencing factors, contributing to a more realistic

rendering of light. We will refer to this figure in the following sections as we examine shadows.

Figure 6.4 illustrates the effect of a large area light when lighting a cylindrical shape. All

the cylinder vertex normals are perpendicular to their faces, providing a faceted appearance

so that you can easily recognize the gradation along the geometry surface. In image A,

you can see the relationship between the area light’s size (rectangular shape) and its effect

on light wrapping. Notice how the area light illuminates the cylindrical shape past its

midpoint (the terminator line), which with an infinite light would be the last point to

receive light, as seen in image B1. Also notice in image A the shadows’ diffused appearances,

Umbra

A

Umbra

Penumbra

Penumbra

B C

Figure 6.3

The effect of source
light size. A is an
infinitely small
light source; B and C
are two area light
sources, which
demonstrate light
wrapping and
distance-based
shadows.

area lights ■ 203

08547c06.qxd 10/24/07 4:20 PM Page 203

corresponding to Figure 6.3 C. Thus, as the area light scales up in size, more faces receive

light, even those past the surface midpoint (aligned with the numbers), where the face

normals are perpendicular to the light aim direction, as seen in the numbered examples in

Figure 6.4 labeled B1 through 5, where each image is rendered with a larger area light

source, making the cylinder more susceptible to light, wrapping illumination effects.

Distance-Based Shadows

One of the more expensive tasks we face is softening a shadow’s falloff, providing a more

natural “soft shadow” look. Soft shadows can be accomplished in various ways, based on

whether you choose shadow maps or raytrace shadows and whether you want to empha-

size realism or just provide a “creative” shadow blur, such as with a Photoshop blur effect.

The more you focus on realism, the more render-expensive the task becomes.

B

1

2

3

4

5

A

In the image “indirect illumination effects” in the color section, you can see an example of

soft light, demonstrating the advantages of area lights. As you can see there, the light has a

nicer spread on the surface and feels more realistic than a more linear CG infinite light.

204 ■ chapter 6: Lights and Soft Shadows

Figure 6.4

Area lights enable
light to “wrap”

around surfaces,
even past their

midpoint, which
with standard

lighting can be
achieved only

using fill lights.

08547c06.qxd 10/24/07 4:20 PM Page 204

Figure 6.5 demonstrates render equivalents for Figure 6.3 A, B, and C. Image A demon-

strates the typical plain-vanilla raytrace shadow, which solely provides a sharp shadow

and lacks any penumbra definition, so only the umbra is present. If you increase the scale

of the light, maintaining a relatively small source light compared to the illuminated object,

the penumbra light falloff will begin to appear, and as the area light region scales up, the

shadow umbra contracts, simulating distance-based shadow falloff. Thus the effect of

distance-based shadows is the result of shadows that receive light rays from various direc-

tions, illuminating areas behind occluding objects (shadow areas) more accurately. Thus

the effect is dependent on various directions of light, a direct result of the area lights scale.

A

B

C

Figure 6.5

A comparison
between different
shadow methods for
producing natural
soft shadows:
(A) basic raytrace
shadow, (B) area
light source smaller
than the occluding
object, (C) area light
source larger than
the occluding object

area lights ■ 205

08547c06.qxd 10/24/07 4:20 PM Page 205

Notice that as a shadow falls farther away from the shadow-casting surface, the

penumbra region (blur) increases, diffusing the shadow as light rays “reappear” behind

the surface. However, when the light source size is infinitely small, as in A, the shadow

falloff lacks the realism of light wrapping and soft shadows. Both B and C demonstrate

distance-based falloff; in image C, an area light that is somewhat larger than the occlud-

ing surface is used, providing a different realistic appeal than with image B’s smaller area

light source. Similarly, you can see a completely diffused shadow, created by a very large

area light source, in Figure 6.4 image A. The different area light sizes can then be used to

apply more realistic lighting, as well as introduce different moods and hint at the scale of

the light source, such as a flask light in comparison to a flood light.

Point and Spot Area Lights

As cited earlier, area lights are either spot or point light types. The result is very different

with each light type. Point area lights typically are better for simulating long light sources

(fluorescent lights), illuminating along a given distance, and spot area lights are better

for simulating localized soft lights, such as halogen reflector lights, illuminating in a

given direction. The term “long” refers solely to the area light shape scale, which can be

scaled nonuniformly. With spot area lights, the light maintains the spot light’s spread,

appearing as a larger source light, such as a flood light, localized to a given area. Figure 6.6

demonstrates the differences between using long spot and point area lights (columns A

and B, respectively). As you can see, the point area light (B) provides better lighting

than the spot area light when a long light source is used. You can also see that the spot

area light maintains the cone’s angle, but “stretches” the light emission along the area

light’s shape (length), which is why it is better suited for uniformly scaled light sources

than with a long stretched light. Notice how the shadows in the top figure of column B

(point light) better resemble a fluorescent light’s shadow characteristics, spreading light

realistically behind the surfaces as expected from a fluorescent light. With the spot light,

however, the shadow simply appears “enlarged,” unnaturally stretched along the area

light shape. Spot area lights project their shadows similar to the way light projectors do,

mimicking a shadow from a large or distant uniform light source, as seen in column A.

Clearly point lights are more efficient at simulating long area-light source shadows opposed

to spot lights.

As the source light is closer to the surface, the light’s intensity is more powerful and the shad-

ows are sharper. With lights farther from the surface, the lighting and shadows appears softer

and more diffused, requiring more sampling to produce high-quality images.

206 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 206

Area Light Settings
Area lights are enabled by adding additional options within the light’s declaration block in

the .mi file. The following excerpt shows how a spot light is converted into an area light.

light “spotLightShape1”

= “spotLightShape1:shader”

origin 0. 0. 0.

direction 0. 0. -1.

spread 0.93

#the following 4 rows are the area light declarations

rectangle 0 2 0 # shape type, U edge (coord)

2 0 0 # V edge (length xyz coordinate)

8 8 1 2 2 # sampling High, and Low

Visible # light visible in render

end light

A B

area lights ■ 207

Figure 6.6

The effect of using a
long area light with
both spot and point
light sources

08547c06.qxd 10/24/07 4:20 PM Page 207

As you see, the area light options are added onto the main light shader, the base struc-

ture, and in this case, a spot light. The area light declaration specifies the three following

options, as seen provided in the same order in the preceding lines of code:

[shape type] [shape dimensions] (*first two rows above)

[u, v sampling][use low level][u, v low sampling]

[visibility]

In the excerpt, the area light options use a rectangular area light shape (always cen-

tered on the light), with U and V lengths of 2 units determining the area light scale.

Different area light shapes use different scale settings, as you’ll see in the following sec-

tion. In the excerpt, the five numbers that are identified as sampling settings (8 8 1 2 2)

have a significant influence on both quality and render performance. In the following

sections, you will learn how to use these settings, as well as examine their rendering

characteristics.

Area Light Shapes

There are six types of area light shapes, and as you’ll see, not all of them are provided in

each host application. They are listed in Table 6.1.

Area light shapes can simulate a multitude of light effects. Rectangular area lights can

be used to fill in windows, simulating a large light spill into a room or long fluorescent

lighting that casts light downward, such as in a store or parking lot. Disc-shaped lights can

resemble large round projectors, or even strong flashlights that produce softer lighting. 2D

shapes emit light 180° along the front side of the area light and can be seen with the sud-

den transitions from light to dark in the two top images in Figure 6.7.

S H A P E S C A L E C O M M E N T S

Rectangle U and V vectors 2D 180° light scatter

Disc Aim vector, radius 2D 180° light scatter

Sphere Radius 3D 360° light scatter

Cylinder Axis vector, radius 3D 360° light scatter

Object Derived from shape Instanced shapes that may be used for light emission*

User Derived from shader Light shader that implement a geometric light shape for
light emission*

* Not implemented in any usable form within the host applications, and noted here only for completeness

Table 6.1

Area Light Shape
Options

Note that in all these discussions on area light shadows, I refer solely to raytrace shadows.

Shadow maps should not be used with area lights, even though you are “permitted” to

enable them within host applications.

208 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 208

3D area light shapes provide for 360° of light emission, and so their entire surroundings

will be illuminated. Typically, you would use the cylindrical shape to simulate neon lights,

or other types of long light sources, and the sphere-shaped light to resemble omnidirectional

lights. Both types are seen in the lower section of Figure 6.7 projecting light in all directions.

Visibility

The Visible option enables the area light’s shape to appear in the rendered image as a visible

light source, as seen in the images in Figure 6.7. Regardless of whether the light source is

visible to primary rays, it is seen in reflections, providing a nice “glowing” light effect based

on the light’s intensity. It can be seen reflected in various figures throughout this chapter.

Clearly the shape and scale of the area light (in 3D) has tremendous effect on both the visual

results and the rendering performance.

Figure 6.7

Area light shapes
influence light
spread within the
scene.

area lights ■ 209

08547c06.qxd 10/24/07 4:20 PM Page 209

Area Light Sampling

As you saw in the base light excerpt, five numerical values (8 8 1 2 2) are used for sampling,

representing the following settings:

U, V sampling

Low level

U, V low sampling

U , V S A M P L I N G

Area lights use an internal mental ray algorithm to calculate the number of light sources

randomly distributed within the area light region. The distribution density is based on the

two first sampling values (8 8), which define a relationship between the light distribution

within the area light’s shape along the U and V coordinates—for example, the height and

width for a rectangular area light shape. U, V sampling is then used to define the number

of emission points mental ray calculates within the area light region, controlling the quality

of the area lights’ rendering, particularly with penumbra transitions. The lower the sam-

pling value, the more artifacts tend to appear in the penumbra region for the light because

fewer emission points are sampled. Figure 6.8 demonstrates the difference between high

and low sample values. As you can see, the higher the values (image A), the more samples

taken and the smoother the transition over the penumbra region, as opposed to low sam-

pling used with image B.

As you know, all types of shapes in 3D use 2D UV (texture space) coordinates for

determining how a texture is mapped across their surface, as with NURBS surfaces. men-

tal ray then defines the area light’s emission distribution (density) by mapping the light

distribution along the shapes’ U and V coordinates. Area light shapes such as the rectangular

or disk shapes are relatively uniform in scale, and so you may use uniform values for UV

A B

The area light shape has a significant effect on sampling values. When using 3D shapes, you

should consider that the light distribution is 360° around the light shape and so requires

sampling larger regions in the scene, producing much slower render times.

210 ■ chapter 6: Lights and Soft Shadows

Figure 6.8

Light sampling
enables you to

improve the quality
of the light along its

penumbra transition
and soft shadows.

A shows higher
sampling values,

and B shows lower
sampling values.

08547c06.qxd 10/24/07 4:20 PM Page 210

sampling values, distributing lights evenly along their uniform shapes. Spheres and cylin-

ders, as you know, when unwrapped provide for a longer coordinate along the U axis, as

seen in Figure 6.9. With mental ray area lights a sphere or cylinder shape U coordinate

runs along the “equator,” and when unwrapped into 2D texture space, it’s significantly

longer than the V coordinate, correlating to width versus height, respectively.

When dealing with non-uniform shapes, particularly after scaling (such as a rectangle

or cylinder into a fluorescent light), you should consider using the same relative ratio

for the area light sampling U and V values. For example, a rectangular area light that has

been scaled to a width of 10 units and a height of 1 unit to provide a fluorescent light

would use values such as 20 and 2 (U:V) or some compromise such as 15 and 4, which

still provides more samples for the longer axis. In contrast, if a cylindrical shape is used

for simulating long light sources, then the ratio might be more like 20 and 8, because the

V coordinate wraps around 360°, requiring more rows of lights (8) to cover the entire U

length. Note that as cited earlier, mental ray uses these numbers to derive a relationship

and density; the actual number of light sources used is greater than the specified number.

Let’s look at optimizing sampling when dealing with area lighting in either reflections

or refractions.

L O W L E V E L A N D L O W S A M P L I N G

Two additional sampling options, low level and low sampling, are enabled by adding their

numerical representation into the sampling statement, as seen in the excerpt earlier with

the three last numbers (1 2 2). These options are optional; if they are not specified, high

sampling values (8 8 in the excerpt) are used for all area light sampling.

Low level is used only to enable low sampling, much like an on/off switch. When set to

a nonzero value (1), low sampling is enabled. The low level value also selects the level of

secondary rays that use low sampling values. For example, if set with a value of 3, then after

2 reflections or refractions, low sampling values will be used (instead of high sample values)

from the third level of reflections (or refractions) and until that current ray stops bouncing

(reflecting) in the scene.Low sampling is then used to define the area light sampling quality

V

U

V

U

Figure 6.9

Sphere and
cylindrical UV
texture coordinates
are non-uniform
scales, requiring
non-uniform light
distribution relative
to their scales.

area lights ■ 211

08547c06.qxd 10/24/07 4:20 PM Page 211

as it appears in reflections or refractions. Providing lower sampling values can improve

performance while rendering. Area lights, especially with very soft shadows, can be very

time-consuming renders, but reflections or refractions do not need to maintain the same

sampling integrity as direct lighting regions.

Figure 6.10 demonstrates the relationship between sampling and low-level sampling

with reflections. Image A has low sampling disabled (low level is set to zero), and so the

same sampling values were used for both the direct light and shadows and the reflected

light and shadows. Images B and C have low sampling enabled (set to 1) and used a much

lower low sampling value for optimizing the area light’s appearance in reflections. As

you can see, image B is a more direct 1:1 reflection, and so some artifacts (grainy shad-

ows and light penumbra) appear in that image. However, in many cases the reflection is

not applied in such a 1:1 relationship because the reflective surface may take any form.

Image C shows a more practical case, where the 100 percent reflective sphere surface

deforms the reflection and shrinks it into a smaller region. Note that the low sampling is

sufficient for the sphere, effectively optimizing the render. More samples are used where

needed (the direct light), and fewer are used for the reflected light.

A B

C

Low sampling values should generally maintain a similar ratio as “high” sampling, using

smaller values. However, nothing is set in stone; the final determination should be based on

the visual results.

212 ■ chapter 6: Lights and Soft Shadows

Figure 6.10

The benefits of
applying low sam-

pling for rendering
area lights in reflec-

tions or through
refractions

08547c06.qxd 10/24/07 4:20 PM Page 212

Host Application Settings
Now we can examine the host applications’ general light settings for

source lights, particularly area light settings. We’ll use raytrace shadows

because they are the only shadow type compatible with area lights. In

Chapter 7, “Shadow Algorithms,” you will learn about shadow maps.

Of course, raytracing must be enabled in the global render settings, with

appropriate reflection, refraction, and shadow limits for viewing raytrace

characteristics.

The last section in this chapter provides insight into using light profiles

with Maya and 3ds Max.

Maya
Maya provides a variety of light sources, all compatible with mental ray except for the vol-

ume light type. The point, spot, area, and directional light sources all have an additional

mental ray rollout with mental ray–specific attributes, seen in the Attribute Editor in

Figure 6.11. The “global” light settings are derived from the Spot Light Attributes rollout

(similarly labeled with each light type), such as Color and Intensity, light falloff (Decay

Rate), cone (Penumbra Angle), spread (Cone Angle), and so forth (based on the light

type) also shown in Figure 6.11. Cone Angle and Penumbra Angle are only used with spot

lights, and Decay Rate is not used with directional lights. In this chapter, we’ll primarily

focus on the mental ray Area Light, Custom Shaders, and Light Profile (available with

point lights) rollout attributes and raytrace shadow casting.

Under the Custom Shaders rollout, the Light Shader attribute provides a means for

mapping custom mental ray light shaders. You can map mental ray light shaders either by

selecting the checkered box or by creating the shader in the Hypershade window and then

dropping it over the empty mapping link. In the Hypershade window, under Create men-

tal ray Nodes ➔ MentalRay Lights, you can find several mental ray light shaders, listed in

Figure 6.12.

Custom Light Shaders

Once you map the Light Shader attribute with a custom light shader, mental ray will

determine which Maya light settings should be overridden by this shader during render-

ing. Some of these light shaders, such as mib_cie_d and mib_blackbody, provide the

Kelvin scale for specifying color temperature and an additional scalar value to determine

intensity (brightness). The mib_light_photometric shader allows you to specify light

Remember that 3D doesn’t really use mirror-like simulations to pick up reflections; rather,

reflections are “additional images” generated by rendering (“looking”) through the reflec-

tion’s perspective, and thus lower sampling can significantly improve overall render times.

host application settings ■ 213

Figure 6.11

Maya’s spot light
attributes, display-
ing the mental ray
rollout for mental
ray–specific light
settings

Figure 6.12

In the Hypershade
window, under the
mental ray Nodes
rollout, you can find
various light
shaders.

08547c06.qxd 10/24/07 4:20 PM Page 213

profiles; see the section, “Light Profiles,” later in this chapter for more details on using light

profiles with Maya. The mia_physicalsun shader is used for realistic light simulations with

the mia_physicalsky lens shader and final gather, a topic further discussed in Chapter 13:

“Final Gather and Ambient Occlusion”.

The physical_light shader is used for simulating physically correct lighting models, and is

primarily used with indirect illumination simulations that require accurate light evalua-

tions. This shader imposes a realistic inverse square light falloff rate and raytrace shadows,

without an option to change or disable these settings. Let’s briefly review its attributes:

The Color attribute allows you to control light intensities using light energy specified as

RGB color values. If you click on the Color attribute, the Color Chooser window opens and

you can see that the RGB values are set by default to 1000. As with real-world radiance, light

energy can be specified using values beyond the 0–1 range, providing a high dynamic range

of light within the 3D environment.

The Cone attribute works only with mental ray spot and spot area lights, defining an addi-

tional inner cone angle. The result is similar to using the Cone Angle and Penumbra Angle

(using a negative value) with Maya spot lights. A value of zero provides for a harsh penum-

bra, and a value of one provides for a smoother falloff.

Threshold defines a minimum illumination value, below this percentage light influence

has no effect; it is not cast at all. You can use the Threshold attribute to control the light’s

influence region. By increasing its value you contract the light towards its brighter areas.

Threshold is mostly intended for optimizing rendering; areas that receive very little light

are cut out and will not be sampled..

The Cosine Exponent attribute is used only with mental ray area lights (rectangular or disc

shapes) as a means for contracting the illumination area. For example, an area light aimed

downwards in a room casts light on the walls from a given height, so that an increase in

value will push the light influence downwards, providing for a narrower light region. In a

way it’s similar to Maya’s Cone Angle attribute defining the general light region, but also

changes the light ratio from bright to dark. In Figure 6.7, the two area lights (rectangular

and disk) are attached to a physical light shader and the Cosine Exponent attribute was

used to render a nicer falloff from the area light and outwards.

Most of these shaders’ abilities can also be achieved through Maya’s light shader, such

as specifying an inverse square decay rate, as well as specifying high RGB color values for

intensity, To better understand the character of light and the terms cited above, see

Chapter 9: “The Fundamentals Of Light and Shading”.

Shadows—General

Typically, with Maya you enable shadows under the light’s Shadows ➔ Depth Map Shadow

Attributes or Raytrace Shadow Attributes. With raytrace shadows, the Shadows ➔ Raytrace

Shadow Attributes rollout, seen in Figure 6.13, enable both Maya and mental ray raytrace

214 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 214

shadows regardless of the light type or whether its an area light

or standard light. The Shadow Color attribute, as expected,

enables you to apply a color value for the shadow. Shadow

Color also sets the shadow umbra transparency value, and

thus defines both transparency and color with shadows.

Raytrace Soft Shadows

Using the Raytrace Shadow Attributes rollout, you can simulate distance-based shadows.

Increasing the Light Radius attribute provides a penumbra falloff for the shadows region,

as seen in images B and C in Figure 6.5. This provides for a semirealistic shadow that sim-

ulates a real size light source for shadow casting only. Note that although the shadows appear

to wrap around the object, the light itself will not exhibit any light wrapping effects, as

discussed earlier under “Light Wrapping”. As the Light Radius attribute increases, the

penumbra’s “blur” increases, requiring more samples to reduce visible grain, providing a

higher-quality render. Additional samples are introduced through the Shadow Rays

attribute; a value of 20 is usually a good sampling starting point.

Maya—Raytrace Shadow Limits

Ray Depth Limit is an extremely important attribute; it defines how many times a ray-

trace shadow may be seen in the scene. This value needs to be increased along with the

Render Settings ➔ mental ray ➔ Raytracing ➔ Shadow Trace Depth attribute, which is the

same setting on a global level. It will not suffice to increase just one of these setting if

the other remains low. Both settings deal solely with the visibility of raytrace shadows,

defining the number of levels shadows appear on, penetrate through, or reflect on other

surfaces.

Figure 6.14 illustrates Ray Depth Limit values. The two upper images (A and B) are

of a transparent plane on top of an opaque plane, showing the effect on refractions, and

the lower two (C and D) show reflections. For both images on the left side (A and C), the

value of 1 was used, so only direct shadow light effects are visible. In the two images on the

right (B and D), the value is increased to 2 for both Ray Depth Limit and Shadow Trace

Depth (locally and globally), and we see the effect on both reflections and refractions. The

increased value enables us to see the shadow through the refractive surface (B) and in the

reflective surface (D).

Maya mental ray Area Light attributes

For area, point, or spot lights, the light’s Attributes ➔ mental ray ➔ Area Light options offer

mental ray–specific attributes for enabling area lighting, as seen in Figure 6.15 for a spot light.

Once the Area Light attribute check box is enabled, the current light functions as an

area light. The Type attribute specifies the area light’s geometric shape, which is immedi-

ately made visible in the viewport (centered on the light). Specifying the size for the light

host application settings ■ 215

Figure 6.13

Maya’s Shadows
rollout enables
mental ray raytrace
shadows and
shadow color con-
trol with all light
types.

08547c06.qxd 10/24/07 4:20 PM Page 215

is then simply a matter of scaling the light in the viewport as you would with any other

object, or you can enter numeric values into the Channel Box X , Y, and Z scale transform

options (Z scale is applicable with 3D area light shapes only).

Use the Visible check box to render the area light as a visible light source. High Sample

Limit with a value of 1 (or greater) enables the Low Samples attribute. Both High Samples

and Low Samples work as described in the section “Area Light Sampling” earlier in this

chapter, where the first value represents the U sampling (length) and the second value

represents the V sampling (height).

As of Maya 8, the Area Light rollout has

been removed from point lights (unfortu-

nately); instead, the Maya area light should be

used. If you create a spot light and enable the

mental ray area light attribute, you can then

Although you may scale lights into any nonuniform shape, such as a flat sphere, mental ray

will render using only the Light Shape types it supports. For example, the mental ray sphere

shape uses a radius, thus the scale will export a radius value, rendering a uniform sphere,

regardless of any nonuniform shape you may have defined. The same is true with a cylinder

that takes a length and radius, so that nonuniform length is supported with a given radius.

A B

C D

Figure 6.14

Maya shadows
can be limited to

penetrate or reflect
n number of times

based on the
Shadow Trace

Depth attribute:
(A) refraction with

Shadow Trace
Depth = 1; (B) reflec-

tion with Shadow
Trace Depth = 2.

(C) reflection with
Shadow Trace

Depth = 1;
(D) Refraction
with Shadow

Trace Depth = 2.

216 ■ chapter 6: Lights and Soft Shadows

Figure 6.15

Maya mental ray
area light attributes

under the mental
ray rollout ➔ Area

Light

08547c06.qxd 10/24/07 4:20 PM Page 216

convert the light type to point light, maintaining the area light settings even though they

are not visible. This workaround is primarily for “older” scenes that have been constructed

with point area lights.

The Maya Area Light source light is not a real mental ray area light. Thus to avoid con-

fusion, note that Maya’s area light type (shape) is irrelevant (as an area light); however,

when Area Light ➔ Use Light Shape is enabled, the mental ray area light shape appears on

top of Maya’s area light shape (mental ray’s shape always prevails). The settings are also a

bit different, where for both High Samples and Low Samples only one numerical input is

provided correlating to the U samples, as discussed earlier. Currently (Maya 8) the area

light is exported using that value as n samples on U (only), and a default value of one for

V samples regardless of your intentions. With Maya 8 and 8.5 (currently), when you save a

scene and reload it the area light settings are reset (you loose your settings). You can down-

load a corrective script from www.Highend3D.com; search for “area light” under Maya

downloads.

XSI
All of XSI’s light types are supported by mental ray. Their tight integration means that XSI

provides many component base shaders, integrated into the light options and not as sepa-

rate mental ray light shaders. XSI provides the three base light types: infinite, point, and

spot. It also provides an additional two area lights, neon and light box, XSI also provides

an additional option for creating a light rig, comprising several infinite lights that base

their color intensities on image color values (HDR images are especially useful

with this technique), also known as image-based lighting techniques.

If you look at the light settings for any of these lights, such as the spot light in

Figure 6.16, you see how XSI implements its default light shader. Under the Light

rollout, four property tabs appear: General, Shadow Map, Area, and Photon.

The common ground for all these tabs is that they are part of the base mental

ray shader structure and not part of the light shader. Thus, all these top-level

tabs are equivalent to the light shader settings seen in the base light excerpt

earlier in this chapter under the “mental ray Lights” section. The soft_light

properties rollout seen in Figure 6.16 is in fact the same light shader appended

to the base light shader model, seen in the excerpt examples earlier—the default

XSI light shader.

This chapter examines both the General and Area property tabs. The Gen-

eral tab provides the mental ray base shader settings for options such as origin,

direction, and spread, which are defined by setting the Light Type option and

selecting a Cone Angle value.

The Exponent option provides a “null” value that may be used by some

mental ray shaders to determine light decay and, in this case, used by the stan-

dard soft light shader that is automatically created with each primitive light.

host application settings ■ 217

Figure 6.16

XSI base light set-
tings and the soft
light shader

08547c06.qxd 10/24/07 4:20 PM Page 217

Under the soft_light ➔ Light Attenuation, the Light Falloff option enables you to control

light decay either by using a linear or nonlinear decay rate. When Light Falloff is enabled

the Mode ➔ Use Light Exponent utilizes the Exponent option (under the General tab) to

control light decay, a value of 2 represents inverse square falloff (recommended with phys-

ical simulation of light). If you set Mode ➔ Linear then you can use the Start and End

Falloff option values to set a specific linear falloff range.

The Soft Light Shader

The XSI soft light that appears within each light’s hierarchy provides a combination of

different light-specific settings, similar to mental ray component light shaders and shadow

shaders (discussed in the next chapter). Under the soft_light ➔ Shadows section, once

Enabled is set, XSI will render shadows. By default shadows are raytraced unless shadow

maps are explicitly specified; thus the Enabled option acts as a global on/off switch for

shadows. Umbra allows you to specify a color value and transparency level for shadows.

In addition to the default light shader, XSI also includes the physical sun and sky shaders

(architectural library), which are further discussed in Chapter 13.

XSI Area Lights

XSI provides two “ready-made” area lights. The light box creates a rectangular area light,

using a spot source light and a uniform height and length for the area light’s (square)

region. The neon light is an area light that also uses a rectangular shape, but scaled along

the X (U) axis to mimic a “longer” source light. In other words, these two light types are

point and spot lights with area lighting enabled.

For all lights, area lights are enabled under the Light ➔ Area property tab, shown in Fig-

ure 6.17. Note that with infinite lights, this option doesn’t actually function because men-

tal ray doesn’t support infinite area lights. As you can see, most of mental ray’s area light

options are available.

The Visible in Render option enables area light visibility, and the Geometry drop-down

list provides the four standard shapes (not including user and object).

The Samples fields provides the U and V general sampling values (length and height

respectively), as discussed earlier. Unfortunately, as this book is being written, low sampling

has not been implemented. However, you can insert low sampling into an

.mi file with stand-alone rendering. Low sampling is expected to become

available in future releases.

The Scaling and Rotation X, Y, Z fields enable control over the shape.

mental ray takes different settings for the different shapes. Sphere and Disc

Geometry types use only the Scaling X to define radius. Cylinder uses both

Scaling X and Y to define the scale along the axis and the radius. Rectangle

uses Scaling X and Y to determine the rectangular shape. All four are visible

in the viewport. Also, all four use all the rotation values to orient the area

218 ■ chapter 6: Lights and Soft Shadows

Figure 6.17

XSI Area tab for
enabling area lights

08547c06.qxd 10/24/07 4:20 PM Page 218

light shape; however, I recommend that you orient the “entire” light physically in the scene

rather than through the rotation settings as they can provide unpredictable results.

3ds Max
3ds Max lights, both standard and photometric, are supported with mental ray, including

daylight system lighting. However, not all their settings are used with mental ray. If you

create any spot, point, or directional light and look at its settings in the Modify panel, you

will see some mental ray rollouts alongside the 3ds Max rollouts, as in Figure 6.18 (bottom

two rollouts).

Under the Spotlight Parameters (similarly labeled with omni and directional lights),

the Hotspot/Beam and Falloff/Field options act as equivalents to mental ray’s spread and

cone options, respectively. Additional nice features are the cone types, Circle and Rectan-

gular, which are supported. Overshoot is not supported. Directional lights act as “infinite

lights with an origin,” meaning that if a directional light is placed between two objects, only

the lower surface will be lit.

Photometric Lights

It’s a great advantage that mental ray supports all the photometric lights, including an

implementation of mr sky and mr sun shaders (equivalent to the IES sun and sky shaders),

which can be used with the daylight system and Final Gather to produce realistic lighting.

The daylight system improves the approach to simulating particular lighting, and a partic-

ular time of day and location, as well as enables a high dynamic range of light (brightness).

The daylight system utilizes the mr sun to mimic a strong key light (sun light) and the mr

sky to mimic the environment that is typically used with image-based lighting techniques,

a topic covered later in this book under Chapter 13, “Final Gather and Ambient Occlusion.”

Essentially, photometric lights (regardless of the daylight system) provide extended set-

tings for simulating natural and artificial direct lighting. All photometric lights obey the

laws of physics, applying inverse square falloff, as well as dynamic range of light. Some of

these photometric lights are very similar to custom mental ray light shaders, such as the

CIE D illuminant light shader, enabling you to specify light color using color temperature

With XSI, when a light is selected, you can use the B hot key to enable modifying its proper-

ties visually within the scene, including properties such as the lights inner and outer cone

spread (penumbra), as well as the area light size. The Tab key is used to toggle between the

“live” settings that are modifiable. After creating a point or spot light primitive (with enabled

area lighting), press the B key to enable this mode, and then press the Tab key to toggle to

the area light modification mode. When the area light shape outline appears brighter (a bit

thicker too), then by placing the cursor over the outline and pressing the left mouse button,

you can visually adjust the area light scale in the viewport interactively.

host application settings ■ 219

Figure 6.18

3ds Max lights have
various settings, not
all supported by
mental ray.

08547c06.qxd 10/24/07 4:20 PM Page 219

based on the standardized Kelvin scale plus an intensity value for specifying brightness.

The light energy (brightness) can even be specified using candelas units (photometric

luminance units), as seen in Figure 6.19. From the Color drop-down list, you can choose

from various standardized light models often used in the architectural market. Notice that

D65White is selected in the figure, referring to a light color temperature of 6500 Kelvins,

correlating to standardized white light. We will discuss lighting topics, including Kelvins,

color temperature, and more in Chapter 9, “The Fundamentals of Light and Shading Models”

3ds Max’s photometric lights also support light profiles, as with mental ray’s photometric

shader, a topic discussed at the end of this chapter.

mental ray Rollouts

3ds Max has four mental ray rollouts, two of which are seen in Figure 6.18. The mental ray

Indirect Illumination rollout is discussed in Chapter 12: “Indirect Illumination.” The

mental ray Light Shader rollout (seen expanded in the bottom of the figure) enables you

to map mental ray–specific light shaders. If you select Light Shader, the Material/Map

Browser window will open, offering the standard mental ray spot, point, and infinite light

shaders. You’ll also find an ambient occlusion shader that provides a global (rather than

per-object) occlusion effect for the entire scene. Occlusion techniques are covered in

Chapter 13. If you map the Light Shader option with the occlusion shader (or any other

shader), you can then view its settings in the Material Editor by selecting Get Material ➔

Scene list and then selecting the light shader from the existing shader list.

Settings for the mental ray spot light shader (mapped to the Light Shader setting) can

be seen in Figure 6.20, where you can easily identify all the settings we discussed earlier for

light color, shadow, and shadow transparency, attenuation start and end, and an attenua-

tion falloff multiplier. It’s impractical to use these shaders rather than the 3ds Max lights

unless you are using a custom shader that extends abilities already provided with 3ds Max

lights. However, if you want to know more about mental ray shaders, this is one good way

to become familiar with them.

mental ray Shadows

In the General Parameters ➔ Shadows drop-down list you will find an additional mental

ray tab, mental ray Shadow Maps, which is the only tab for controlling shadow maps

with mental ray. Shadow maps are discussed in detail in Chapter 7, “Shadow Algorithms.”

For raytrace shadows, you select the Ray Traced Shadows option, which enables mental

ray raytrace shadows and provides the additional Ray Traced Shadow Params rollout

(seen in Figure 6.18) for controlling the shadow settings. The Color setting controls

In the mental ray Light Shader rollout seen in Figure 6.18, the Enable check box must be

enabled for the light shader to operate, an easy setting to miss.

220 ■ chapter 6: Lights and Soft Shadows

Figure 6.19

3ds Max has a vari-
ety of photometric

lights aimed at pro-
viding more real-

world settings for
defining light colors

and intensity, all
supported with

mental ray.

08547c06.qxd 10/24/07 4:20 PM Page 220

shadow color and transparency. A black color produces a fully opaque shadow,

and white produces fully transparent. These raytrace shadows are used to enable

both standard raytrace shadows (for non-area lights) and area lights alike.

mental ray Area Lights

3ds Max provides mental ray area lights as two additional standard light types:

mr area spot and mr area omni found in the Modify panel ➔ Create tab ➔

Lights. The mr area spot provides only 2D flat area light shapes (disc and

rectangle), and the mr area omni, provides 3D area light shapes (sphere and

cylinder). Area lights are in fact only an additional light option, as discussed

earlier, and so these 3ds Max area lights are exactly the same as the spot and

omni standard lights, but with the added mental ray area light functionality.

When other renderers are used, these lights still function as spot and omni

lights, but without the (mental ray) area light functionality.

When you create one of the mental ray area lights (mr Area Omni or Spot), an addi-

tional rollout, Area Light Parameters, appears with mental ray’s area light settings, as

shown in Figure 6.21. When you press on either the Height or Width setting temporarily

(holding down the left mouse button), an iconic display for the area light region appears

around the light in the viewport, enabling you to visually tweak its size.

The On setting enables the area light, and Show Icon in Renderer enables the area light

visibility, making the light source visible in the render. You select the area light shape from

the Type drop-down list. The Radius setting or the Height and Width settings define the

area light’s size in the scene, depending on the shape. Samples provide the U (height) and

V (length) sample settings, as discussed earlier in the section “Area Light Settings.” The low

sampling option is not currently available with 3ds Max.

Light Profiles
The mental ray photometric custom light shader supports adding realistic light models by

means of light profiles known as Illuminating Engineering Society (IES) photometric files

or Eulumdat profiles. Both are plain-text descriptions of light intensity and falloff, corre-

sponding to various light types and light fixtures provided by light manufacturers. They

are used to realistically simulate physically accurate lighting for architectural renderings or

light simulations. Light fixture descriptions can mimic both direct and indirect light. Indi-

rect in this context refers to light that is not aimed directly at the environment, meaning

light fixtures that spread light, for example, upward onto a wall; the light then bounces

around, providing the environment with softer lighting. Essentially these light profiles can

then describe light models that in real-world terms are used as both direct and indirect

light sources, some a combination of both, providing direct lighting as well as additional

indirect lighting.

light profiles ■ 221

Figure 6.20

mental ray’s spot
light shader settings
in the Material
Editor window

Figure 6.21

3ds Max mental ray
area light settings
rollout for the mr
spot light

08547c06.qxd 10/24/07 4:20 PM Page 221

Thus, light profiles can represent the physical shape of complex lighting fixtures, not

just a “lightbulb.” They are in-fact another type of area light with an embedded light

shape that defines direct or indirect lighting. The disadvantage is that the shadows are

not affected by the light’s shape, as they are with mental ray area lights, so shadows

don’t spread correctly and distance-based soft shadows aren’t supported. You should

not use area lights with light profiles; as both are area light sources and the two don’t

work well together.

Light profiles can only added to mental ray point lights and will only emit light in the

angles and directions as defined by the light profile’s description (emission and form).

These profiles can then represent lights such as fluorescent, halogen and A-lights (incan-

descent lamp), to mention a few, as well as more complex light fixtures, light reflectors

(reflectors focus light, as with spot lights), and flood lights, spreading light in specific

directions and intensities, as seen in Figure 6.22 under label A (the Render window).

Light profile preview renders and plotted diagrams can be viewed in an IES Viewer.

You can find one on the web if you search for IES viewers. Andrey Legotin has generously

provided his viewer for free (seen in Figure 6.22), it may still be available under the follow-

ing link (you need the installer to see rendered previews):

http://www.cgarena.com/freestuff/tutorials/max/ieslights/

You can see the viewer interface in Figure 6.22. When a profile is selected in the browser

window, that profile is then plotted in the orthogonal diagram seen in Figure 6.22 under

label B. Once it is selected, you can then click the render icon labeled C to view a render

preview of the light scatter. In this case, you can see that the selected light scatters both

direct and indirect light. Thus, these plotted lines illustrate the light scattering directions

and decay. The inner dark line (red in the viewer) can be thought of as the attenuation

start point, and the brighter outer line represents the falloff directionality and intensity,

towards the attenuation end point. When rendering these lights with mental ray partici-

pating media effects, or just volume light effects (in 3ds Max) you will see a render that

appears similar to the viewer’s preview for a given profile.

Both figures 6.23- and 24 show the same image rendered using different light profiles,

demonstrating both direct and indirect lighting. In Figure 6.22 the top row demonstrates

an incandescent light, on the left you can see the plotted diagram and the rendered pre-

view, then on the right you can see the result of rendering the profile with volume light in

3ds Max. The same has been done with a strong HD outdoor light that scatters in more

directions, as seen in the lower row with the plot, preview render, and 3ds Max render. In

Figure 6.23, on the right you can see light reflectors were used as well as indirect lights

along the wall sides, and as you can see, light spreads upward from the point lights. On the

left side of Figure 6.23, fluorescent direct lighting was used, and as you can see, the quality

of light distribution differs between both images.

222 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 222

Figure 6.23

Two examples for
light profiles, where
each row uses a dif-
ferent light profile
and shows the plot-
ted diagram, the
render preview and
a 3ds Max render
using volume light.

A

C

B

Figure 6.22

Andrey Legotin’s
IES viewer display-
ing the plotted
orthogonal view and
a rendered preview
for a selected light
profile IES file.

light profiles ■ 223

08547c06.qxd 10/24/07 4:20 PM Page 223

In figure 6.24 the room is still dark; thus for a full solution you would need to use either

additional fill lights or indirect illumination, mimicking the light distribution more realis-

tically. Also, when using light profiles, consider that they define light decay in real-world

units, so the scene may need to be built in real size, matching the correct light distribution.

When used for creative purposes only, it may not be necessary to match in scale because

you can further tweak their intensity and falloff using the light shader settings.

You can download light profile files from light vendors over the Web, from these sites,

for example:

www.lsi-industries.com/products.asp

www.lightolier.com/

www.lithonia.com/

I have provided a collection of light profiles for experimentation in a light profiles

folder in the book’s CD under a LightProfiles folder.

Light Profiles with Maya
With Maya, you can use the mental ray photometric shader as a light shader with a

point light and then through that shader attach a light profile. Better yet, you can attach

IES light profiles directly to the point light (only point lights) using the Light Profile

Figure 6.24

On the left fluores-
cent light profiles

are used, and on the
right, light reflectors

are used to illumi-
nate a room. The

light characteristics
are derived from IES
light profile files and

differ in both cases.

224 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 224

attributes under the Light Profile rollout in the mental ray

section of the light’s Attribute Editor, as shown mapped in

Figure 6.24.

Once the Light Profile attribute is mapped, a mental ray

light profile node is created, as seen in Figure 6.25. This node

enables you to load either IES or Eulumdat files, both repre-

sentatives of light characteristics, as discussed earlier. More

commonly you will obtain IES files over the Web.

Note that the point light’s orientation becomes significant

with light profiles because they represent the light’s direction-

ality. Once the light profile is attached, you can then enable

raytrace shadows and use other common light settings to con-

trol the light’s color and intensity. With light profiles, Maya's

ability to create fake soft shadows using the shadows Radius

attribute (discussed earlier), is extremely beneficial, as light

profiles by default cast unrealistic sharp shadows.

Light Profiles with 3ds Max
With 3ds Max, you can use the photometric lights to attach light profiles. As cited earlier,

you should not use photometric area lights (the free or target area lights) with a light pro-

file, even though you can technically do so. Note that photometric area lights export as

point lights, with the area light option enabled, as with the mental ray area light examples

in this chapter. Thus you can use these area lights with mental ray, but without light pro-

files. You can control sampling from the Area Light Sampling rollout ➔ Num. Samples,

however this only provides U samples, and not V samples, as with the mental ray area

lights.

To attach a light profile to a photometric light, after you create a photometric light

(linear or point), in the Modify tab under the Intensity/Color/Distribution rollout ➔

Distribution dropdown list, select the Web parameter as seen in Figure 6.27. When Web

is enabled you can then load a profile from the Web Parameters rollout ➔ Web File param-

eter button, seen mapped with a profile (95111702) in the figure.

In 3ds max, once a profile is attached to a photometric light, the lights physical geomet-

ric shape in the viewport changes shape to represent the scatter characteristics. This shape

is derived from the outer line of the profile plot, as seen in the diagrams in figures 6.22

and 6.23. The shape helps estimate the light scatter direction and characteristics so that

you can easily orient and aim the light in the scene.

Notice that the plotted lines seen in the orthogonal view in the IES viewer also provide

information on the light intensity in photometric and radiometric terms. These units, for

example luminous power (lumen), expressed as lm in the viewer (top entry depicted

light profiles ■ 225

Figure 6.25

Maya’s point light provides this additional Light Profile
mental ray rollout for mapping IES photometric files.

Figure 6.26

Maya’s light profile
node enables load-
ing IES or Eulumdat
files into either the
mental ray photo-
metric shader or the
Maya’s Light Profile
attribute on point
lights.

Figure 6.27

3ds Max photomet-
ric light parameters
used to load light
profiles.

08547c06.qxd 10/24/07 4:20 PM Page 225

with a light bulb icon), correlates to the same values seen in 3ds Max under the Intensity/

Color/Distribution rollout. Make sure to select the appropriate measuring technique as

the lm radio button to compare with the luminous power, you should see the same value.

Furthermore, you can use the Multiplier parameter to scale the light proportionally for

the scene.

Under Atmospheres & Effects rollout you can enable the volume light effects. Doing so will

help you visually see the scatter characteristics of the light, as well as, provides for much nicer

renderings when using light profiles.

226 ■ chapter 6: Lights and Soft Shadows

08547c06.qxd 10/24/07 4:20 PM Page 226

Shadow Algorithms

With 3D applications there are essentially two types of shadows:

depth-based shadow map shadows and raytrace shadows. The focus of this chapter is on

shadow maps and the algorithms that mental ray uses to calculate raytrace and shadow

map shadows. In Chapter 6, “Lights and Soft Shadows,” we looked at raytrace shadows

with area lights, and in this chapter we’ll focus primarily on shadow map techniques and

algorithms. The host settings for both shadows and lights are very similar. As usual, we’ll

first review the underlying algorithms and then show how to implement them with mental

ray command-line rendering and in the host applications. This chapter covers the follow-

ing topics:

■ Shadow Algorithms

■ Raytrace Shadows

■ Depth-Based Shadows

■ Stand-Alone and Host Settings

C H A P T E R 7

08547c07.qxd 10/24/07 4:25 PM Page 227

Shadow Algorithms
mental ray provides both raytrace and depth-based methods for rendering shadows. The

raytrace methods are offered at various levels of complexity, allowing us to realistically

mimic distance-based shadow falloff and decay, as discussed in Chapter 6. For example,

raytrace algorithms (ray marching) also allow for measuring the light influence on sus-

pended particles in air (known as participating media), and raytrace shadows enable you

to examine the effect of such participating media effects on shadowing, producing what

are commonly referred to as volumic shadows. As always, raytrace algorithms can be more

“render expensive” than depth-based algorithms, but they are more accurate, providing a

great deal of realism while respecting the physical and atmospheric (participating media)

effects on light and shadow.

Shadow maps, as the name suggests, provide a method for storing shadows within

image files, known as a shadow map files, for the purpose of reusability. This technique is

widely used in animated feature films. mental ray provides three shadow map algorithms:

OpenGL shadow maps (which this chapter discusses only briefly), the shadow map (also

known as fast shadows) algorithm, and a more advanced algorithm known as detail

shadow maps (similar to deep shadows in Pixar’s RenderMan). All shadow map algo-

rithms offer optimization, although with some compromise in quality. For example,

shadows are limited by the shadow map file’s resolution. By contrast, raytrace shadows

have no such dependencies.

Shadow Shaders
Several shaders influence a surface’s color appearance, primarily the surface’s illumination

shading model (Phong, Blinn, etc.). Most mental ray illumination shading models provide

a limited set of options that deal with ambient, diffuse, and specular shading components.

Essentially, the surface’s material shader calculates color properties for a given point in

space (the sample location). This color evaluation is dependent on all of the connected

component shaders that manifest that surface material (shading model). For example,

aside from the illumination component shader, additional transparency, reflection, refrac-

tion, and shadow component shaders can be used to manipulate or contribute to the final

color for each sampled point. While evaluating light influence on a surface, mental ray light

shaders use the material’s shadow shader to determine the shadow color and intensity.

Thus the shadow value is not automatically derived from the illumination shading model

(Phong, Blinn, etc.) or a transparency component shader as you might expect. Essentially,

shadows other than default plain-vanilla (opaque) shadows are applied through compo-

nent shadow shaders, providing very specific functionality. We discuss component shaders

and color evaluations in more detail in Chapter 9, “The Fundamentals of Light and

Shading Models.”

228 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:25 PM Page 228

Fortunately, with host-specific shaders, host applications automate the shadow shader

for you. Typically the shadow color and intensity is derived from the surface’s shader

transparency settings. Thus with a transparent surface the shadow intensity is derived

from the host shader’s transparency value. Furthermore, if you want specific shadow col-

ors to appear (not just a gray shadow) you must also include color as part of the trans-

parency value (or mapped texture). For example, while setting the transparency value

within a color chooser window using HSV, if you set the hue to green (H), saturation (S)

to 1 (100%), and value (V) to 0.5 (50% gray), you will render a semitransparent green

shadow. Figures 7.1 and 7.2 demonstrate connections between component shaders and the

material shader for a surface model in Maya and XSI, respectively. In both host applications,

the same mental ray component shaders have been used. You can see that the shader

trees are in fact identical in both cases. In both, a Phong component illumination shader

is driven through the transparency component shader to enable transparency. The trans-

parency shader is then connected to the material. An additional shadow shader can be

seen connected to the shadow input, applying shadow transparency and color as shown

in Figure 7.3.

Figure 7.3 illustrates a semitransparent green surface over a floor plane with a shadow-

casting light from above. In image A there is no shadow shader, and the surface will ren-

der completely opaque regardless of its color and transparency values. Image B utilizes a

shadow shader for specifying transparent intensity as a grayscale value; thus the shadow

Figure 7.1

mental ray material
and shadow shaders
applied to a sur-
face’s shading
group in Maya

Shadow shaders are not supported with shadow map shadows; however, they are supported

with detail shadow maps and raytrace shadows, providing control over shadow color and

intensity.

shadow algorithms ■ 229

08547c07.qxd 10/24/07 4:26 PM Page 229

appears gray (transparent). The shadow shader used for image C applies both intensity

and color, which means that the shadow has a green tint providing both color and trans-

parency. The image is black-and-white here, but you can see the color version, “Shadow

Shader Transparency and Color,” in the Chapter 7 folder of the companion CD.

A

C

B

Figure 7.3

The effect of shadow
shaders on shadow

transparency and
color value

Figure 7.2

mental ray material
and shadow shaders

applied to a sur-
face’s material

in XSI

230 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 230

You’ve seen that for surfaces to render transparent color shadows, a shadow shader

needs to be defined with its own color settings, and within host applications many mate-

rials automatically (behind the scenes) transfer material properties to shadow shaders.

Again, the key point is that although a light casts the shadow and a surface material defines

surface properties, the shadow information is provided through a separate shadow shader.

The importance of shadow shaders will become more apparent as we examine different

shadow methods and their ability to cope with color and transparency.

Raytrace Shadows
Raytrace shadows utilize different shadow algorithms (applied globally) that specify how

shadows are evaluated behind the scenes. The three algorithms are Regular, Sort, and Seg-

ment. Raytrace shadows allow us to simulate a wide range of realistic shadow effects, and

they support shadow shaders’ transparency and color values, unlike shadow map shadows,

which render only opaque shadows.

In the Chapter 6 procedures for area lights, you saw how to simulate realistic raytrace

distance-based soft shadows. This section focuses on more technical differences between

the three raytrace shadow algorithms, and how you choose an appropriate algorithm.

The Regular and Sort Shadow Algorithms
Both the Regular and Sort algorithms provide for basic raytrace shadowing needs and are

sufficient for most cases. When a material requires a light shader to evaluate a shadow for

a given point (using the shadow shader if present), rays are cast from the light shader to

any intersecting polygons between the light and the shaded point, within that “light path.”

Thus, any existing polygons within that path are treated as occluding objects that may cast

transparent or fully opaque shadows.

Figure 7.4 illustrates the similarities and differences between the Regular and Sort

shadow ray algorithms. One ray points to surface A, a fully opaque surface, and the other

to surface B, which is a semitransparent surface. The transparency can be seen in the

resulting shadows on the floor and on surface C. With both the Regular and Sort algo-

rithms, the rays are evaluated from the source light to the surface in question, as implied

by the arrows’ directionality. Also, in both cases, once a fully opaque shadow has been

evaluated, the shadow evaluation process terminates. Thus, if 10 objects line up between

the light and a surface, the moment one of those surfaces returns a fully opaque shadow

value, the remaining surfaces are ignored and rendering may continue. If all the surfaces

are transparent, then all the surfaces would contribute to the shadow, at least until those

shadows cumulatively produce an opaque shadow, at which point the shadow evaluation

terminates.

raytrace shadows ■ 231

08547c07.qxd 10/24/07 4:26 PM Page 231

When a surfaces shadow evaluation commences, a light probe ray (seen in the figure)

determines which lights in the scene may affect that point. Essentially, these probe rays

ignore any occluding surfaces and are only a means for determining which lights are in a

direct line of sight with the point in question. Once the Regular or Sort algorithm initiates

for a given light, the light examines the polygons within its line of sight, one at a time.

With repect to the Regular shadow algorithm and the rays seen cast to points A and B in

the figure, any of these rays may be evaluated first regardless of the order in which the sur-

faces appear from the light. Thus, the ray that leads to surface B may evaluate first, result-

ing in a transparent shadow, which would lead to another shadow evaluation that may hit

either one of the two remaining occluding surfaces (A or C). Obviously, as both are fully

opaque, the next shadow ray would terminate the shadowing process, so in this case only

one additional surface would be taken into account. Hence the Regular mode does not

sort occluding polygons in any given order; it evaluates shadow values randomly until

there are no more occluding polygons or the shadow is fully opaque, in both cases termi-

nating the shadowing process.

The Sort shadow algorithm sorts all objects in order of appearance from the source

light before initiating any shadow ray evaluations. Hence it will examine the surfaces in

the correct order, which means that in the scenario in Figure 7.4, surface A is evaluated

first. This surface is fully opaque, so the shadow ray terminates there without considering

Transparent shadow

Regular/Sort
shadow rays

A

B

C

Light probe ray

Primary ray
(sample ray)

Opaque shadow

Figure 7.4

Regular and Sort
shadow raytracing

232 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 232

surfaces B or C. Sort is not commonly used within these host applications, because the

sorted list it produces is required by very particular shaders that are not really part of any

host application. Most shaders that require the Sort algorithm automatically override the

global settings, enabling the Sort option.

Because both methods provide information on the distance between a source light and

a shadow-casting (occluding) surface, depth-fading volume effects are supported with

raytrace shadows, accounting for the light decay over distance. This, however, does not

account for the distances between occluding surfaces themselves (for example the distance

between A and B in the figure). It accounts only for the distance from each surface (A, B,

or C) to the source light. The Segment shadow algorithm provides that additional and

valuable information, as discussed next.

The Segment Shadow Algorithm
The Segment shadow algorithm builds on the abilities of the previously discussed algo-

rithms (Regular and Sort) by evaluating the distances between each occluding surface

(polygon) within the light’s path. This more complex shadow algorithm supports volu-

metric effects shadows such as through dust or smoke clouds. Figure 7.5 illustrates the

segmented shadow process from a point on a surface to the light source, emitting a new

ray at each intersection (occluding) point. The segmented shadow method provides that

valuable information on the distance relationship between occluding points within the

ray’s path and how they will affect shadow values. Most importantly, these distance values

can also be calculated for nonexistent (theoretical) points within volumetric containers,

such as volume fur, light, or smoke effects. Essentially, the Segment shadow algorithm

provides an ability to calculate the influence of suspended particles in air (dust or smoke)

on shadows (from volumetric effects), an expensive but well-appreciated render ability.

Figure 7.6 demonstrates the differences when using Regular or Sort (A) and Segment

(B) with a particle cloud. As you can see, only the Segment shadow method produces

shadows on the surface and self-shadowing within the cloud. If there are no volumetric

effects (i.e., volume fur, participating media, and particle effects) present in the scene,

there is no need for this level of sophistication in evaluating shadows and it’s better to use

the Regular shadow algorithm.

Physical shaders, such as the architectural material, deal with complex light transmission and

absorption effects that benefit from the segmented mode; it supports simulating the influence

of light absorption on shadows through a volume (surface).

The Regular algorithm is the fastest for evaluating raytrace shadows because it does not

require sorting all the surfaces into a particular order before evaluating the shadow rays,

and thus should be used in most cases.

raytrace shadows ■ 233

08547c07.qxd 10/24/07 4:26 PM Page 233

A B

Transparent shadow

A

B

C

Primary ray
(sample ray)

Opaque shadow

Segment shadow rays

Figure 7.5

Segment shadow
raytracing

234 ■ chapter 7: Shadow Algorithms

Figure 7.6

(A) Regular (or Sort)
shadowing; (B) Seg-

ment shadowing.
Notice the self-shad-
owing in the particle

cloud as well as on
the surface.

08547c07.qxd 10/24/07 4:26 PM Page 234

XSI

In XSI, particle effects have a Self-Shadowing property that is used for specifying volume

shadowing, as illustrated in the lower portion of Figure 7.7. You can navigate to this prop-

erty through the Explorer window for a given particle system by choosing ParticleOP ➔

PType ➔ Particle_Billboard. This option requires

only that shadows are enabled; it does not depend

on the shadow method used. XSI seems to use

an internal mechanism to overwrite the shadow

algorithm used whenever needed, so it is not

essential to specify Segment or Regular. Essen-

tially, this means that you can always use Regu-

lar and rely on XSI to switch to Segment when

self-shadowing is enabled.

Depth-Based Shadows
As mentioned earlier, shadow map files can be saved on disk for reusability with static

(nonchanging) shadows, such as with interior spaces. Reusing shadow maps requires

mental ray only to load the shadow map files into memory, and if several maps exist,

loading them can have a significant impact on memory and render performance. The

larger the map files (image resolution) the slower the preprocessing phase and the more

memory-intensive they become, as with high-resolution textures.

To optimize shadow map rendering, mental ray 3.4 and up supports rendering partial

shadow maps, which is more efficient than loading shadow maps from disk because only

the required segment is calculated rather than the entire shadow. Thus, when rendering

without reusing shadow map files, mental ray will consider only the relevant shadowed

areas and not evaluate an entire map. This eliminates the overhead of loading several maps

of high resolutions or calculating shadows for the entire scene. Essentially, when a shadow

map is stored on disk, the entire shadow will be evaluated before rendering can commence.

For example, if there is a very large region in shadow, such as a coliseum with thousands

of shadow-casting elements, and only two percent of that region is required for a given

frame; calculating the shadowing effects for only two percent is more efficient than pre-

calculating an enormous shadow map file or several files of very high resolution.

The following section first reviews the Shadow Map shadow algorithm, which is used

by default when shadow maps are enabled. After reviewing shadow map concepts with the

default algorithm, we will further explore the differences between this default algorithm and

the more advanced Detail shadow maps algorithm, with a brief look at OpenGL shadows.

The advantage of shadow map reusability can quickly become a disadvantage if there are

several high-resolution shadow map files.

depth-based shadows ■ 235

Figure 7.7

XSI has a Self-Shad-
owing property that
enables inner volu-
metric shadowing
between particles
and with volumetric
effects.

08547c07.qxd 10/24/07 4:26 PM Page 235

Shadow Map Shadows
Unlike raytraced shadows, depth-based shadows are based on a visual projection of the

scene as seen from the light’s perspective, as in Figure 7.8, similar to a Z-depth pass from

a camera’s perspective. Here, a grid of X×Y pixels (B) is used to record the scene from the

light’s perspective (A). Each pixel in the shadow map is responsible for recording several

elements from within the scene, as seen through each pixel’s line of sight. Thus the ability

of a shadow map to properly define shadow boundaries in the scene is based on the amount

of detail it can record within the shadow map file, and limited by the overall shadow map

pixel resolution. Figure 7.9 shows a shadow map file; you see how grayscale color values

depict the distance between the occluding surface and the light, where darker colors are

closer to the light and brighter colors are farther away. Obviously, the more pixels that are

present, the finer the detail is in the shadow map. Figure 7.9 is a high-resolution shadow

map file, hence the smooth outline of the sphere’s outer boundary.

Y
A. Source light

B. Resolution-based projection
(shadow map 256×256)

C. The projection of the sphere is stored in the shadow map file.

D. Poor-quality shadow

X

Figure 7.8

Resolution-depend-
ent shadows are

based on the resolu-
tion of the grid that
is used to store the

scene projection
seen from the light’s

perspective.

Note that mental ray stores depth-based colors in the opposite order compared to other

packages, where brighter colors are usually closer to the camera.

236 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 236

The shadow map file, also known as a depth map, is thus a prerender depth pass that is

used to sample object distances from the light. Thus, for each shadow map pixel, the dis-

tance to the shadow-casting polygon closest to the light is recorded using a grayscale value

as a measurement of distance.

Rendering Shadow Map Shadows

During rendering, when mental ray needs to decide if a point is in shadow, it compares

the distance from that point to the shadow-casting light with the stored depth map distance

for that point. Figure 7.10 shows both the distance to the light from the point in question

(on the wall), referred to as distance B, and the distance from the closest light-occluding

point (the sphere), referred to as distance A. Distance B is compared with distance A,

the stored shadow map distance. Because the shadow map file never “saw” the wall, the

stored value is representative of distance A, not distance B. When the renderer recognizes

a difference in distance between the depth map value and its current evaluation, it knows

whether that surface should receive a shadow or not. Clearly in this case, as distance A in

the depth map is shorter then distance B, mental ray can conclude that a light-occluding

(shadow-casting) polygon exists between the light and the point used to reference dis-

tance B, and thus that point is in shadow.

When comparisons produce the same distance values, a point can then be interpreted as

either in shadow or not, typically causing self-shadowing artifacts.

Figure 7.9

A high-resolution
shadow map file
demonstrates how
distance from the
light is stored as
grayscale values
seen from the light’s
perspective.

depth-based shadows ■ 237

08547c07.qxd 10/24/07 4:26 PM Page 237

Because depth maps provide information only about distance between objects and

shadow-casting lights, the camera has no way of identifying transparency or shadow color.

Essentially, shadow map shadows always render as opaque shadows regardless of actual

surface properties, merely validating the presence of occluding objects.

For fine-tuning depth-based shadows, increasing the resolution will usually not resolve

poor shadow quality, flickering, self-shadowing, or other unwanted artifacts unless other

optimization measurements are taken, such as blurring the shadow penumbra (see “Soft

Shadow Maps” later in this chapter) or properly framing the shadow map projection, as

discussed next. Optimizing shadow maps is not a step-by-step process you must follow

because several factors influence shadow quality. Understanding the following topics will

help you better approach and troubleshoot shadows in your scene.

Using Shadow Map Real Estate Effectively

You always need to have as much shadow map resolution “real estate” as possible. If you

have one sphere covering a 32×32 pixel region in a 1024×1024 shadow map file, most of

that map is wasted. In Figure 7.11, the sphere labeled A makes good use of the available

pixel resolution in a high-resolution shadow map file, so the recorded pixel values provide

reasonable detail along the sphere outline. If the same sphere were poorly framed, using

only a smaller potion of that resolution (B), the high resolution would be essentially wasted.

The sphere labeled C illustrates “zooming” in on sphere B, demonstrating the resulting

shadow map with poor shadow map framing, where there is no way for properly repro-

ducing the sphere’s outline in shadows due to a lack in pixel coverage.

Clearly, proper coverage of surfaces in a resolution-based depth shadow is essential for

productive results. Hence, increasing shadow map resolution may not always improve

shadow quality if the current resolution is not properly utilized.

Distance B

Distance A

Figure 7.10

Comparing the dis-
tance to the camera

between a point in
shadow and its

shadow-casting
point

238 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 238

Here are some considerations you should be aware of, as well as some recommenda-

tions you can use to optimize shadow map real estate:

First and foremost, spot lights by nature limit the visible angle of light and by doing

so limit the angle used to capture the shadow projection. By contrast, point lights and

infinite lights will consider a larger region. Point lights project shadow maps for each

axis, and infinite lights see the entire scene from a given direction; thus they are forced

to “condense” a large area into the given resolution.

Point lights require evaluating all six directions (positive and negative XYZ directions),

while spot and infinite lights “look” only in one direction. This means that point

lights are more expensive because six projections and shadow map files need to be

calculated and written to disk. With respect to resolution, all six projections are

“squeezed” into the provided resolution, so with point lights you may need higher

resolutions. To clarify, if the resolution is set to 512×512 pixels, then that resolution is

used collectively for all six projections, and not independently for each projection.

mental ray calculates shadow maps only for objects that have a shadow flag enabled,

meaning only shadow-casting surfaces are framed within the shadow map file. In

your host application, any object that is not meant to cast shadows should have its

shadow flag disabled so that the shadow maps can focus only on shadow-casting

objects. This is significant with point and infinite lights that “see” the entire environ-

ment within the shadow map file. Unless you reduce the number of objects that

appear as shadow-casting surfaces, these lights are likely to produce poor-quality

shadows regardless of the resolution specified. Limiting the shadow-casting surfaces

A

C

B

depth-based shadows ■ 239

Figure 7.11

Shadow map fram-
ing is key to quality
shadow maps, where
“wasted” pixels (B
and C) produce pixe-
lated shadow maps.

08547c07.qxd 10/24/07 4:26 PM Page 239

to a specific region allows mental ray to do a better job at framing the shadow map

around the shadow-casting objects only. Disabling shadows in host applications is

achieved for a selected object as follows:

H O S T S H A D O W - C A S T I N G F L A G S

Maya Shape attributes ➔ Render Stats ➔ Casts Shadows

XSI [None] Under the object Visibility properties window, the Rendering tab ➔ Shadow ➔
Caster property

3ds Max Right-click over geometry ➔ Object Properties ➔ Rendering Control ➔ Cast Shadows

As an animated object moves from point A to point B, the distance between objects in

the scene can gradually increase. For example, consider two objects that begin to move

in opposite directions; as they get further away the distance between them grows. Also

consider that during the time each frame is rendered, the same shadow map resolution

is used, and as the objects get further away, they each have less resolution real estate

within the shadow map file. The result is an animated shadow that gradually decreases

in quality (with an increase in pixelated artifacts) until the shadow is completely useless.

Possible solutions might be to enable raytrace shadows or to parent inverse shadow-

casting light pairs to each object (discussed next). The latter means that a specific spot

light field of view will be used regardless of the object’s position, thus maintaining the

same resolution real estate and quality over several frames.

With large scenes, it can become cumbersome to cover the entire scene range with

one shadow map. Increasing the shadow resolution to a very high value is inefficient

because the distribution of objects within that shadow file still remains inefficient.

One workaround is to use several shadow-casting spot lights to localize the shadow

maps, dividing the region into n shadow map files.

I N V E R S E L I G H T S

You probably don’t want to cast light from all these additional points, but it is easy to use

an inverse light to negate the contribution of direct illumination and maintain only shadow.

That is, you create a shadow-casting spot light (at any intensity), and then duplicate that

light in place and invert its intensity to a negative value. For example, the first spot light has

an intensity of 0.8 with shadow casting enabled; the duplicated light will then have a –0.8

intensity and shadow casting disabled. Each pair of such lights will contribute only shadow

to the scene because their illumination contributions cancel out. Note that their placement

as well as their spread must be identical. When using this technique, you typically add the

scene illumination from a “master” key light (or lights) that doesn’t cast shadows and then

Inverse shadow casting light pairs assure that a specific spot light field of view will be used

regardless of the object’s position, thus maintaining the same resolution real estate and quality

over several frames.

240 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 240

use additional inverse light pairs to spread better-quality localized shadow map shadows

around the scene.

Soft Shadow Maps

Figure 7.12 demonstrates the result of rendering with a low-resolution shadow map (A) vs.

a high-resolution shadow map (B). In A, pixel artifacts appear along the sphere’s edge,

but in B we have a more finely detailed outline; however, you still see the pixel patterns.

Shadows appear more natural when they have a bit of softness. A softer shadow penum-

bra can help “blur” the pixelated artifacts caused particularly by low-resolution shadow

maps. Ideally, if you apply some penumbra blur, you can get away with lower-resolution

shadow maps, optimizing the use of memory by avoiding higher-resolution maps.

mental ray provides two options for fine-tuning the quality and amount of softness

along the shadow map penumbra. These options are entered under the light declaration

block in an .mi file and are as follows:

shadow map softness n

shadow map samples n

The softness option is used to set the size of the blur (in actuality, it’s a filtering process)

along a shadow’s outline, forming a soft penumbra region. The samples option is then used

to determine the quality of the blur. The higher the Samples value, the more time required

for rendering the shadow. Figure 7.13 shows soft shadows that have been applied to the same

shadow maps shown in Figure 7.12. Both shadows now appear acceptable. Note that Fig-

ure 7.13 Image A uses only a quarter of the shadow map resolution (256×256) that was used

in image B (1024×1024). Notice that A appears far more blurred than B, because the artifacts

along the low-resolution shadow map required more blurring (a higher softness value) to

achieve an acceptable result. The impact of a higher softness value also requires that more

samples be taken. Image A used over 40 samples and B used only 20; thus fewer samples

were required to smooth out the smaller penumbra region seen in B. How do all these set-

tings (including resolution) intertwine in optimizing shadow maps using soft shadows?

• With lower-resolution maps, a larger soft region is required to eliminate pixel arti-

facts, and thus more samples are also required.

A B

Figure 7.12

Low-resolution
shadow maps vs.
high-resolution
shadow maps,
where fewer pixel
artifacts can be seen

depth-based shadows ■ 241

08547c07.qxd 10/24/07 4:26 PM Page 241

• Low-resolution maps can significantly improve memory handling (loading images

into memory), especially when several shadow maps are used. However, they are more

processor-intensive while calculating the softness (filtering). Thus the number of samples

and the size of the penumbra blur can reduce render times when high values are used.

• Higher-resolution maps are more memory-intensive. However, they produce finer

(thinner) soft shadow penumbras, using lower values with both softness and samples.

The decision should be based on balancing acceptable penumbra regions (without pix-

elation) as well as avoiding high sampling values when possible. Sampling values that are

too high can slow down render performance. However, if several maps are used, then you

should try keeping resolution as low as possible, especially when you consider that there

are several other textures in the scene.

Woo and Bias Shadow Maps and Self-Shadowing

Our discussion of shadow maps so far has omitted the issue of how depth values are stored

and of self-shadowing artifacts. mental ray provides two internal algorithms for storing

depth values. They are referred to as the Woo and Bias algorithms, and they are available

regardless of whether you use shadow map shadows, detail shadow maps, or OpenGL

shadow maps (except that OpenGL doesn’t support the Woo algorithm). The Woo algo-

rithm is also commonly known as mid-distance shadow mapping, and is the default

algorithm used unless the Bias algorithm is specifically specified.

Consider that mental ray as a renderer doesn’t distinguish between surfaces, so in essence

the shadow map provides information on shadowed polygons based on their distance

from the light. Thus, a single flat surface that spans a large distance may store different depth

values for points across its surface, based on the surface angle and distance with respect to

the light, as seen in Figure 7.14.

Even with very high-resolution shadow maps, pixel artifacts can still appear, and so a slight

application of softness is always beneficial for achieving good results.

A B

Figure 7.13

Low-resolution
shadow map soft

shadows vs. high-
resolution shadow

maps. Fewer arti-
facts are visible

when the shadow
penumbra region

appears blurred,
making the

low-resolution
version acceptable.

242 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 242

Notice that the camera is looking relatively directly at the surface. However, the shadow

map will contain shifting depth values as the surface within the depth map gets farther

away from the light. Figure 7.15 shows the same render with shadow maps enabled (using

the Bias algorithm). Notice the faint banding along the surface. These are self-shadowing

artifacts, caused by the comparison between several points that appear to have a gradual

increase in distance from the light’s perspective To clarify, since the shadow map is resolu-

tion dependent, a single pixel may contain depth values for several sampled points along

the surface. Now consider that the closest point to the light is stored as the depth value.

During the render, sampled points that are also represented by that same pixel (in the

shadow map) will appear farther away from the light then the stored depth value. In such

a case the renderer assumes that they fall in shadow, as a result of poor depth representation

when using resolution dependent shadows. Increasing resolution may provide for a better

result but is no means to resolving such artifacts.

Self-shadowing artifacts

Figure 7.15

Self-shadowing
artifacts caused by
gradual change in
depth values along
the same surface

Samples (primary rays)

Distance from light source

Figure 7.14

Depth values, dis-
tance from light,
and surface angle

depth-based shadows ■ 243

08547c07.qxd 10/24/07 4:26 PM Page 243

T H E W O O A L G O R I T H M (D E F A U L T A L G O R I T H M)

To avoid self-shadowing artifacts, the Woo algorithm simply stores the middle distance

between two shadow-casting points that line up behind each other in the same line of sight

for a given shadow map pixel. Figure 7.16 illustrates the middle distances on a sphere using

three x, y, and z labels. Further, surfaces that have no other shadow-casting points behind

them are stored as null values, meaning they won’t have any representation in the depth

map, such as the floor (even if its shadow-casting flag is enabled).

In Figure 7.16, points c and e are prone to self-shadowing as discussed earlier. However,

if the stored depth value represents the mid-distance between a–b, c–d, and e–f, then those

depth values essentially represent distances that are farther away from the light than the

actual points a, c and e. To clarify, when the renderer samples points around the vicinity

of c and e on the surface, those points that are represented by the same pixel in the depth

map will be compared with the mid-distance depth values, and they will appear closer to

the light then the stored depth values (x, y, and z). Thus, using mid-distance depth values

prevents self shadowing artifacts because their depth representation will not place them

farther away from the stored depth value. You can see that point a is closest to the light,

but once its middle distance (z) is evaluated with the point that appears directly behind it

(between a–b), its depth value changes from 1 to 5, as seen in the chart in the figure. Thus

any sampled points in the vicinity of a will compare with a depth value of 5 instead of 1.

a–b

c–d

e–f

1–10 5

2–4 3

3–4 3.5

Distance Mid-distance Near

Far

z

yx

Mid-distance

a
c

e
y

d

z

b

x

f

Figure 7.16

The Woo algorithm,
also known as mid-

distance shadow
mapping, stores the

middle distance
between two

shadow-casting
points, preventing

most self-shadowing
artifacts.

244 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 244

In Figure 7.17 A, a Woo-based depth map image, you can see how the sphere gradually

shifts from white to black. Remember, mental ray uses white for storing values farthest from

the light, and black for points closest to the light. Essentially, this depth map is reversed

from our expectations because of the Woo algorithm’s mid-distance values. Thus, there is

no chance that any of these points leading to the sphere’s outer edge would self-shadow

because these depth values place them farther from the light than their actual positions. In

Figure 7.17 B, you can see the result of storing several objects as well as a floor (which is

not present in the depth map because it is the last shadow-casting surface). Notice how each

sphere appears uniform in color, all sharing similar mid-distance values that are aligned with

respect to distance from the camera. You can conclude, then, that when surfaces occupy

smaller portions in the depth map (meaning that a smaller angle of view from the light’s

perspective is required for framing those objects), it is more likely they will share similar

mid-distance values and appear as uniform colors, unlike the gradation that is apparent in

image A. Fortunately, none of these surfaces would self-shadow, also they are properly dis-

tinguished from each other so that one surface may cast a shadow on the following surface.

As the mid-distance values between two polygons in the same line of sight are stored,

each sphere stores the mid-distance between its front side polygons and back side polygons.

Thus, each sphere appears independent of the other spheres and the correct color scheme

is visible where dark colors place the front-most sphere closer to the light. The advantage

of the Woo method, then, is that distances are exaggerated so that two points on the same

surface will not self-shadow, but they will shadow on a surface that appears farther away

from their mid-distance point.

A B

Figure 7.17

Two depth maps
using the Woo
algorithm

While comparing the distance between sampled points and the light, with the distance

stored in the depth map, points that appear farther away from the light than the depth value

fall into shadow.

depth-based shadows ■ 245

08547c07.qxd 10/24/07 4:26 PM Page 245

Problems arise, however, when the mid-distance between two surfaces that line up under

the same pixel space appears as a shorter distance than that of neighboring points along the

top surface. For example, in Figure 7.15, the long floor surface can easily become a problem

if two such surfaces exist in very close proximity and both are shadow-casting surfaces.

Figure 7.18 illustrates the problem where the distance a represents the middle distance

between the top and bottom surfaces, which is stored in the shadow map when the point

numbered 1 is sampled from the lights perspective. The depth map pixel indicates that

the three sample points (1–3) use the same depth value (same pixel) for evaluating their

distance from the light. Notice that the distance between the sampled points is greater than

the distance a, which a appears to repeat several times. In this case points 2 and 3 will fall

into shadow. The result will be that after a given point, self-shadowing artifacts appear

because the mid-distance between both surfaces is shorter then the distances between

points on the surface that gradually get farther away from the light. Clearly a lot of long

flat surfaces in close proximity to each other, with varying distances from the light are

prone to self-shadowing artifacts. In such cases, the Woo algorithm “breaks” and you can

try using the Bias algorithm as an alternative.

T H E B I A S A L G O R I T H M

The Bias algorithm provides you with a means of defining the depth offset rather than

automating it based on the mid-distance value. mental ray’s Bias option takes numerical

values that are added to the current depth value, so if a depth of n is evaluated for given

point, the new depth will be n + bias. For example, if the depth is 1.3 for a given point and the

bias is set to 0.1, then the new depth will be 1.4. Adding these values eliminates the chances

of self-shadowing because the point in question will appear closer to the light than its stored

depth value and thus provides for an adequate solution. On the flip side, wrong bias values

can lead to either banding or moiré patterns caused by self-shadowing. Figure 7.19 shows an

image packed with artifacts caused by Bias values that are too low. Notice that although the

light is from above, the entire sphere appears in shadow because each point falls into shadow.

Mid-distance between two surfaces

top surface

bottom surface
a

Depth map pixel

1
a

2
a

3
a

Figure 7.18

The middle distance
between two

surfaces, when too
low, can cause self-

shadowing artifacts.

246 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 246

Figure 7.20 shows the same depth maps seen earlier for the Woo algorithm (Figure 7.17),

but in this case the Bias algorithm is used. In A you can see depth values that more accu-

rately mimic what you might expect to see in depth maps, representing the real distances

from the light as points on the sphere gradually recede from dark to brighter values. This

is a more predictable result than with the Woo algorithm. In B you can see that the floor is

in fact included, unlike with the Woo algorithm that stores it as a null value (because it’s

the last shadow-casting surface). On the other hand, you can tell that there is fine grada-

tion in the depth values across all the surfaces, which can lead to self-shadowing artifacts

because these depth values don’t clearly place those points farther from the light (as the

Woo algorithm does). The Bias value is then added to each of these depth values during

rendering to place them at a safe distance from the light without compromising shadowing.

Assume that the distance between shadow-casting point A and shadow-receiving point

B is n units. When specifying Bias values, you want to select a value that is smaller than

that n distance, the distance between two objects in the scene. Thus the bias value should

remain lower than the shortest shadow-casting distance between a shadow-casting and

-receiving point in the scene. If the bias is larger than that distance, the shadow-receiving

point will not receive shadow, and if the bias is too short a distance, self-shadowing arti-

facts will appear.

Figure 7.19

Bias values are
harder to fine-tune,
and poor value
selections can lead
to a multitude of
shadow artifacts.

depth-based shadows ■ 247

08547c07.qxd 10/24/07 4:26 PM Page 247

Detail Shadow Maps
Detail shadow maps use a more advanced algorithm, which supports some nice improve-

ments over regular shadow maps. Detail shadows accept shadow shaders and thus can

determine color and transparency by recording additional data, such as the alpha and color

values along a specific “light-ray,” with the depth map. As noted earlier, the default shadow

map algorithm provides only for plain-vanilla opaque shadows, as shown in Figure 7.21,

image A. In Figure 7.21, image B, you can see that detail shadow maps respect both color

and transparency (you’ll need to look on the CD to see the color version, “Detail Shadow

Map Color”).

With motion-blurred shadows, shadow maps outline only the blurred region, pro-

ducing a “smudged” shadow effect. Figure 7.22 shows the differences between regular

shadow maps and Detail shadows, where the shadow map (A) appears opaque, stretch-

ing along the motion blur distance and the Detail shadow map (B) appears to respect

both color and motion blur transparency (you can see the color version, “Detail Shadow

Map Motion Blur,” on the CD). The ability to respect shadow shaders is a typical raytrace

feature, available with this more robust depth-based shadow algorithm. When combined

with the rasterizer, you can save a lot of render time while optimizing motion-blur

rendering, as discussed in Chapter 8 “Motion Blur.”

A B

Figure 7.20

Bias depth maps
are more pre-

dictable in their
visual appearance;
they place objects

at their “real”
distances more

accurately and by
doing so are more
prone to artifacts.

248 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 248

A B

B

Figure 7.22

Shadow maps
and Detail shadow
maps compared
for motion blur
shadows

A B

Figure 7.21

Characteristics of
shadow maps and
Detail shadow maps
compared for trans-
parency and color

depth-based shadows ■ 249

08547c07.qxd 10/24/07 4:26 PM Page 249

Detail Shadow Sampling

The Detail shadow map algorithm also allows supersampling on a per-pixel level (for

depth map pixels), providing a good alternative to raytracing shadows. When enabled,

two additional mental ray options are available (under the light block in the .mi file):

shadowmap detail samples n

Shadowmap accuracy n

The samples option enables you to increase the per-pixel sampling for each pixel in the

depth projection, which provides for much better results because samples are averaged to

produce more precise color values per pixel. The accuracy option controls a depth offset

value by determining when additional depth values should be taken into account. After a

sample has been taken for a given depth, the accuracy value is used to determine the mini-

mum difference between this depth value and the next depth value that can be taken into

account.

Figure 7.23 shows two rendered samples where the accuracy value increases and so

does the base distance between the surface and the shadow. Accuracy is meant to help

optimize render performance where samples are taken in an efficient manner, not offset-

ting the shadow from its position. Too low a value will cause mental ray to spend more

time evaluating evaluating per-pixel samples, and too high a value will end up pushing

the shadow away, as seen in Figure 7.23. If an accuracy value is set to zero, mental ray will

evaluate a “best guess” value, which should suffice until you feel more comfortable with

these settings .

The Detail algorithm does not produce reusable shadow map files. Detail shadows cal-

culate only the required region on a per-tile basis, storing those values in the shadow map

file on the fly. As rendering progresses, more tiles fill in the shadow map file, even through

consecutive frames, so essentially this method should not be used with a stored shadow

map file. Remember that with stored shadow maps, the entire shadow is first evaluated,

Figure 7.23

With detail shadow
maps, the accuracy
value is used to limit

the number of
points sampled for

the shadow by a set
depth factor. Too

high a value will
cause artifacts such

as shadows to move
out of place.

250 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 250

which defeats the purpose of using this algorithm. Further, you cannot view these maps

as with regular shadow maps in an image viewer, and detail shadow maps are not com-

patible with regular shadow maps and vice versa.

OpenGL Accelerated Shadows
OpenGL shadow maps allow hardware to calculate the shadow maps extremely fast, lim-

ited only by the hardware’s abilities. There is not much to say about OpenGL shadows

except that the technique is very similar to scanline OpenGL acceleration; it rapidly com-

piles the depth projection. See Chapter 2, “Rendering Algorithms,” for more information

on hardware implementations.

Because mental ray supports rendering partial shadow maps, it may require fewer

shadow map calculations. With OpenGL shadow maps, partial shadow maps are not sup-

ported. This means that rendering OpenGL shadow maps is less desirable because they

would consider an entire depth shadow rather than a partial shadow. A further limitation

is that OpenGL shadow maps have no notion of objects in the scene; as discussed in

Chapter 2, hardware deals with one triangle at a time, filling in the frame buffer. The

result is that only Bias shadow maps are supported, which, as cited earlier, require careful

fine-tuning.

Stand-Alone and Host Settings
For each host application, there are both global and local options for setting shadow

methods. Typically, at the global level you may set whether raytrace or shadow maps are

enabled, and on the local level you can specify which (per light) method is used. Both

shadow maps and raytrace shadows can be applied using different light sources. As cited

in Chapter 6, mental ray defaults to raytrace shadows with a shadow on statement under

the light shader unless a shadow map statement is provided for that light shader. In any

case, with raytrace shadows, you must choose one of three algorithms—Regular, Sort, or

Segment—as a global setting, not local, just as a BSP tree is a global raytrace acceleration

algorithm for the entire scene.

Let’s identify both raytrace and depth-based shadow options within host applications,

on both global and local levels.

Global Settings
In host applications, the global render settings, seen in Figures 7.24, 7.25, and 7.26, can be

found in the following paths:

H O S T G L O B A L S E T T I N G S P A T H

Maya Render Settings window ➔ mental ray tab ➔ Shadows

XSI Render Options window ➔ Shadows tab

3ds Max Render Scene window ➔ Renderer tab ➔ Shadows & Displacement rollout

stand-alone and host settings ■ 251

08547c07.qxd 10/24/07 4:26 PM Page 251

This shadowmap command is also applied on a per-light basis with additional settings

(such as specifying the shadow map file). For now we are interested in selecting shadow

map algorithms, enabling motion-blurred shadow maps, and rebuilding shadow map files.

These options are labeled as follows within the host applications, as seen in Figures 7.24,

7.25, and 7.26.

H O S T O P T I O N H O S T S E T T I N G S

Maya Shadow algorithm Shadow Maps ➔ Shadow Maps check box and the Format
drop-down list

Motion Blur Shadow Maps ➔ Motion Blur Shadow Maps check box

Rebuild/Reuse Shadow Maps ➔ Rebuild Mode radio buttons

XSI Shadow algorithm Shadowmaps ➔ Enable check box

Motion Blur Shadowmaps ➔ Motion Blur Shadow Maps check box

Rebuild/Reuse Shadowmaps ➔ Rebuild Every Frame check box

3ds Max Shadow algorithm Shadow Maps ➔ Enable check box

Motion Blur Shadow Maps ➔ Motion Blur check box

Rebuild/Reuse Shadow Maps ➔ Rebuild check box

T H E D E F A U L T S H A D O W M A P A L G O R I T H M

With Maya, 3ds Max and XSI, the on and off mental ray options are provided by checking

and clearing the Enable (Shadow Maps in Maya) check box, as seen in Figures 7.24, 7.25

and 7.26. With all hosts, when shadow maps are enabled, mental ray uses the standard

Shadow Map Shadows algorithm.

D E T A I L S H A D O W M A P S H A D O W S

Detail shadow maps with Maya, XSI, and 3ds Max are specified on the local level on a per-

light basis. This means that if you select Detail shadow maps for a specific light, it will

override the global setting for that light and render Detail shadows. Detail shadow maps

are further examined on the local level later in this chapter. With Maya, you can specify

Detail shadow maps using the Detail option from the Shadows ➔ Shadow Maps ➔ Format

drop-down list, applying it as a global override to all the lights that cast shadow maps in

the scene.

R E B U I L D I N G S H A D O W M A P S

As discussed earlier in this chapter, one of the advantages of shadow maps is reusability.

With host applications, the settings described in the following paragraphs apply.

When the rebuild shadow option is set to off, shadows are read from a file, so mental

ray looks for the shadow map file on disk. With Maya, you can specify shadow map files

XSI and 3ds Max Detail shadow maps are specified at the light level, and they both don’t

support OpenGL shadow maps.

stand-alone and host settings ■ 253

08547c07.qxd 10/24/07 4:26 PM Page 253

under the light’s attributes (see “Local Host Settings” later in this chapter). 3ds Max

enables you to specify the shadow map file in the Shadows & Displacement rollout, with

the Use File check box and path. With XSI, this process is hidden from the user, and

although you may choose to disable the Rebuild every frame check box, you have little

control over specifying the shadow map file.

When rebuild is set to on (Rebuild All and Overwrite radio button in Maya), mental

ray constantly rebuilds shadow maps; the file is re-created for each frame. It’s important

to realize that unless shadow maps are rebuilt while you’re creating the scene, you may

have unexpected results such as missing shadows or shadows misplaced because the

placement of objects in the scene may have changed. Figure 7.27 illustrates the effect of

turning off the rebuild option and then rendering a frame after the sphere has been moved

(image B). As you can see, the shadow map renders the same as with image A regardless

of the new position. A new shadow should have been generated, but instead the old one

remains.

M E R G I N G S H A D O W M A P S

The merge option is currently available only within Maya (Rebuild All and Merge radio

button). Merge allows you to combine different shadow map files into one shadow map file

so that data from a previous shadow map evaluation can be appended with new data from

the current render. mental ray will only calculate changes to the shadow map that include

depth values for surfaces that appear closer to the light than the depth values stored. Thus,

it reuses existing data, and corrects for scene changes when necessary. Merge is not sup-

ported with Detail shadows.

Keep in mind that mental ray’s abilities to calculate only partial shadow maps may override

the benefits of reusability.

A B

Figure 7.27

Disabling the
rebuild shadow

option forces mental
ray to read the

shadow map file on
disk (provided such

a file exists) and may
cause unexpected

results with objects
that have moved.

254 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 254

Local Host Settings
The following sections identify shadow map settings on source lights for the mental ray

features discussed in previous sections (locally). You have already reviewed the raytrace

local settings in Chapter 6.

Enabling mental ray Shadow Maps

Figures 7.28, 7.29, and 7.30 show local shadow map settings for source lights, which may

either be point, spot, or directional lights. These settings can be found in the following

paths for a selected source light (note that directional lights may not support all these

settings). These paths can be navigated only when a source light is selected:

H O S T G L O B A L S E T T I N G S P A T H

Maya Attribute Editor window ➔ mental ray tab ➔ Shadows rollout

XSI Scene_Root: Light property editor ➔ Shadow Map tab

3ds Max Modify panel ➔ mental ray Shadow Map rollout

M A Y A

With Maya, you simply disable the Derive from Maya attribute check box seen in Fig-

ure 7.28. You can then further select Detail Shadow Map check box, also seen in the figure

from the Shadow Map Format drop-down list. All the shadow map settings are further

discussed in the section “Controlling Shadow Map Properties.”

Figure 7.30

mental ray shadow
map settings for 3ds
Max source lights

Figure 7.29

mental ray shadow map settings for XSI
source lights

Figure 7.28

mental ray shadow map settings for Maya
source lights

Maya’s Depth Map Shadow attributes (Dmaps) should not be used with mental ray. Thus, you

should always disable the Derive from Maya check box that uses Maya specific shadow map

settings to control mental ray shadow map settings.

stand-alone and host settings ■ 255

08547c07.qxd 10/24/07 4:26 PM Page 255

With Maya, within the Render Settings window under the mental ray tab, if you have

Shadows ➔ Shadow Maps ➔ Format drop-down list set to Detail (on the global level), all

shadow maps, whether or not specified as Detail on the local level, will render as detail shadow

maps provided the Shadow Map check box is enabled for the light (locally). Derive from

Maya check box is disabled

On the local level, the Shadow Map File Name attribute (text input) enables you to spec-

ify a shadow map filename. You can postfix it with the light name, scene name, and frame

extension, decreasing the chances of accidentally overriding the same filename. Once you

enter a name into this field and render, if the Reuse Existing Maps radio button is selected

(Render Settings window ➔ mental ray ➔ Shadows ➔ Shadow Maps), mental ray will reuse

that saved file rather than calculating a new shadow map file.

X S I

With XSI, under the Shadow Map property tab (shown in Figure 7.29), the Use Shadow

Map check box enables shadow maps, and the Use Volumic Shadowmaps check box enables

Detail shadow maps. All the shadow map settings are further discussed in the section

“Controlling Shadow Map Properties.”

3 D S M A X

With 3ds Max, to enable mental ray shadow maps you must first enable shadows under

the light’s General Parameters rollout; choose Shadows ➔ On and then select mental ray

Shadow Map from the drop-down list, as seen in Figure 7.30. When both these conditions

are met, mental ray shadow maps are enabled, assuming they are also enabled on the

global level, as cited earlier. In the following sections, we look at enabling Detail shadow

maps and relevant settings.

Controlling Shadow Map Properties

Table 7.1 maps the mental ray features discussed earlier in the chapter to host-specific

option names for the corresponding settings. The following sections show how to apply

those settings.

M A Y A X S I 3 D S M A X

Resolution [n(×n)] Resolution Resolution Map Size

Softness Softness Softness Sample Range

Samples Samples Samples Samples

Bias Bias Bias Use Bias

continued

M E N T A L R A Y

S H A D O W M A P

O P T I O N S

Table 7.1

mental ray Features
and Host-Specific

Options

256 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 256

continues

M A Y A X S I 3 D S M A X

Detail Transparent Shadows ➔
Enable (intensity only)

Transparent Shadows ➔
Color

Detail samples Sub-Samples Samp./Pixel

Accuracy Step Size Merge Dist.

I N T E N S I T Y A N D C O L O R T R A N S M I S S I O N

With XSI and 3ds Max, you can specify whether detail shadows will consider just intensity

values (grayscale transparency) or both intensity and color. With XSI, set the Shadow

Type drop-down list to either Intensity Only or Full Color. With 3ds Max, under Trans-

parent Shadows check both the Enable and Color check boxes. Maya simply uses color if it

is present.

As discussed under “Shadow Shaders” earlier in this chapter, with all host applications

the shadow color and transparency are derived automatically from the surface shader’s

transparency settings. You can also use a texture file to map color with an image such as

stained glass, as seen in color in “Detail Shadows” on the Chapter 7 folder on the CD.

M a y a a n d X S I

Maya uses the shader Transparency attribute, and XSI uses the shader’s Transparency ➔ Mix

Color ➔ Color property, and in both cases an image may be mapped for color and intensity.

3 d s M a x

3ds Max uses a shader’s Opacity setting to derive trans-

parency (intensity) as grayscale values. For color, you can

use Extended Parameters ➔ Advanced Transparency ➔

Type ➔ Filter to specify a transparency color (seen in

Figure 7.31). Note that while mapping an image or

using color shadows, you should use the same color/

image for both the Filter color and the Opacity color,

maybe even the Diffuse color, as seen mapped with a

bitmap on all three settings in Figure 7.30 and used for

the render “Detail Shadows” seen in the Chapter 7

folder on the CD.

Detail Shadow Map
Attributes ➔ Accuracy

Detail Shadow Map
Attributes ➔ Samples

Shadow Type drop-down
list ➔ Intensity Only or Full
Color

Not applicable. Both
intensity and color are
enabled by default.

Enabling color
transmission

Use Volumic Shadowmaps
check box

Shadow Map Format
drop-down list ➔ Detail
Shadow Map

M E N T A L R A Y

S H A D O W M A P

O P T I O N S

stand-alone and host settings ■ 257

Figure 7.31

3ds Max shader set-
tings for enabling
color transmission in
Detail shadow maps

08547c07.qxd 10/24/07 4:26 PM Page 257

S O F T N E S S A N D S A M P L E S

The Softness setting (see table 7.1) for specifying the penumbra blur depends closely on

the resolution and is very sensitive to values. Typically, lower-resolution maps will need

higher values and more samples to provide a nice soft shadow. Start testing with very low

values such as 0.001 to 0.01. If you don’t see a shadow but do see artifacts, it could be that

the Softness value is too high and the shadow is too blurred to be recognizable. If you do

see the shadow and it appears grainy, the Samples value is too low.

With respect to the Samples option, it is relevant only when Softness has been applied.

You can use a low value such as 4 while defining the Softness (penumbra radius), render-

ing with lots of shadow artifacts as seen in Figure 7.32, image A, and then once you’re sat-

isfied with the radius, increase the samples until the gradation appears smooth, as seen in

Figure 7.32, image B.

O T H E R S E T T I N G S

To choose between the Woo and Bias depth-value algorithms discussed earlier in the

chapter, you simply enable or disable the Bias algorithm. You do this by specifying a

Bias value (see Table 7.1). Thus, when Bias has a nonzero value, the Woo algorithm is

disabled.

The section “Detail Shadow Maps” discussed how to balance the Detail Samples and

Accuracy settings (see Table 7.1). Note that the higher the Samples value, the more pro-

cessing is required for each shadow map file. Each pixel is sampled based on the n value

you enter, n×n samples. When Accuracy is set to zero, mental ray will evaluate a value for

you. Remember that the accuracy value should never be too large because the shadow will

shift away from the surface, as discussed earlier. Accuracy is meant to reduce the number

of depth samples considered while rendering, improving render performance.

A B

Figure 7.32

Specifying low sam-
ples produces arti-
facts (A) but helps
quickly define the

shadow map
penumbra blur

radius; then higher
samples can be used

to smooth out the
result (B).

258 ■ chapter 7: Shadow Algorithms

08547c07.qxd 10/24/07 4:26 PM Page 258

Motion Blur

Motion blur can be used to add a great deal of realism to mental ray renders.

Adding motion blur not only provides an extra touch of photographic realism, it also pro-

vides for smoother animation. Objects that move fast with no blur simply appear “wrong”

and “rigid,” and so motion blur helps smooth the visual appearance of object translation

over several frames. Be sure to complete both Chapters 4 and 5 before beginning this

chapter. In Chapter 4, “Camera Fundamentals,” you learned about camera characteristics

such as shutter angle and speed; this chapter focuses on using mental ray to simulate the

effect those elements have on motion blur. Chapter 5, “Quality Control,” discussed sam-

pling on a per-frame basis as well as the different render algorithms mental ray provides,

which have a significant effect on motion-blur rendering. The chapter covers the follow-

ing topics:

■ mental ray Motion Blur

■ Motion Blur Options

■ Motion Blur Render Algorithms

■ Host Settings

C H A P T E R 8

08547c08.qxd 10/24/07 4:28 PM Page 259

mental ray Motion Blur
Motion blur in mental ray realistically simulates camera motion blur, handling both stan-

dard features, such as correctly blurring surface texture colors, and advanced features,

such as indirect illumination effects (i.e., global illumination, caustic light, and final gather).

In film, there are two primary causes for motion blur, both illustrated in Figure 8.1: the

motion of objects in front of the camera during the shutter interval (A) and movement of

the camera so that anything within the camera’s view appears blurred (B). Also, as seen in

B, if both the camera and an object are in motion, then as with real cameras, the environ-

ment would blur but not the object, because its visual cues remain static in the “eyes” of

the camera. Accommodating all these features provides yet another powerful tool for

simulating realism.

The following sections look at the motion-blur options you can control in mental ray on

the global and per-object levels, and the concepts underlying those options. As usual, the last

section of this chapter will show how to implement those options in the host applications.

Motion-Blur Options
The mental ray options used to control motion blur are specified on the global level in the

.mi options block (or on the command line). The following command-line options (or

options block options) are used:

-motion [on | off]

-shutter [delay time (optional)] [open time]

-motion_steps [number of steps]

-time_contrast [r,g,b,a]

The motion on or off option enables or disables motion blur on the global level. It’s not

necessary to specify this option because specifying the shutter option will enable motion

blur. However, the motion option must be included if you plan to export render passes for

compositing, as explained in the sidebar “"Using 2D Motion Vectors in Practice” at the

end of this chapter.

A B

260 ■ chapter 8: Motion Blur

Figure 8.1

mental ray simulates
realistic camera

motion blur for both
moving objects and

cameras.

08547c08.qxd 10/24/07 4:28 PM Page 260

Shutter Time
mental ray simulates motion blur by realistically mimicking a camera’s shutter time inter-

val. In the following sections the term time interval may take on two meanings; one being

the time between two consecutive frames referred to as the frame time, and it may also be

used as reference to the time a shutter remains open during each captured frame, referred

to as the shutter time. A combination of both shutter speed and shutter angle is used to

define the shutter time in real cameras, as discussed in Chapter 4. The option for control-

ling motion-blur shutter time is as follows:

-shutter [delay (optional)] [time]

The mental ray shutter option can be used either with a single numerical value or with

two values for both shutter delay and shutter time. shutter time defines a time interval for

the shutter, from the beginning of the frame until the shutter closes. If the delay option

is also present (optional), it defines a delay time at the beginning of the frame, defining a

shutter start time. Thus shutter time and delay define the shutter open and close times

respectively. Figure 8.2 illustrates the shutter time characteristics and their effect on

motion-blur rendering.

In Figure 8.2 (A), you can see the horizontal scale representing the frame time interval

during one frame. The shutter option specifies the period of time the camera can “see”

the surface during the frame time interval. A shutter time of 1 (the default setting) means

that the surface is visible throughout the entire frame time. The shutter time stated as

0.2–0.7 means that the shutter will open only after a delay of 0.2 of the time interval and

will close at 0.7 of the frame time, effectively remaining open for only 50 percent of the

frame time.

A shutter open for only 50 percent of the frame time essentially simulates a camera shutter

angle of 180°, as discussed in Chapter 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A

CB D

Shutter time 1
Shutter time 0.2–0.7

Frame 1 Frame 2

Shutter time

Shutter close

Shutter Open

Equal shutter open and close time (0.5)

Figure 8.2

The shutter
option’s effect on
shutter time charac-
teristics with
mental ray

motion-blur options ■ 261

08547c08.qxd 10/24/07 4:28 PM Page 261

How does a 50 percent shutter time affect a 3D camera with mental ray?

First and foremost, the object will be less motion-blurred, as with a real camera, where

faster shutter times produce less motion blur.

A set number of samples are taken during the shutter time, so a faster shutter time will

take the same number of samples, for example over 50 percent of the time period (and

distance), improving render quality. Motion-blur sampling is further discussed in the sec-

tion “Motion Blur Sampling.”

Also, the object’s position is examined (at minimum) at both ends of the shutter time.

Basically, an offset in shutter time or delay will offset the visible position of an object.

Let’s examine the effect different shutter times have on a spherical object, illustrated in

the three screens in the lower half of Figure 8.2 (labeled B, C, and D). Screen B corre-

sponds to the first timeline in A and represents a shutter time of 1. Because mental ray

visualizes the surface at both ends of the frame time, in this case the shutter time repre-

sents the entire distance over which the camera can see the object moving during that

frame time interval.

Screen C corresponds to the second timeline in the section labeled A, where the shutter

time has been reduced by 50 percent by specifying a shutter delay of 0.2 and a time of 0.7.

In this case, the surface is seen by the camera only during the middle segment of that frame

time, so the motion blur will only appear to span across that range of time, a shorter dis-

tance than with screen B.

Finally, screen D demonstrates the effect of using the same value for both shutter delay

and time (open and close times). Essentially, the surface will render in the middle of the

frame (if both are set to 0.5), because at 50 percent of the frame time the object is placed

exactly between the frame start and end time. Thus if you specify the same value for both

shutter delay and time, the surface is only rendered at that time, appearing, in this case, in

the center frame. Further, because the shutter theoretically never opened, motion-blur

effects are not rendered. To clarify, the lack of motion blur is because the shutter opened

and closed instantaneously, so the object never appeared to move, and thus no visible

change in position can be perceived by the camera.

Figure 8.3 demonstrates different shutter times for a rotating surface. For the first

image (the least blurred), an almost identical shutter delay and time was utilized, and so

the surface is placed in the middle distance between its position at that frame and the fol-

lowing frame. For the following images, increasing values in shutter time were used: 0.4

and 0.6, 0.3 and 0.7, 0.2 and 0.8, and 1.0. As you can see, the longer the shutter remains

open, the more motion blur is captured in the image.

As you can see, mental ray utilizes a camera shutter to control motion blur; however the

shutter does not realistically simulate different light intensities captured throughout dif-

ferent shutter times as with real cameras. With a real camera, longer shutter times provide

262 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 262

more light exposure. With 3D, however, you define light properties with a lighting model

and then mental ray uses the shutter settings to simulate only the effects of motion blur;

thus all these shutter settings only causes mimicking motion-blur effects.

Motion Steps
As noted earlier, our discussion of shutter time considered only the position of a surface at

both ends of the shutter time interval. When mental ray calculates motion blur, it samples

the position of the object along a path. By default, this path is derived by “drawing” a direct

line from the surface or vertex position at the shutter open time to its position at the shut-

ter close time. The option for controlling the number of motion steps is as follows:

-motion_steps [number of steps]

Figure 8.4 illustrates this concept, where a sphere has a nonlinear trajectory as it travels

from point A to B. If the motion_steps number of steps is set to 1, mental ray simply blurs

the line from point A to B using a linear path, assuming that’s the correct motion trajectory,

regardless of points 1, 2, and 3.

For mental ray to recognize the correct path, both transformation matrices and vertex

motion vectors (both discussed shortly) can be declared several times within the shutter

time. When you do so, mental ray receives additional information about the different

positions of objects or vertices during that shutter time, effectively identifying points 1, 2,

and 3 in Figure 8.4. Thus, more “steps” evaluated during the shutter time requires more

transformation or vertex declarations for placing those surfaces correctly during the time

interval period, consequently increasing the render time, particularly with vertex motion

vectors.

1 3
2Nonlinear path

Linear path

A B

Figure 8.4

A surface may travel
in a nonlinear path
from point A to B.
However, unless a
motion_steps
value is specified,
mental ray will fail to
recognize the in-
between positions.

motion-blur options ■ 263

Figure 8.3

Increasing shutter
time has the effect
of increasing the
motion blur visible
in the shot.

08547c08.qxd 10/24/07 4:28 PM Page 263

Figure 8.5 illustrates motion steps with three horizontal lines that represent the shutter

time using different “step” values. The line labeled A (“motion steps 1”) represents the default,

where a linear line is used to draw the path from point A to B. For the lines labeled B and C,

as the Motion Steps value increases, so does the number of transform matrices or motion

vectors used to define the surface position during that time. In the two images seen below,

the differences are clear. Notice how the image under motion steps 1 appears to have a

direct line of motion blur between the start and end positions of the blur. The second

image, using 8 steps, provides for a rounder and more accurate motion trajectory.

To clarify, the Motion Steps option has nothing to do with sampling quality; it deals with

only where the surface is placed at particular points during the time interval. When using

rotational motion such as with a tire, as seen in Figure 8.6, it is important to provide addi-

tional motion steps, but you should use as few as possible. With transform motion blur,

you can specify up to 15 steps; however, you should really use under 6 steps with vector

motion blur because it has a significant influence on render times.

Motion Blur Sampling
Motion blur sampling requires adding a third dimension to sampling: time. A technique

known as temporal sampling factors in additional time samples that are taken during (along)

the shutter time, based on spatial (XY pixel dimensions) samples. There are two approaches

to temporal sampling: One approach is more render-intensive and precise; it is the default

mental ray algorithm, which we’ll refer to as time contrast. The other is typically (but not

exclusively), used with the rasterizer; it is known as fast motion blur. The following sec-

tions examine and compare both approaches.

Motion Steps

motion steps 1 motion steps 8

shutter
open

shutter
close

A. motion steps 1

B. motion steps 2

C. motion steps 5

Figure 8.5

Motion steps can be
used to add trans-

form matrices or
motion vector data
to surfaces and ver-

tices respectively,
improving the

motion trajectory
sampled during

motion blur.

264 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 264

Temporal Sampling (Time Contrast)

The option for controlling the number of temporal samples is as follows:

-time_contrast [r,g,b,a]

This sampling process is used to collect color information on the surface’s appearance

at equally spaced time periods. Unlike Contrast Threshold (discussed in Chapter 5),

which controls spatial sampling quality for non-motion-blurred surfaces, the Time

Contrast option determines the number of temporal samples that are taken during the

shutter time.

Figure 8.7 illustrates temporal sampling in the section labeled A. Two horizontal lines

represent the shutter time. As you can see, with a time contrast of 0.5, two separate time

periods are sampled during the shutter time. Below that you can see that a contrast of 0.1

yields 10 samples during the shutter time, providing for higher quality because the surface

is sampled more closely during the shutter time. The sample density is then approximately

1 ÷ n number of samples (the inverse value), n being the time contrast values you specify.

In the section labeled B in Figure 8.7, the shutter is open only for part of the frame

time, and so contrast values depict only samples taken within the shutter time, not the

frame time. Thus, n number of samples will be taken within the shutter time based on the

equation cited earlier.

In host applications and with stand-alone mental ray, the Time Contrast option is

specified per color channel, including the alpha channel. Since these “color” values depict

sample intervals, not color comparisons, they should remain identical in all cases except

with the alpha channel. If there is no need for an alpha channel, you might as well leave it

at a value of 1, removing its sample density. In theory, applying separate RGB values can

produce more accurate sampling for a given color channel, so if the entire scene is blue,

you might want to take more blue samples and not bother examining the red and green

channels. This, of course, is not really practical for most applications.

Figure 8.6

Rotational motion
requires motion
steps to maintain
the integrity of the
surface’s motion dur-
ing the shutter time.

motion-blur options ■ 265

08547c08.qxd 10/24/07 4:28 PM Page 265

transformation, typically in dynamic simulations such as cloth or water simulations or

character deformation such as with a character rig (bone systems) or facial expressions

driven by morphing targets.

mental ray stand-alone enables you to specify transformation or motion vector motion

blur on a per-object level. With transform motion blur, additional transform matrices are

appended under the surface’s transform matrix, as you can see in the following excerpt

using the motion transform matrix:

instance “polymsh1”

“polymsh1/Polygon Mesh”

visible on

shadow on

trace on

transform

0.73 0 0.67 0

-2.43 0.99 -1.17 0

-0.67 0 0.73 0

-0.10 3.22 -0.096 1

motion transform

-0.64 0 0.76 0

1.0 0.99 -1.59 0

-0.76 0 -0.64 0

0.09 3.22 -0.10 1

material [“polymsh1/DefaultLib/Material2”]

()

end instance

The first transform matrix is present regardless of motion blur and provides informa-

tion on the object’s position and orientation at each frame. The motion transform matrix

provides additional information about the surface’s position at the end of the shutter time.

For deformational motion blur, this motion transform matrix is not used because it

does not depict the rearrangement of vertices at the object level. Instead, motion vectors

are provided for each vertex. Thus, if a surface definition typically includes the placement

of each vertex in object space, then additional similar statements are added to include the

position of each vertex within the shutter time. The difference, then, is that motion trans-

forms provide information about surface transformations (translation, orientation, and

scale), and with deformation, per-vertex placement coordinates are provided. Clearly the

per-vertex processing and rendering is more processor-intensive, so per-vertex motion

vectors should be used only when deformations are required.

Figure 8.9 demonstrates the differences between the two methods. The figure utilizes a

cylinder that has been “skinned” (enveloped) to a rig and animated. In addition a sphere

has been parented to the bottom joint (as the hand). The cylinder is deformed by the

rig, but the sphere is only translated, inheriting motion from its parent. Essentially,

268 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 268

transformation motion blur will suffice for the sphere as seen in the section labeled A.

For motion-blurring, the cylinder motion vectors are required, as seen in the section

labeled B, in which motion vectors were utilized.

Motion-Blur Render Algorithms
mental ray can use the default scanline renderer, the rasterizer, or raytrace rendering for

motion blur. Essentially, the differences between these algorithms are in their support

for raytracing features and sampling algorithms.

mental ray doesn’t require you to explicitly set which algorithm is used for simulating

motion blur aside from selecting the rasterizer over the default scanline algorithm. With

the default scanline and raytrace algorithms, disabling one or the other is irrelevant as the

sampling algorithm is the same and the rendered result will appear very similar, aside from

the fact that raytracing is more precise. Obviously, if you disable raytracing, raytrace fea-

tures will not be visible, and when both scanline and raytracing are enabled, mental ray

decides for itself which algorithm to use. To clarify, if the scene has no raytrace features

such as shadows, reflection, or refractions, the result of motion blur will appear almost

identical in both cases. Further, if detail shadows are used for shadow maps, as discussed

in Chapter 7, “Shadow Algorithms,” the resulting shadow will appear similar to a raytrace

shadow. Thus, raytracing really only adds reflection or refraction abilities as well as

advanced raytrace features such as the global illumination, Final Gather, and similar

concepts that can all be motion-blurred.

A B

You should always prefer the transform motion blur algorithm because it is a faster algorithm

that does not account for each vertex on motion-blurred surfaces.

motion-blur render algorithms ■ 269

Figure 8.9

Simulating an arm
motion with a
skinned cylinder and
a parented sphere,
where the cylinder
requires motion vec-
tors but the sphere
requires only trans-
formation matrices.

08547c08.qxd 10/24/07 4:28 PM Page 269

When both scanline and raytracing are enabled (scanline set to On, which is the default),

raytracing features such as reflections (or any other raytrace feature) appear on motion-

blurred surfaces, and the motion-blurred surfaces appear motion-blurred in reflections

and refractions. In contrast, when both the rasterizer (scanline set to Rapid) and raytrac-

ing are enabled, one of the primary differences relates to how motion-blurred surfaces

appear “seen” in reflections or refractions on other surfaces, as well as how they acquire

reflection or refraction color (referring to the motion-blurred surfaces themselves). Essen-

tially, the rasterizer’s motion-blur effects are not visible to secondary rays; however, sur-

face raytrace color values (reflection and refraction) are collected during the rasterizer’s

sample collection phase for a surface, before motion blur is evaluated. Thus, the rasterizer

may examine a surface that has reflection colors and then motion-blur it using those colors.

Also, the motion blurred surfaces themselves will not appear motion blurred to other reflection

or refraction rays (on other surfaces). Let’s examine these characteristics with the three

samples, A, B, and C in Figure 8.10, as well as in the following section:

For image A, default scanline and raytracing were utilized, and thus you see the
motion-blurred surface appear in the mirror reflection and the raytrace shadows
appear motion-blurred. Note that the surface and shadow closer to the camera are
seen reflected on the mirror behind them.

For image B, the rasterizer was utilized with raytracing enabled. You can see that the
raytrace reflections and shadows appear visible; however, they don’t account for
motion blur. Thus rasterizer motion blur is not “seen” (....secondary raytrace rays):,
or calculated with raytrace shadows.

For image C, the same setting as image B (rasterizer and raytracing enabled) were
utilized; however, detail shadow maps have been used rather than raytrace shadows,
and as you can see, the shadows appear blurred both to primary rays and secondary
rays but the sphere’s motion blur is not reflected. Only detail shadow maps will
properly render motion blur and are even seen in reflections. Detail shadow maps
are discussed in Chapter 7.

Rasterizer Motion Blur
By now it’s clear that the rasterizer scanline algorithm has significant impact on motion blur

on many different levels, including sampling, temporal sampling, raytracing, and render

speed. Faster motion blur is the key advantage of the rasterizer, making it a very attractive

For motion-blurred shadows, you should only use either detail shadow maps or raytrace

shadows. Further, raytrace shadows should be enabled only if you are not using the raster-

izer, unless the motion-blurred object is not casting a shadow.

270 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 270

alternative to the more time-consuming default scanline or raytrace motion-blur render-

ing, especially when raytracing is not required. Let’s look at some rasterizer characteristics

that affect reflection or refractions on motion-blurred surfaces.

A

B

C

Figure 8.10

Motion blur with
(A) the default scan-
line algorithm and
raytracing, (B) the
rasterizer with ray-
tracing, and (C) the
rasterizer with ray-
tracing and detail
shadow maps

motion-blur render algorithms ■ 271

08547c08.qxd 10/24/07 4:28 PM Page 271

Rasterizer Motion Samples and Raytracing

In Chapter 5 you learned about the rasterizer, and that it caches surface shading results.

These cached surface colors are also used with motion blur. To clarify, after the shading

values have been collected, fast motion blur samples are taken at different stages during

the shutter time interval, discussed earlier under “Fast Motion Blur Sampling.” Thus the

Sample Collect option (phase) “draws” the surface in its temporal position, whereas the

Shading Samples option provides surface colors that are not acquired over time, even

though the position of the surface may have changed. The result of using these cached

color values with temporal sampling primarily influences the color of reflections and

refractions, where sampled colors appear dragged over time. Fortunately, the Samples

Motion option provides a workaround for improving reflection or refraction quality dur-

ing the shutter time. Motion samples can be entered into the .mi options block or the

command line as follows:

-samples_motion [int value]

Motion samples are used to better simulate sampling at different segments of the time

interval. Essentially, additional shading samples are collected within the time interval,

providing for “corrected” reflection colors. Using motion samples enables mental ray to

retrieve additional reflection or refraction samples, reducing the dragged appearance of

reflections or refractions on motion-blurred surfaces. Figure 8.11 illustrates these concepts

by comparing raytrace motion blur and rasterizer motion blur.

Image A simply shows the scene without motion blur. The middle cube is fully

reflective and a texture gradient is used on the two additional cubes.

Image B shows standard raytrace motion blur. The surfaces and their textures are prop-

erly blurred, as are reflections. Notice the reflection appears “in-focus” and the surface

appears blurred “under” the reflection, so the reflection samples don’t translate with the

surface, as expected. Also, notice that you can see more of the environment reflect along

the "longer" surface; the surface appears longer because of motion blur.

A B C D

272 ■ chapter 8: Motion Blur

Figure 8.11

A comparison of
raytrace motion

blur with the default
algorithms and

with the rasterizer
as seen on motion-

blurred surfaces.

08547c08.qxd 10/24/07 4:28 PM Page 272

Image C shows the rasterizer using a Samples Motion option value of 1, the default

setting. The reflections, as well as all other colors, translate with the surface. This

demonstrates the dragging effect of reflections with the rasterizer.

Image D shows a Samples Motion setting of 6. As you can see, the reflection quality

improves, but it is still not nearly as clear as with the raytracing render. For many

purposes, this sort of reflection will suffice because motion-blurred surfaces typi-

cally move too fast for a viewer to accurately distinguish these differences. Thus,

using high motion sample values helps improve motion-blur quality for reflective

or refractive surfaces.

Tiling Artifacts

One problem with motion samples is that tiling artifacts can appear. As you know, each

tile is a separate render job and different sample values may be generated per tile. With

the rasterizer, the tile size affects the visible artifacts, as seen in Figure 8.12. Notice that a

smaller tile size is used in the image on the left with the smaller artifacts, and as the tile size

increases, the artifacts appear larger (right image). This is common to rasterizer motion

blur and is more pronounced with high Samples Motion values that capture reflections.

Basically you need to decide when it’s too noticeable, and when it “passes” without the

viewer noticing artifacts.

Host Settings
All three host applications offer similar settings for controlling motion blur, and they also

offer their own additional settings. Host-specific settings act as queries, asking you what you

would like to achieve and then translating as well as possible to mental ray those settings,

using all the options discussed earlier in the chapter. For BSP settings, it’s recommended

Figure 8.12

Different tile sizes
affect the visible
artifacts with the
rasterizer, especially
with higher Motion
Samples values.

host settings ■ 273

08547c08.qxd 10/24/07 4:28 PM Page 273

that you reduce the BSP depth size about 10 percent when using motion blur, a topic dis-

cussed in detail in Chapter 5 in the section “Raytrace Acceleration.” Also, with host applica-

tions, unfortunately the choice between transformation and motion-vector motion blur is

applied only at the global level and not on a per-object level. Thus, when you specify either

method, every scene element will receive either motion vectors or motion transformations.

Fortunately, you can specify which objects are considered for motion blur by disabling their

motion-blur flag under their surface properties in Maya and 3ds Max. Let’s look at each host

briefly to identify its settings as well as note some of it unique host-specific settings.

Maya
With Maya, as discussed in Chapter 2, mental ray attributes are found in the Render Set-

tings window as well as under the mental ray default options (miDefaultOptions node).

Figure 8.13 shows the mental ray motion blur attributes, seen in the Render Settings win-

dow under the Motion Blur rollout. You can also display the mental ray options in the

Attribute Editor by typing the following into the script editor and executing:

select -r miDefaultOptions;

When you execute this command, you can find the additional Motion Samples option

(for the rasterizer) under the Rendering rollout, which is currently not available in the

Render Settings window.

From the Motion Blur drop-down, you can enable motion blur by selecting one of the

motion blur methods: No Deformation (Transformation) or Full (Deformation). Both

options correlate to the previous Linear or Exact options (Maya 8.0 and lower). No Defor-

mation and Full correlate to mental ray transform or motion vectors, respectively, as

discussed earlier under “Transformation vs. Deformation Motion”.

Figure 8.13

Maya’s render set-
tings for mental ray

motion blur

In Maya 8.5 instead of typing the script you can press the Primary Framebuffer➔ Open Editor

button from the mental ray Render Settings window.

274 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 274

Shutter Close (overall shutter time), Shutter Open (previously Shutter Delay), Time

Samples, and Motion Steps work as described earlier in the chapter and utilize almost

identical mental ray naming conventions for their attributes. Note that the Time Samples

option is identical to the Time Contrast➔ Color Contrast options seen in the figure, how-

ever utilizes integer values instead of fractional values. (These options correlate to the

previous Time Contrast RGBA options in Maya 8.0 and lower, where the Color Contrast

attribute accepts the same value range as the previous Time Contrast RGBA attributes.)

Thus Time Samples enables you to enter an integer amount of temporal samples per spa-

tial samples without considering the inverse interpretation as discussed earlier. Notice

that as you increase the value for Time Samples, the Color Contrast value automatically

adjusts to read a correlating value, for example, a value of 10 Time Samples is equivalent

to a Color Contrast value of 0.1, providing 10 temporal samples per spatial sample.

Under the Rendering Features rollout in the Render Settings window, you can enable the

Rasterizer through its radio button. When it’s enabled, the Anti-Aliasing Quality➔ Raster-

izer Quality➔ Visibility Samples and Shading Quality attributes become available, as dis-

cussed in Chapter 5, as well as Motion Samples (only visible in the miDefaultOptions

node) attribute, discussed earlier under “Rasterizer Motion Blur”.

When you want to exaggerate the motion blur effect, you can use the Motion Blur By

attribute, prolonging the shutter time interval. Note that you can also specify exaggerated

motion blur times by increasing the Shutter Open values (times) to exceed a value of 1.

However, if the surface is rotating as with a propeller, a shutter time up to a value of 1 will

effectively utilize Motion Steps, reproducing nonlinear motion blur, along the propellers

rotational path. When a value greater than 1 is used, additional points past that shutter

time (of 1) are not evaluated with Motion Steps and appear linear.

Clearly, if you want to exaggerate the motion, it is better to use the Motion Blur By value

because it will spread the shutter time (and Motion Steps) equally within that increased time

factor. You can disable motion blur on a per-object level by using the surface’s Render Stats roll-

out attributes in the Attribute Editor. When using Deform motion blur doing so will significantly

reduce the translation process for objects that don’t require per vertex motion vector data.

Do not confuse Motion Steps and Motion Samples, where one deals with transformation

matrices and the other with rasterizer time sampling respectively.

All the attribute naming conventions in Maya 8.0 (and lower) are still present (for the same

attributes) under the miDefaultOptions node.

host settings ■ 275

08547c08.qxd 10/24/07 4:28 PM Page 275

Fast Motion Blur

For fast motion blur (not in the rasterizer mode) you simply need to set the Time Samples

value to zero. Unfortunately in Maya 8.5 you can’t set the Time Samples (or Color Con-

trast) in the Render Settings window to a value lower then 0.1. Thus to set Time Samples

to zero, you need to open the miDefaultOptions in the Attribute Editor (as cited above)

and there you can se the Time Contrast (for RGBA) to zero, which will update the Time

Samples option in the Render Settings window.

Back in the Render Settings window you also need to set the Sampling Mode to Fixed

Sampling (equal Min and Max Sample Level values). Remember that the value used for

sampling defines the overall density of motion samples when using fast motion blur.

XSI
To enable motion blur with XSI, enable the Enable Motion Blur checkbox in the Render

Manager window under Current Pass➔ Pass Output➔ Default_Pass (or other pass name)➔

Output➔ Pass Motion Blur as seen in Figure 8.14 A. This switch obviously corresponds to

the mental ray Motion (On / Off) options.

The additional XSI motion blur settings used to fine tune motion blur are found under

the Scene Render Options (seen in Figure 8.14 B), and the mental ray Render Options

(seen in Figure 8.14 C) property editors (or in their equivalent Render Manager tabs).

Scene Options

The scene options in the Render Manager window under Scene (tab)➔ Scene Globals➔ Scene

Motion Blur Settings (Figure 8.14 B) allow you to define the motion blur time interval.

The Speed option defines an overall time interval for the motion blur. The Offset option

defines an offset time for starting the time interval count. These options, although similar,

do not correlate to the shutter delay and shutter time options discussed earlier under

“Shutter Time”. To clarify them, Speed defines the relationship between the overall time

interval and the frame time. A Speed value of 1 spans across one frame, values greater then

one will extend the time interval beyond an interval of one frame, and lower then one val-

ues contract the motion blur, as with faster shutter times. The Offset doesn’t change the

time interval length, only its initial time, so that if you increase the Offset value the motion

blur will appear to shift forward in time.

The dropdown menu seen in Figure 8.14 B, (across Speed) defines when the motion

blur is evaluated with respect to the frame time. Simply put it dictates where the first

motion blur transform (or motion vector) is a considered, acting as an additional offset

You can find the same option under the Render menu➔ Render➔ Pass Options property

editor.

276 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 276

option. Start on Frame begins with the current frame, End on Frame begins in the previous

frame thus appears farther back in time, and Center on Frame is clearly the in between of

both the start and end frame options. Thus these three options (in the dropdown menu)

specify the general time interval placement, and the Offset option further offsets the interval

starting time (from that starting point), and Speed defines the range of the interval for

which motion vectors or transform matrices are generated (as required).

The Deformation Blur checkbox (also seen in figure 8.14 B) enables motion vectors,

correlating to the mental ray motion vectors discussed earlier under “Transformation vs.

Deformation Motion”. When Deformation Blur is disabled, only transformational motion

blur is calculated.

mental ray Options

The scene options define a custom time interval for the mental ray Shutter (shutter time)

and Delay (shutter delay) options that are found in the mental ray Render Options (for a

given pass) property editor. You can navigate to these options in the Render Manager

window under Current Pass➔ Pass mental ray➔ Motion Blur tab, as seen in Figure 8.14 C.

Delay controls the shutter delay or start time within the time interval, as defined by the

Speed option.. Shutter is then the shutter time, which, when Delay is set to 0, specifies the

overall shutter open time within the Speed interval.

Shutter times greater than 1 will exaggerate motion blur, however, motion steps (trans-

formation matrices or motion vectors) are only evaluated for the shutter times that range

from 0 to 1. That is, you can exaggerate motion blur appearance by increasing the Shutter

option to exceed a value of 1, but with nonlinear motion (such as a propeller), the motion

path will change and appear linear from a shutter time of 1 and higher. The Shutter and

Delay options correspond to Shutter Close and Shutter Delay options in XSI 5.11 and

earlier.

The Sampling Contrast (Sampling Threshold in XSI 5.11) options correlates to mental

ray’s Time Contrast option, as discussed earlier under “Temporal Sampling (time con-

trast)”. The Motion Steps➔ Transform option correlates to the mental ray Motion Steps

option, and Deformation correlates to motion vectors. Thus both these settings (respec-

tively) specify how many transformation matrices or motion vectors are generated for use

during the time interval. Clearly for motion vectors the Deformation Blur option seen in

Figure 8.14 B needs to be enabled.

To effectively exaggerate shutter times that span past a time interval of one frame, use the

Speed option which evenly distributes the motion steps along the overall (Speed) time inter-

val, and within the range of time specified with the Shutter and Delay options (assuming

Shutter does not exceed a value of 1).

host settings ■ 277

08547c08.qxd 10/24/07 4:28 PM Page 277

Rasterizer and Fast Motion Blur

Under the Render Options ➔ Rendering property tab, you can enable the Rasterizer under

Primary Rays➔ Type dropdown menu. After you enable the rasterizer the Rasterizer options

appear (below the Type dropdown menu), and you can further set the rasterizer Motion

Samples property that corresponds to mental ray’s Samples Motion option discussed ear-

lier under “Rasterizer Motion Blur”, as well as other rasterizer settings discussed in Chap-

ters 2 and 5.

For fast motion blur (not in the rasterizer mode) simply set the RGBA Sampling Con-

trast values to zero, as well as set the Min and Max Level options to the same value (non

adaptive). Remember that the value used for Min and Max Level defines the density of

motion samples with fast motion blur.

3ds Max
In 3ds Max, mental ray motion blur is controlled and enabled from the Renderer ➔ Cam-

era Effects ➔ Motion Blur section under the Render Scene: mental ray Renderer window,

shown in Figure 8.15. The Enable option obviously corresponds to the mental ray motion

(on or off) option. Shutter Duration refers to the mental ray Shutter (time) option,

defining the motion-blur shutter time interval. Shutter Offset is the shutter delay time.

Both Shutter Duration and Shutter Offset can be specified to exceed the time frame of a

single frame. If you specify a Shutter Duration value that exceeds 1, the motion blur will

appear exaggerated, spanning across the time frame of more than one frame. This pro-

vides you with an added ability for exaggerating motion blur. Motion Segments correlates

to the mental ray motion steps option, as discussed earlier.

Figure 8.14

XSI render settings
for mental ray

motion blur

278 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 278

The mental ray Time Contrast option is specified with the Time Samples setting in

3ds Max 9 and up. As you see, the time contrast RGBA dependency has been removed;

instead, a single value is used to depict the amount of temporal samples taken through-

out the shutter time. In previous versions the Renderer ➔ Sampling Quality rollout ➔

Contrast ➔ Temporal RGBA values were used as discussed earlier under “Motion Blur

Sampling.”

Also, under the Renderer tab ➔ Rendering Algorithms, you can enable the rasterizer

with the Use Fast Rasterizer check box. When the rasterizer is enabled under the

Camera Effects rollout (Figure 8.15) the Time Samples option changes to read

“Time Samples (Fast Rasterizer),” depicting that this setting now controls rasterizer

motion samples, corresponding to mental ray’s samples motion option, as discussed

earlier under “Motion Blur Sampling.” Essentially when you enable or disable the ras-

terizer the Time sample option toggles between mental ray’s time contrast and samples

motion options.

The Blur All Objects check box enables motion blur for everything in the scene; when it’s

disabled, motion blur can be specified per object by selecting the object and right-clicking

to display its Object Properties window, shown in Figure 8.16. The Enabled check box

enables motion blur for that object. None or Object specifies whether the object appears

motion-blurred, and the Image radio button has no relevance with mental ray.

Notice that with 3ds Max you cannot explicitly specify which method is used with

respect to transform or motion vectors; these decisions are made automatically by 3ds

Max. Essentially, both methods are supported. Note that

if raytracing is disabled, motion blur is still rendered with

the scanline or rasterizer methods. I only point this out

as it contradicts information in the 3ds Max help files,

which (at the time of writing) claim that raytracing must

be enabled.

Note that per-camera Multi-Pass Effect ➔ Motion Blur (seen in the Modify tab for a selected

camera), doesn’t affect mental ray; thus the settings discussed in this section are the only

settings that mental ray recognizes.

Figure 8.15

3ds Max render set-
tings for mental ray
motion blur

host settings ■ 279

Figure 8.16

3ds Max per-object
motion-blur settings

08547c08.qxd 10/24/07 4:28 PM Page 279

U S I N G 2 D M O T I O N V E C T O R S I N P R A C T I C E

Mental ray’s motion vectors are not compatible with compositing applications, and as discussed in

Chapter 3 under “The Motion Vectors Frame Buffer,” they are mostly used with mental ray’s own out-

put shaders, which know how to interpret the per-channel values correctly. To use 2D motion vectors

with compositing software, you must install both a custom mental ray shader to extract motion vec-

tors, and plug-in software for the compositing application that can use those motion vectors.

XSI’s built-in compositing software, along with Digital Fusion, Shake, Combustion, After Effects, and

others support using a vector motion blur plug-in from RE:Vision Effects, Inc., called ReelSmart Motion

Blur. You can get a fully functional demo version for your compositing software at www.revisionfx

.com, under the Products menu. Once installed, the RSMB vector blur plug-in will be available in your

compositing software. An FAQ (under Support on the plug-in’s product page) describes in detail how

to use the shader with Maya and XSI, and the Render Elements with 3ds Max 8 and up.

The mental ray shader can be found at

http://www.alamaison.fr/3d/lm_2DMV/lm_2DMV_ref.htm

Here you will find information about using the shader, as well as downloads for each host appli-

cation. Note the following comments for each host:

• XSI users can download and install the XSI add-on from the XSI Plug-in Manager window. For

more information on installing add-ons see Chapter 10, “mental ray Shaders and Shader Trees,”

or refer to the help files.

• Maya users can download the zip file (lm_2DMV.v2.0p.zip) that contains the shader DLL and

mental images (.mi) declaration file, which need to be placed in the mental ray include and lib

directories (see Chapter 1, “Introduction to mental ray”). You will also find a link to another site

where you can get the Maya AETemplate file; this goes in your installation directory under

\Maya8.5\scripts\AETemplates, as well as an XPM file that goes in your icons directory. The

template file defines the UI seen in the Attribute Editor window.

• 3ds Max users cannot use the LMV shader; as an alternative you need to use the Velocity pass

in the Render Elements window. You can find the specifics under the FAQ section of the

RealSmart Motion Blur support page.

M o t i o n B l u r O p t i o n s

For using the LMV shader, the only real requirements are that motion blur is enabled as deformation

blur, not transformations, and that the shutter delay and open time are set equally, for example to 0.5.

By doing so you ensure that mental ray exports motion vector color values, which the RealSmart

Motion Blur plug-in requires. Essentially, the custom mental ray shader outputs a color pass that

stores motion vector data using RGB values. Thus if the those values are affected by motion blur

(that is, if they appear motion-blurred), the motion vectors color pass values are then useless. Thus

by setting equal shutter open and delay times, as described earlier in this chapter, you guarantee

that the motion vectors pass will render without unwanted blur.

280 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 280

U s i n g t h e L M V S h a d e r i n M a y a a n d X S I

The LMV shader needs to be applied to all the surfaces that require rendering motion blur; other

surfaces ideally should be hidden or also have the shader applied. Like any other shader, it doesn’t

require a custom output pass, just a normal RGBA frame buffer at preferably a higher bit depth,

such as 16-bit. You would also render a beauty pass for all the elements without motion blur, which

are then motion-blurred in compositing using this shader’s motion vectors color pass. First you

need to enable verbosity for info messages and execute a test render for a selected frame that

exhibits the most intensive motion blur during the animation. The verbosity output will indicate

the motion vectors displacement factor (in the last output row) with the following message:

PHEN 0.4 info : [lm2DMV_v2] >> Max Displace -> 143 pixels

You will need to note the Max Displace factor for the compositing stage, as well as enter it into

the LMV shader’s Normalize option before rendering the animation sequence. Because different

surfaces may have different displace factors, such as a rotating blade of a plane in comparison

with the motion of the plane, you may want to render different elements individually (in separate

passes), as I have done with the following example. At each stage I note the displace factor, apply

it to the shader, and then render the sequence.

U s i n g R e a l S m a r t M o t i o n B l u r

When all the passes are ready you can load them into your compositing package; I’m using XSI for

this example. As you can see in the flow chart, I used three RSMB vector nodes, each applied to a dif-

ferent element: the clouds (Maya fluids; I attached the LMV shader to their color and removed incan-

descence), the propeller, and the plane. The RSMB vector node takes two inputs: the color pass and

the motion vectors pass generated with the LMV shader (or in 3ds Max with Velocity Render Element).

I then composite them together using simple Over nodes.

host settings ■ 281

08547c08.qxd 10/24/07 4:28 PM Page 281

If I had not separated the different elements, I would get artifacts from the propeller, which

moves much faster than the plane. Also, the plane is moving with the camera, so motion blur is

much less significant than with the propeller. You can see in a rendered version labeled A how all

these elements appear motion-blurred. Note that motion vectors don’t include information about

the placement of the object within the time interval of one frame, only a suggested direction, so I

cannot simulate a full 180° rotational motion although there is a limit to how far you can go; for

most purposes you can get really decent results that appear almost identical to the mental ray

motion-blurred results. The image labeled B was rendered with mental ray, and as you can see the

results are similar to the composited version labeled A.

A

B

282 ■ chapter 8: Motion Blur

08547c08.qxd 10/24/07 4:28 PM Page 282

The Fundamentals of Light and

Shading Models

This chapter introduces the fundamental light and imaging concepts that are

the backbone of shader construction and advanced direct and indirect illumination. The

purpose is for you to understand absorption, reflection, and transmittance characteristics

of direct and indirect light in the scene, and how those characteristics are implemented

with shading models. Real-world light and photography concepts are the foundation of

3D rendering, particularly when you’re attempting to re-create natural phenomena, so

I’ll cover them in some depth. Nonetheless, understanding light, and particularly its dual

nature as both wave and particles, is a complex and fully loaded topic that cannot be ade-

quately covered in just one chapter, so I’ll point you to further resources. Like other ren-

dering software, mental ray develops camera, shading, and lighting models based on the

science of optics, and although some of the information presented in this chapter is

advanced for most beginner to intermediate users, advanced users might argue that the

coverage is too brief. These concepts are essential knowledge for professionals working as

technical directors and lighting/shading artists.

This chapter begins with a brief history of the science of light, including its basic char-

acteristics, followed by more-advanced concepts that build on image synthetics. The chap-

ter then covers how you can sample real light through photography to help reproduce a

realistic range of light in 3D using high dynamic range (HDR) photography and concepts.

Finally, along with the following chapters, this chapter examines mental ray shaders and

shader networks; Chapter 10, “mental ray Shaders and Shader Trees,” and Chapter 11,

“mental ray Textures and Projections,” focus on demonstrating how to create and use

these shaders and shader trees in host applications. The main purpose of this chapter is to

explain necessary concepts and terms that are the foundation for using shading models

(illumination shaders), advanced light simulations, and compositing color, topics that

are all covered in the following chapters. This chapter covers the following topics:

■ The Fundamentals of Light

■ Light Transport and Shading Models

■ mental ray Shaders

C H A P T E R 9

08547c09.qxd 10/24/07 4:30 PM Page 283

The Fundamentals of Light
The perception and interpretation of light is greatly influenced by the different viewing

devices, whether a human eye or a camera’s film or digital sensor. Light perception and

behavior considerations are at the forefront of photorealistic imaging. To render a realistic

image, you must mimic the natural behavior of light and its interaction with surfaces, as well

as understand how it’s perceived by recording devices, be they digital media or film stock.

A History of Light Theory
Scientists and philosophers since Pythagoras and Aristotle in ancient Greece (about

500–300 BCE) have experimented with light and hypothesized about it. Newton, Huygens,

Maxwell, Hertz, Plank, Einstein, Bohr, and others have all contributed to the evolving field

of optics. The focus of their efforts has been twofold. On the practical side, they developed

the science of optics, creating modern optical lenses for telescopes and cameras that mag-

nify and transmit light. Their efforts also led to experiments with propagating electromag-

netic radiation such as radio waves and electric current. On the theoretical side, as their

experiments with light led to discoveries of optical phenomena such as interference, dif-

fraction, chromatic aberrations, and the photoelectric effect, they also hypothesized about

the fundamental character of light.

The modern science of optics really began during the 17th century with Willebrord

Snell’s (1591–1626) discovery of the law of refraction, which mathematically explained

how light redirects through matter. During that time, scientists struggled with the question

of whether light manifests as a wave or a stream of particles. Robert Hooke (1635–1703)

had set forth the wave theory by conducting experiments with diffraction—the propagation

characteristics of a wave as it passes an obstruction, bending and changing directionality,

as shown in Figure 9.1, which illustrates the double slit experiment of Thomas Young

(1773–1829).

Dielectric substances are concentrations of matter that transmit light through their different

layers, redirecting light several times. The term interface is commonly used to refer to the sub-

stance’s internal compound (layer matter) such as with thin film coatings, liquids, oily substances,

metals, and so on. Typically several different substances can be layered to create a specific

coating, utilizing different interfaces, for the purpose of controlling light, such as reflecting

specific wavelengths, absorbing others, and redirecting them through the coating. The path

light takes through a dielectric is then subject to constant change based on the interface,

specifically the substance’s index of refraction, a topic further discussed in “Geometric Optics

and 3D” later in this chapter. In 3D we deal with the transmission between interfaces, for

example, air to glass, glass to liquid, and so forth, such as when using the mental ray dielec-

tric shader, demonstrated in Chapter 10.

284 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 284

Hooke also studied interference patterns (color fringes) that appear in thin dielectric films,

similar to the colorful display seen in oil spills or substances with an “oily” nature. The effect

of interference (further described shortly) is yet another phenomenon that supports the

wave theory.

Throughout the 18th and 19th centuries, the concept of light developed as a medium

that vibrates through the aether, which was thought to be “atmospheric matter” that

enabled light to propagate through its substance. However, it was unclear whether light

propagated as a wave through the aether or was a stream of particles. Sir Isaac Newton’s

(1642–1727) light emission theory leaned more toward the corpuscular (light as a particle)

assertion based on his experiments, even though his work supported both wave and cor-

puscular theories. Newton objected to the wave theory primarily because he could not

validate it enough to support it and valued empirical fact over hypothesis. His important

observation of the prism effect, in which white light disperses into different colors, led him

to conclude that white light in fact comprised several colors that have their independent

corpuscular characteristics.

Around the same time, Christiaan Huygens (1629–1695) embraced the wave assertion,

correctly observing the laws of reflection and refraction and discovering polarization (see

the sidebar “Polarization in 3D” later in this chapter). He also established that light changes

speed as it traverses through matter of varying densities. In the 18th and early 19th centuries,

Diffraction

Figure 9.1

Diffraction describes
the propagation of
light as it interacts
with obstacles, as
shown with Thomas
Young’s double slit
experiment.

the fundamentals of light ■ 285

08547c09.qxd 10/24/07 4:30 PM Page 285

Newton’s theories received greater regard, almost automatically rejecting theories of light

as a wave from Huygens, Euler, Young, and others.

Early in the 19th century, Thomas Young and Augustin Jean Fresnel (1788–1827)

independently furthered Huygens’ wave theory by asserting the principal of interference.

Interference, a wave characteristic, explains how two undulations with similar frequencies

traveling in the same direction in space and in close proximity join. The effect of super-

imposing waves either can be can be either constructive or destructive, amplifying or can-

celing each other out, which results in a new wave amplitude, as shown in Figure 9.2.

By observing the effects of interference and diffraction through the double slit experi-

ment (see the earlier Figure 9.1), Young was able to further the wave theory accretion.

Using the double slit experiment, he projected a coherent light source through two narrow

openings and accounted for the interference patterns of light that appeared on the screen,

as shown in Figure 9.3. The patterns are caused because of diffraction and interference,

where diffraction changes the direction of light (through the two slits) in a way that causes

the light to ripple (as shown in the earlier Figure 9.1). Then the effect of interference

results with those waves superimposing on each other and forming patterns of light on the

screen, as shown in Figure 9.3. You can theoretically compare the effect of interference

with a ripple effect in a pond, where some waves cancel out (no light) and others magnify

(brighter light).

As a result of his experiments with light, Young concluded that the color of light is

based on different wavelengths. He also explained that color fringing appears because of

interference. You can think of this as the effect of separating wavelengths into groups with

different frequencies and color, where interference magnifies some and cancels others,

forming color-fringing effects based on the wavelength’s associated color. There are other

fringing effects (birefringence) that are due to polarization, as discussed in the sidebar

“Polarization in 3D.” The topic of color fringing as a result of waves dispersing into their

components is a topic further discussed throughout the chapter.

Interference

=

=

Figure 9.2

Interference
describes the effects
of two waves, at dif-

ferent amplitudes,
traveling along simi-

lar paths.

286 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 286

Even though these discoveries by Young and Fresnel contradicted Newton’s corpuscu-

lar theory, the wave theory still met rejection. Fresnel further built on the law of refraction,

defining the Fresnel equations, which describe the amplitude of light as it refracts and

reflects. With transparent surfaces, these equations account for the balance between

reflected and refracted light, which is an important surface shading characteristic. Balanc-

ing the total reflection from a surface based on the viewing angle is commonly referred to

as Fresnel reflections. Because a surface cannot be fully refractive and reflective at the same

time, the incident light needs to be weighed correctly to determine the proper balance

between the reflection and refraction intensities, based on the incoming light intensity,

the surface normal, and the angle of view. This chapter further discusses all of these topics.

By 1825, the efforts of Young, Fresnel, and others led to the widespread acceptance of

the theory of light as different undulations through the aether, rather than a stream of par-

ticles; however, that was not the end of the debate.

Light as Electromagnetic Radiation

While these experiments and hypotheses were being debated in the field of optics, Michael

Faraday (1791–1867), who was studying electric and magnetic forces, found an interde-

pendent relationship between light and electromagnetism. Brilliantly, James Clerk Maxwell

(1831–1879) merged the theories of optics and electromagnetism, describing light as elec-

tromagnetic radiation. He concluded that electromagnetic (EM) radiation propagates itself

in the form of a wave through the aether and at the speed of light.

While experimenting with EM radiation, Heinrich Rudolf Hertz (1857–1894) discovered

the photoelectric effect, the emission of electrons (energy) from matter. The emission from

matter refers to discrete bursts of energy that are dependent on the incoming light energy.

Even nowadays, the understanding of light and its fundamental character is still considered

debatable, reflecting the complexity of this topic.

Figure 9.3

Interference pat-
terns appear to form
a pattern of visible
light streaks on a
screen.

the fundamentals of light ■ 287

08547c09.qxd 10/24/07 4:30 PM Page 287

Hertz was puzzled by the fact that projecting more light on a surface increased only the

number of emitting electrons and not their energy. Essentially, the energy is dependent on

the light frequency and not the “amount” of light, as will become clearer throughout the

following sections. Hertz embraced the assertion of light as a stream of particles, because

at that time the phenomenon of liberating electrons from matter could not be rationalized

with the wave model.

The Birth of Quantum Mechanics

Essentially, EM radiation can be described as particles possessing ballistic behaviors or

as waves demonstrating interference and diffraction. In the 20th century, Max Plank

(1858–1947) came up with a constant that quantified independent light packets with a

given energy value. His experiments led him to believe a relationship exists between the

absorption and emission of energy that is dependent on an oscillator’s frequency (the

photoelectric effect). The oscillator refers to the atomic particles that excite electrons into

emitting from matter. Plank was more lenient toward the wave accretion than the corpus-

cular theory, which is somewhat contradicted by his own experiment. Regardless, he found

ways of rationalizing the wave accretion, particularly as his immense breakthrough was

mostly hypothetical at the time, based on certain predetermined assumptions and lacking

the means to provide a more concrete rationalization for the character of light.

Albert Einstein (1879–1955) furthered rationalized the treatment of the photoelectric

effect with his corpuscular theory that quantized light with photons, using Plank’s constant.

Einstein also determined that the aether is nonexistent, that light travels through empty

space, and thus that light does not require a substance to support undulations (its motion).

The new corpuscular theory evolved into describing photons as massless elementary

light particles that manifest as part wave and part particle, a dual nature. Essentially the

two very different physical attributes of light (particle and wave) are reconciled thorough

the field of quantum mechanics using a wave/particle duality assertion. Based on Max

Plank’s experiments, Einstein further validated the direct connection between a photon’s

energy, which is dependent on a wave frequency, as described with the following equation,

where h is Plank’s constant and v is the frequency:

E = h × v

Thus, photons, the most elementary form of light, are massless particles that osculate

through a vacuum at a constant speed (the speed of light) carrying energy and momen-

tum. They are timeless particles that propagate through space and time, and their energy is

never lost; it’s only absorbed by matter. When photons interact with matter, energy that is

not absorbed is either reflected or transmitted. Essentially, at a given threshold frequency

photons are said to either emit electrons or get absorbed. The threshold refers to the mini-

mum energy required to liberate electrons from matter; thus, photons below the threshold

are absorbed, and photons above the threshold are cause for discrete energy bursts, which

288 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 288

liberate electrons from the surface. For physicists, these individual packets of energy are

the foundation for quantifying light flux (power), as discussed in the section “Radiometry

Measurements” later in this chapter. The particle nature of light is applied in math and 3D

applications based on the field of geometric optics, a topic further discussed in the section

“Geometric Optics and 3D” later in this chapter.

The Physical Nature of Light
So far we have already referred to EM radiation, photons, and waves repeatedly, so let’s

examine their characteristics and influence on color and brightness to better understand

the perception of light.

Wavelength

The wavelength (�) is the distance between the peaks and troughs of a wave, as illustrated

in Figure 9.4 (between points A and B). The amplitude is the magnitude of the wave, and

with respect to light, it defines brightness (as relative intensity). Frequency is defined as the

number of cycles per second, referring to the number of waves that pass a given point per

second. Frequency is measured in hertz, where a single cycle per second is equivalent to

one hertz (Hz), and millions of cycles per second are referred to as megahertz (MHz).

EM Radiation

EM radiation refers to a pair of oscillating waves (at right angles) that are part magnetic

and part electric, propagating in various directions over time and space. EM radiation, its

energy, and its visual appearance can be charted as shown in Figure 9.5. The EM spectrum

wavelengths span from one extreme to the other without a specific end point on either

Ray direction

Wavelength

Frequency = Number of cycles per second
measured in hertz (Hz) or megahertz (MHz)A B

Am
pl

itu
de

λ

Figure 9.4

The wavelength,
amplitude, and fre-
quency all influence
the characteristics of
light.

Geometric optics describes light behavior, its propagation, and its interaction with matter

while making several assumptions about light. By doing so, it makes it possible to describe

light characteristics using mathematical equations that we use in 3D to create shaders and

simulate light.

the fundamentals of light ■ 289

08547c09.qxd 10/24/07 4:30 PM Page 289

side. The range typically depicted in charts spans from radio waves (very long wavelengths)

to gamma rays (extremely short wavelengths). Longer wavelengths possess a more wave-

like nature (that is, radio waves); with shorter wavelengths, the wavelength becomes more

negligible, and the radiation takes a more particle-like nature, referred to as rays (that is,

X rays, gamma rays, and so on).

Based on the equation cited earlier (E = h × v) that reconciles light’s dual nature, you

can conclude that as the frequency increases (shorter wavelengths), the energy increases.

Energy also takes the form of heat, where an increase in energy results with a proportional

increase in temperature. Thus, there is an interdependent relationship between the frequency,

the energy, and the temperature. As discussed earlier, hertz cannot increase the energy of

liberated electrons merely by adding more light, because only a change in frequency can

cause a change in energy.

The Visible Spectrum

The term light refers to the visible spectrum, a small range of wavelengths that are perceived

as color by the human eye, also shown in Figure 9.5. The visible spectrum spans from red

(longer wavelengths) to violet (shorter wavelengths). You can see the color version in the

EM Radiation image in the Chapter 9 folder on the companion CD.

The visible spectrum wavelengths are typically measured in nanometers (nm, where

one nm is equal to one billionth of a meter) and range from 380–750nm. As you can see,

different wavelengths are associated with different colors, known as the color temperature.

The association of a wavelength with a given color is based on experiments that examine

the observation of color (visible radiation) on a surface that is gradually increasing in tem-

perature, shifting in hue. Thus, as the interaction of light with matter results in the heating

Cosm
ic rays

Gam
m

a rays

X rays

Ultraviolet

Visible spectrum

Infrared

M
icrow

aves

TV, radio

Electric pow
er

380nm–750nm

Increasing frequency (V)
Increasing wavelength (λ)

Ultraviolet Infrared

380nm 750nmViolet

Blue

Green

Yellow

Orange

Red

Figure 9.5

Electromagnetic
radiation and the
visible spectrum

290 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 290

of matter, absorbing and emitting energy of different wavelengths, the color of a surface is

related to its current color temperature, as well as its light scattering (and absorbing) char-

acteristics. Color temperature is measured using kelvins (see the section “The Kelvin Tem-

perature Scale”).

With respect to light scattering, different surfaces scatter light by reflecting certain

wavelengths while absorbing (or transmitting) others based on the surface’s “natural”

color. The diffuse color of a surface is then a balance between the incoming radiant energy

at a given frequency (color temperature) and the surface’s scattering characteristics.

T H E R M A L V S . R E F L E C T E D R A D I A T I O N

Light radiates from matter as either reflected or thermal radiation, providing the sensation

of color. Thermal radiation relates to matter that is going through a chemical process, such

as a burning filament. Reflected radiation relates to wavelengths that are reflected or trans-

mitted through matter.

Essentially, as a surface is showered in light, the surface gives off heat based on its cur-

rent energy, a threshold at which specific wavelengths are reflected rather than absorbed.

As the surface temperature increases, longer wavelengths are absorbed and shorter wave-

lengths are reflected. This explains why surfaces that are gradually heating, such as over a

fire, shift in hue from red to blue.

T H E H U M A N E Y E

In the human retina, cones and rods are the receptors for color and brightness, respec-

tively. Cone receptors deal with the perception of color (chromaticity) and use three

receptors that are sensitive to different wavelength ranges, which are long, medium,

and short. These wavelengths ranges correlate to red, green, and blue temperatures

respectively. Rods allow you to determine relative brightness, correlating to the light’s

amplitude (brightness), which is a measurement of luminance power that describes

monochromatic values.

T H E K E L V I N T E M P E R A T U R E S C A L E

The Kelvin (K) scale measures color temperature based on degrees Celsius, offset by

273°. The scale assumes zero as an absolute zero temperature (to avoid negative Celsius

degrees). Thus, at zero (-273° Celsius), the Kelvin scale depicts a hypothetical state where

no heat (energy) is present. Visible light ranges approximately from 1700K to 16,000K.

The process of referring color measurements to temperature is based on blackbody

radiation. This term refers to an experiment of observing the reflected color from a black

surface that theoretically absorbs all incoming energy. The sensation of color is then solely

derived by the energy the surface emits rather than a surface color. Thus, blackbody radia-

tion allows us to observe the emitted radiant energy as color temperature while the surface

temperature increases. The perceivable colors are then referred to by a temperature on the

Kelvin scale that corresponds to a specific wavelength color.

the fundamentals of light ■ 291

08547c09.qxd 10/24/07 4:30 PM Page 291

It is common for light vendors to refer to a given light type by its Kelvin scale. It is also

common for digital cameras to provide the Kelvin scale as a means for determining white

balance, as discussed next. With kelvins, we can easily relate to a specific light intensity,

such as D65, which is a daylight standard of 6500K.

Color Temperature and Photography

In photography, white balance relates to selecting a suitable color temperature (kelvin) for

an image. Film and digital sensors don’t have the same ability of the human eye to observe

light as “white” under varying (or changing) light conditions. In essence, each image will

have a white balance corresponding to a certain color temperature that appears as “white

light.”

Wavelengths that are greater or smaller than that balanced point will appear as colors,

based on their relative color temperature. To clarify, the human eye has an “automatic”

white-balance control (chromatic adaptation) that adjusts to lighting conditions. Wave-

lengths that are above or below that “white balance” appear to inherit their relative color

temperature. Typically you see this sort of effect in a room that is illuminated from both

indoor and outdoor lighting. Most of the light appears white, but the light entering from

outside will usually have a bluer tint, whereas the light from a lamp will have a warmer

tint. With cameras, it’s important to set the white balance for the given light conditions.

For example, if the white balance is set to dim light conditions and you then use that same

white-balance in brighter conditions, all the colors will appear to have a bluer tint. These

simulations of light are another important factor when designing the lighting scheme with

direct and indirect illumination.

Wavelength Dependencies

All the previous sections are aimed at clarifying the different wavelength characteristics

and their influence on perceivable light and color. The significance of wavelength depend-

ency refers to the fact that every wavelength has its unique scattering characteristics and

color temperature. Thus, the reflection and refraction of light are wavelength-dependent

effects, where different wavelengths scatter in different directions. In 3D, shaders such as

the Cook-Torrance shader or a custom lens shader enable per-wavelength effects, consid-

ering short, medium, and long wavelengths. The topic of mental ray shaders and their rel-

evance to wavelength characteristics is discussed in detail throughout this chapter. Note

that mental ray (3.4) enables specifying color profiles. One such profile even supports ren-

dering spectral (wavelength) color effects using custom shaders; however, currently you

By convention, we refer to units of the Kelvin scale as kelvins, not degrees or Kelvin degrees.

292 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 292

cannot easily select color profiles without editing an .mi file manually and rendering it

with a stand-alone renderer.

Light Perception and Synthetic Imaging
The human eye can perceive a much greater range (contrast ratio of light intensity) than

artificial capture and display devices—typically varying by several orders of magnitude—

but even that range is limited compared to the range of light intensities that physically

exist. The methods and units of measurement with respect to light energy are based on

radiometric or photometric terms and their relative measurement units.

So far this chapter has referred to light color as wavelengths of varying size and has

neglected that real-world light consists of an infinite number of different wavelengths,

not a single wavelength. Thus, light manifests itself as a collection of varying wavelengths

(color) and amplitudes (brightness/intensity) that also vary in direction and time. There-

fore, the perceived light color is based on multiple wavelengths and their relative intensi-

ties (amplitude). For example, if longer wavelengths predominate, the perceived color will

show a red tint. The measurement of light intensity using precise radiometric (radiance)

measurements, or equivalent photometric measurements (luminance), is significant to

3D rendering, particularly with indirect illumination.

With physically accurate simulations of light (indirect illumination), radiometric

measurements are used to measure the influence of light in the scene, simulating light

interaction with surfaces. Radiometry is part of the geometric optics tool set for mathe-

matically describing light. Rendering is then based on radiometric measurements of light

taken within the scene, where light is modeled in accordance to the geometric optics light

model. You can see how 3D image generation heavily relies on the physics of light, as

well as its measurements.

Photometric measurements are equivalent to radiometric measurements, but they’re

adjusted for human (or photographic) perception, as discussed shortly in the section

“Photometry Measurements.” Thus, both sciences deal with light measurement; radiome-

try deals with a linear representation of light intensity, and in photometry the relationship

is nonlinear, based on human perception. With synthetic imaging and 3D, tone-mapping

techniques are applied to adjust linear measurement of light to a nonlinear (photometric)

representation that better resembles how the scene (real-world environment) is perceived

by a human eye. The following topics provide a clearer introduction to light-measurement

Radiometric measurements are the backbone of shader design, where mathematical expres-

sions are used to describe the interaction of light with matter. (See the section “The BSDF

Functions” later in this chapter.)

the fundamentals of light ■ 293

08547c09.qxd 10/24/07 4:30 PM Page 293

fundamentals. Then, after briefly exploring these fields, we can further examine their

relationships to visual perception, digital imaging, and shader illumination models.

Radiometry Measurements

Radiometry is the science of precise measurements of radiant energy, measured in joules; it

measures the amount of photons at a given point. Radiant flux (�) is a measurement of

radiant energy per unit of time (average flux over time) in watts (joules per second), as it

is incident on, transmits through, or emits from matter. Matter refers to a radiation source

that produces reflected or thermal radiation, regardless of whether the energy is perceptible

to the human eye (within the visible spectrum range). In other words, radiometric meas-

urements deal with radiant energy as an absolute value of radiant power (a term that’s

interchangeable with radiant flux), such as when we say that a light source emits 60 watts.

F L U X D E N S I T Y

In addition to radiant flux per unit of time, we also consider radiant flux density projected

onto, or emitted from, a given surface area over time, referred to as irradiance and radiant

exitance. Both are measured in watts per square meter (watts ÷ m2), factoring in the sur-

face area of a radiant source (or target). Thus, these measurements provide insight into

the influence of light over a given surface area, as illustrated in Figure 9.6.

Irradiance

Irradiance can be found in host applications as a shader property typically used with indi-

rect illumination, providing a means to fine-tune the total incoming radiant power from

the surroundings, cast upon a given surface area. In other words, this measurement is used

while rendering to evaluate the total light influences from several radiant sources (based

on radiance measurements), across a surface area. For example, a radiant source casting

100 watts on a surface area of 2 square meters (the area in question), is equal to an irradi-

ance of 100 ÷ 2 watts per square meter, as shown in Figure 9.6 under “Irradiance.” Thus, in

this case, every point on the surface, receives 50 watts/m2.

Radiant Exitance and Radiosity

Radiant exitance, also known as radiosity, expresses the exitance (emission/reflection) of

radiant flux from a given surface area. Thus, radiant exitance can express radiant flux

emitted from a light source, such as an area light that has an emission area (not infinitely

small) or radiation cast from (or through) a surface as reflected radiation, typically referred

to as radiosity. As you can see in Figure 9.6, it is the opposite of irradiance, and thus, if we

say that the area light is casting 100 watts from a 2-square-meter surface area, then the radi-

ance exitance from the area light’s surface (from each surface point) is equal to 50 watts

per square meter (assuming it’s uniformly distributed).

294 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 294

Radiant exitance is used with radiosity, a subdivision mesh technique that divides a

scene into patches for calculating the radiant exitance in the scene, which is a diffuse global

illumination algorithm. Thus, radiosity is a radiometric-dependent algorithm for measur-

ing radiant exitance from every subdivided patch, conducting a global illumination simu-

lation. In a similar way to radiosity, mental ray uses a technique known as photon mapping

to calculate global illumination without a mesh subdivision dependency; therefore, it does

not require tessellating the scene into patches. You’ll learn more about that in Chapter 12,

“Indirect Illumination.”

R A D I A N T I N T E N S I T Y A N D R A D I A N C E

The distribution of flux in a given direction is referred to as radiant intensity. This meas-

urement accounts for infinitely small light sources that cast light in a given direction over

a certain area that is subtended with a solid angle on a hemisphere around the emitting

source (point). A solid angle is a means for extending a 2D circle into 3D for various

mathematical calculations. To clarify, look at Figure 9.6 under the “Radiance” area. The

solid angle d� defines an area (dAy) on the hemisphere around point X. This area, dAy,

represents a projected region from point X on a hemisphere around that point (X) that is

measured as radiant intensity projected over a solid angle.

Flux (Φ) per unit of area

Radiant exitance (M) (Radiosity)
dΦ
dAM =

dA

Irradiance (E) dΦ
dAE =

dA

Radiance (L)
 (flux per unit, projected area per unit, solid angle)

d2Φ
dωdAcosθ

L =

Surface normal (Nx)

Projected area (dAy)

θ

y

Solid angle (dω) dω =
dAy

r2

Radius (r)

Surface area (dAx)

Hemispheric coordinates over a sampled point X

x

Figure 9.6

Radiant exitance,
irradiance, and radi-
ance measurements.

While converting a point light to an area light you will notice that the area light casts more

light into the scene, as both use the same light intensity value (defined by the user) with the

difference in flux density; the area light actually has a means for representing area flux (radi-

ant exitance). Thus, a point light emitting 50 watts provides less light opposed to a rectangu-

lar area light of 2 units in size that casts 50 watts/m2.

the fundamentals of light ■ 295

08547c09.qxd 10/24/07 4:30 PM Page 295

A solid angle is calculated by dividing the projection area by the square radius of a

hemisphere, as shown in Figure 9.6. Theoretically, when the hemisphere radius is at a

value of 1, the solid angle is equal to the projected area value. The solid angle is measured

with steradians (sr), and radiant intensity is measured in watts per steradian.

R A D I A N C E

Radiance is the complex measurement of radiant density (area flux) flux projected in a

given direction within a solid angle. As illustrated in Figure 9.6, it’s a measurement of

watts per square meter per steradian [W ÷ (steradian × m2)]. Radiance can be used to

describe both emitted radiation (radiant exitance) and received radiation (irradiance),

over a surface area, and within a specific direction and solid angle. In other words, it can

calculate the different radiant contributions that comprise the overall radiant exitance or

irradiance related to a surface based on the incoming or outgoing direction of flux.

With indirect illumination simulations, this is the most influential measurement

because it determines the visual appearance of the surface based on the direction and solid

angle of a radiating source. It enables the renderer to evaluate influences from several light-

emitting or -reflecting elements in the scene, based on their directionalities and sizes. A

common reference to indirect illumination is that of solving the radiance equation, which

is an equation that describes the complex distribution of radiance in the scene. The tech-

niques discussed in Chapters 12 and 13 deal with solving radiance in the scene for indirect

light; the radiance reflected, transmitted, or absorbed by surfaces in the scene, and the

particles in the air such as dust.

You will soon see how shading models depend on radiance while defining illumination

models, basing the results on the angle between the surface normal and the direction of the

light source. In Figure 9.6, the angle � between the direction to the light source and the

surface normal determines the influence of light on a shading point from a given direction

and intensity (flux). With indirect illumination, the renderer is required to calculate the

radiance incident on, transmitted through, or reflected from surface areas in the scene,

such as the area labeled dAx in the figure.

Radiance is subject to the inverse square law, which describes the falloff rate of radiant

flux over distance, and its intensity is inversely proportional to the square of the distance

from the source; this results from the increasing spread (angle) of light as it travels away

from a point over time. Thus, with respect to radiance, light flux is measured as projected

energy in a given direction within a solid angle, as shown in Figure 9.6, which forms a

“radius” of decreasing (spreading) radiant power at increasing distances. Note that the

radiant energy itself does not attenuate over distance without interacting with matter; it

only spreads over a larger area while maintaining its energy.

296 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 296

Photometry Measurements

Photometry is the science of measuring luminance power as perceived by the human eye.

Thus, photometric measurements deal with the visible spectrum and its relationship to

visual perception. These measurements divide into scotopic and photopic vision measure-

ments. Scotopic vision relates to dim light conditions, such as night lighting, where the

human eye’s perception is more monochromatic because it depends on rods more than

cones, opposed to photopic vision that distinguishes color more accurately using cones in

our retina.

The human eye’s ability to perceive light color (chromaticity) and brightness (luminance)

is described by the luminosity curve, as shown in Figure 9.7, which has been standardized

by the Commission Internationale d’Eclairage (CIE), known as the CIE 1924 photopic

luminosity function and also as the V(�) curve (V-lambda). The luminosity function

provides a standard curve that describes the human observer’s sensitivity to light using

photopic vision, as well as a different sensitivity curve for scotopic vision. The luminosity

curve is used to correlate between radiometric and photometric energy. In other words, it

provides the photometric equivalent of a radiometric measurement adjusted for human

perception. As you can see in the figure, human photopic perception is most sensitive at

(around) 550nm, a yellow-green color.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

400nm 500nm 600nm 700nm

Luminosity function
Variable sensitivity to radiation

Scotopic vision Photopic vision

Figure 9.7

The luminosity
function charts the
human sensitivity to
light and color with
photopic and sco-
topic vision.

the fundamentals of light ■ 297

08547c09.qxd 10/24/07 4:30 PM Page 297

T H E I M P O R T A N C E O F P H O T O M E T R I C M E A S U R E M E N T S

Photometric measurements are significant in 3D image generation with respect to the

light brightness as perceived by the human eye (or film). Primarily, the luminance values

define the contrast range visible on film (or to our eyes), as influenced by radiance from

an environment.

Luminance is then a photometric term used to describe the luminous power (flux) per-

ceived by an observer, over time and per unit projected area and solid angle based on the

luminosity function. Photometric measurements are equivalents to radiometric measure-

ments, as they have been described earlier in the chapter, with the difference that they are

adjusted for human perception and use the term luminance rather than radiance. Con-

ceptually, it’s similar to gamma correction that describes the nonlinear representation of

brightness with a monitor (see Chapter 3), just not within a range such as 0 to 1 (as with

gamma) but instead as relative brightness of the scene. In contrast to luminance, radi-

ance deals with absolute energy, as with indirect illumination that is not bound to human

perception.

Typically, photometric luminance measurements are provided in orders of magnitude

(powers of 10) and measured in candelas per square meter (cd/m2). For example, star

light measurement is 10-3, whereas direct light is 105, describing a perceivable brightness

range. These ranges become significant with respect to the differences between the human

eye, acquisition, and display device abilities to capture and display luminance values of

much smaller ranges.

C O L O R S P A C E S A N D P E R C E P T I O N

In 1931, based on the V(�) luminosity function, the CIE standard observer XYZ color space was defined.

It mathematically describes color dependent on human perception using three functions: (�), (�),

and (�).

These color components are graphed in a similar way to the luminosity function, describing a color-

matching function. The term color-matching means the standard observer XYZ color space mathemati-

cally plots these three functions in a way that enables re-creating (matching) any color combination

based on human perception. To clarify, by using three RGB primary colors as independent monochro-

matic light projectors, participants are asked to control the intensity of each light so that they re-create

a target color. This is accomplished by projecting colors on a screen and visually comparing the result

with the target color. The measurement of the intensity of each projected light color is used to define

the (�), (�), and (�) color-matching functions that are then used to define color spaces. Thus, color

spaces standardize the results of such experiments into a diagram that can be used for color lookups,

plotting three functions based on human perception.

Color spaces are used to describe a relative gamut of color for a given device, in comparison to a

human observer’s gamut. Today, different color space models exist, each specifying a range of colors

that can be reproduced with that model (color space) relative to human perception. The CIE xy

bgr

b

gr

298 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 298

chromaticity diagram is commonly used to represent the human visual gamut of color, where the wave-

length is specified around the outer border of the shape, as shown in the image here, starting at 380nm

and going around to 700nm. As you can see, each wavelength also has a corresponding xy location on

the diagram. Color profiles are charted relative to that diagram and define a gamut for artificial devices,

such as the ones shown for Adobe RGB (1998) and the sRGB color spaces here; these are two common

spaces. You can look at the CIExy1931 image in the Chapter 9 folder on the companion CD.

Color spaces and profiles have several purposes. With respect to our field of imaging, they are used

to match the color of a shot to a specific gamut of a target media, be it film, broadcast TV, or print. They

are also used for adjusting the monitor display and correcting the gamma using a color profile that

matches the monitor’s ability to reproduce color using three RGB channels. The sRGB color space is

theoretically similar to applying a gamma correction of 2.2 that has been standardized with graphics

and image display on a screen intended for web delivery. Digital cameras usually use sRGB or Adobe

RGB (1998) color spaces so that when the image is brought into the computer, it appears with the cor-

rect luminance, as discussed in Chapter 3 with respect to gamma correction. The sRGB color space pro-

vides for more vivid colors and contrast because it has a smaller gamut of color that is more inline with

the range of colors that can be vividly reproduced on a screen.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Adobe RGB (1998)

sRGB

700nm

520nm

380nm

the fundamentals of light ■ 299

08547c09.qxd 10/24/07 4:30 PM Page 299

Geometric Optics and 3D
Geometric optics is a simplified subset of quantum mechanics that we use with CG to sim-

ulate light. In CG we make several assumptions to simplify the simulation of light while

weighting-in important light phenomena using a render equation. The render equation is a

mathematical process of weighting the total distribution of light based on all the scene

properties, including direct light, indirect light, surface materials, participating media, and

more. All these equations are evaluated using the laws of physics to mathematically

describe light propagation.

With the wave theory, light propagation is explained based on common wave charac-

teristics such as interference, diffraction, and polarization. Interference and diffraction

have already been discussed earlier. The importance of the wave model is its relationship

to perceived color, which is a wavelength-dependent phenomenon. In computer graphics,

the wave model is not simulated as a wave of different lengths but as direct rays, similar to

the particle assertion. Hence, CG simulations of light are limited to reflectance and trans-

mittance, neglecting any diffraction or interference wave phenomena. Also, the geometric

model assumes that light travels instantaneously, ignoring that light transmits through

different media at different speeds. In a nutshell, this simplified method allows us to simu-

late the general behavior of light as it interacts with surfaces; however, phenomena such as

the dispersion of different wavelengths through matter are not typically supported.

L I G H T D I S P E R S I O N

The dispersion of light means that light changes its speed as it travels through matter. The

change of speed is referred to as a ratio (Snell’s law of refraction) known as the index of

refraction (IOR). This ratio represents the difference between the speed of light in a vacuum

and the speed of light in matter. With respect to the refraction of light, matter is described

as either dispersive or nondispersive media. Dispersive media refract different wavelengths

using a different IOR so that the light fans out into its component wavelengths, as in

Newton’s prism experiment. Note that “white light” may be comprised of any collection

of wavelengths as cited earlier; thus, when light fans out into its separate wavelength com-

ponents, you observe the spectrum of colors (wavelengths) that manifested the incident

light. So, the IOR through dielectric dispersive mediums is a per-wavelength phenomenon

based on a relative change in speed as light propagates through matter. These types of

effects are rather complex to simulate; in most cases, they are achieved by creative means

rather than a realistic shader effect.

A typical phenomenon seen in photography and real life is mirage effects. When we

discuss the path and speed of light in vacuum, we neglect atmospheric effects such as

air density. Mirage effects are caused by a change in temperature (and thus densities)

in the atmosphere. As light travels through the atmosphere, it changes speed through

different densities and thus appears to refract (bend) the image that is perceived by

the observer.

300 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 300

P O L A R I Z A T I O N I N 3 D

Polarization describes the oscillation directionality of the electric and magnetic components

of the electromagnetic spectrum relative to the light’s travel direction. To clarify, consider a

ray of light traveling along the Z axis; polarization describes the oscillatory directionality and

phase (waves that are in or out of sync) of the electromagnetic wave components perpendi-

cular to the travel (Z axis) direction along the X and Y planes.

We will not return to the topic of simulating polarization effects in 3D, so this sidebar pro-

vides a quick example of doing so, based on shaders discussed in detail throughout Chapter 10.

Polarization typically attributes to birefringence effects of light, which is the effect of a ray of

light that splits into two rays as it refracts through a thick anisotropic surface such as a calcite,

creating the complex visual effect of seeing doubles as both rays actually refract at an offset

index of refraction, as shown in here.

Birefringence effects are not simple to simulate in 3D and can be achieved by layering

two refractive shaders where each has a different index of refraction. However, doing so will

refract only one and then the other without layering them together in a way that they appear

to split into two components. To remedy this, I use a complex shader tree that layers two

mib_glossy_refraction shaders together to create the effect of anisotropic double refractions,

as shown in the shader tree here. I also use the mib_texture_rotate shader to rotate one of

the refractions so they appear at an angle to each other by relying on the theories discussed

in detail in Chapter 10. You can find the Polar.mb shader tree for Maya in the Chapter 9

folder on the companion CD. continued

the fundamentals of light ■ 301

08547c09.qxd 10/24/07 4:30 PM Page 301

continues

Consider that as an alternative you could render two refraction passes with different indices

of refraction for the same surface. You could then mix these passes inside a compositing pro-

gram, providing an easier alternative for constructing birefringence effects.

C H R O M A T I C A B E R R A T I O N S

Chromatic aberration refers to the dispersion of light as it refracts through a lens and onto

a film or digital sensor. As the angle of incidence between the light rays and the lens increases,

as with a wide-angle lens, the different wavelength of light may take on different paths.

Essentially, by separating wavelengths, you see noticeable color fringes in photographs

where the light dispersed unevenly through the lens. Light dispersing into its component

wavelengths is even more noticeable with lens flares. Therefore, chromatic aberrations are

another (wavelength-based) photographic characteristic that in most cases is not prop-

erly simulated in 3D. Some shaders offer chromatic aberration or dispersion as shader

options, but they are merely hacks and not actual simulations of light dispersion through

the lens.

Light behaviors based on the laws of geometric optics are discussed with their relevance

to mental ray shaders in the following sections, which define the characteristics of absorp-

tion, reflectance, and transmittance with matter.

You could simulate such effects using a transparent surface with a noisy texture applied as

the index of refraction so that the image randomly bends, mimicking a mirage effect. Further,

you could fine-tune the effect using a gradient mask so that the effect is more pronounced in

a certain area, such as closer to the ground.

302 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 302

High Dynamic Range (HDR) Concepts
Our eyes constantly adapt to changing light conditions, “balancing” their sensitivity for

optimal visibility, a phenomenon referred to as chromatic adaptation. The eye’s ability to

adjust for different light intensities enables us to see relatively clearly under different con-

ditions and through a high dynamic range of light—particularly when the shift in dynamic

range occurs over a large distance, as when observing a sunrise.

With 3D light simulations, when re-creating the natural lighting of an environment,

HDR images allow us to use light luminance values captured on set, in a real environment,

as a “source” for light within 3D. The use of a high dynamic range of light is significant on

two occasions, both typically used with indirect light simulations:

• When we use real-world lighting acquired with HDR images to light our scenes, as cited

earlier. This technique is dependent on HDR images and is the focus of this section.

• While physically modeling light transport in the scene with physically based light

shaders. This technique is solely constructed in 3D and simulates the transport of a

high dynamic range of light. Chapter 13, “Final Gather and Ambient Occlusion,” dis-

cusses this topic and the architectural Sun and Sky shaders.

The topics of HDR images, capturing techniques, and HDR editing software are

becoming essential tools for the 3D artist. In the following sections, you will become more

familiar with the importance of terms for HDR imaging.

Human vs. Digital Perception

The photometric measurement of light in real-world conditions is not a black-to-white

range but a measurement of contrast between the darkest and brightest intensities per-

ceived by the human eye. That range is commonly referred to as a high dynamic range,

where it effectively has limitless luminance ranges. To clarify, the range does not start at

black (or zero) but instead at the darkest visible light, and it ranges to the brightest light.

The range is a contrast ratio that effectively represents the real-world luminance. The dif-

ference between humans and artificial devices (film or digital sensors) is in the extent of

light seen vs. captured.

With digital cameras, f-stops represent the range of light that is captured so that you

may consider six f-stops to capture a contrast ratio of 26, which is equivalent to a ratio of

64:1, a very low dynamic range. The human eye, theoretically at a fixed pupil size (fixed

f-stop), is estimated to perceive around 14 stops (more than 16,000:1), whereas cameras

can theoretically capture at perfect exposure settings up to nine f-stops. The pupil is not

fixed and does adapt to light conditions especially over distance, as noted earlier, and can

theoretically perceive around 24 f-stops of light intensity, a ratio of more than 16,000,000:1.

Thus, a camera’s digital sensors (or film) typically remains within a low dynamic range (LDR)

that can reproduce a limited contrast ratio between the brightest and darkest recorded

the fundamentals of light ■ 303

08547c09.qxd 10/24/07 4:30 PM Page 303

values. Color values that exceed the sensors’ ranges are overexposed. The purpose of HDR

digital imaging is to capture the same light range as perceivable by the human eye (and to

take advantage of even greater luminance ranges).

The purpose of HDR imaging is then to reproduce what the human eye can see, not

what artificial devices can capture and display. Because of this difference, HDR images are

referred to as scene-referred images, and LDR images are device-referred images, based on

the device’s capabilities rather than the actual scene luminance. (Note that scene refers to

the environment in question, not a 3D scene.)

HDR Imaging and Display

HDR display and capture devices are beginning to emerge, but they are expensive and

still far from being commonly used. Instead, with most display devices, you need to use a

two-stage process to present an HDR range of luminance in an LDR environment using

an LDR image file such as a JPEG or TIF. The process of reproducing such an image has

two parts: compiling an HDR image using all the LDR images and tone mapping the HDR

image to an LDR image.

C O M P I L I N G H D R I M A G E S

HDR photography consists of acquiring several versions of an image at different exposure

levels. The use of several exposures enables us to capture a higher dynamic range than possi-

ble with one single exposure. Each exposure displays a different range of light from the

scene, as shown in Figure 9.8. The figure presents a collection of six images captured in a

warehouse at different exposures. Image 1 appears underexposed, capturing the details out-

side the warehouse (the sky and other building details). Image 6 is overexposed, capturing

the details in the darkest shadows within the warehouse. The gradual difference shown from

1 to 6 demonstrates the different luminance ranges captured at different exposures.

56 4

21 3

Figure 9.8

Several images
taken at different

exposures that cap-
ture a higher

dynamic range,
which enables us to

reproduce a more
accurate image rep-

resenting a higher
dynamic range

304 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 304

As an observer, I could clearly see the blue sky and details outside the warehouse as well

as inside; however, the camera captures only a limited portion of details with each expo-

sure. If you combine all these images into one, you can reproduce an image that more

accurately represents the scene, representing a human-perceivable range of light with a

tone-mapped LDR image.

Using a program such as HDR Shop or Adobe Photoshop, you can compile a sequence

of different exposures, as shown in Figure 9.8, into an individual HDR image. This file will

then internally hold all the information from the different exposures; however, you can

display only one exposure at a time on the screen. That is, HDR images possess a wider

dynamic range than most output devices (monitors) can display. You can use HDR Shop

to view the information stored at each exposure one at a time by setting the current expo-

sure with the plus and minus keys. (HDR Shop is covered in Chapter 13.)

In Figure 9.9, you see a waveform in Fusion (compositing software from eyeon Soft-

ware, www.eyeonline.com) that describes the range of luminance in an image. I marked the

0 to 1 range along the bars under each label. The waveform allows you to inspect the

luminance for broadcast purposes so that you can assure an image is within a broadcast-

safe displayable range, which is an even smaller range shown with dashed lines along

the bars in the figure. In image A, you see an HDR image graphed where the range by

far exceeds the 0 to 1 range and in fact spans far outside the figure’s border. All the values

outside the 0 and 1 range are then not displayable on any device and appear as black

or white.

A B

1

0

1

0

Figure 9.9

A waveform
displays the lumi-
nance range of an
HDR image (A) and
an LDR image (B).

the fundamentals of light ■ 305

08547c09.qxd 10/24/07 4:30 PM Page 305

Tone mapping

Tone mapping refers to balancing the different exposures into an LDR image that realisti-

cally reproduces what a human eye may have perceived under those viewing conditions. It

is the process of transforming HDR data from several images into an LDR image that can

be displayed on most output devices. In Figure 9.10, which is a tone-mapped version of

the warehouse HDR image, the details from outside and inside the warehouses are visible.

Thus, tone mapping enables us to remap the distribution of values in a nonlinear fashion,

from several exposures into one perceivable image that does not appear overexposed or

underexposed. This process effectively takes values that are far greater than a 0 to 1 range

and maps them to a 0 to 1 range so they don’t appear overexposed, as shown with the

waveform example in Figure 9.9 image B; the tone-mapped LDR image of the HDR image

seen under image A.

Normal images cannot reproduce data from overexposure, but with HDR images we

can reproduce an image using data captured throughout the different exposures, as shown

with the waveform in Figure 9.9 image A. The same image as an LDR image would have a

flat line across the 0 and 1 boundaries, clamping any value outside that range. In contrast,

HDR images maintain that data, allowing us to correct overexposure and tone-map the

images so they appear closer to that of human perception.

Figure 9.10

Tone mapping
enables us to remap

the values stored
within an HDR

image into a lower
dynamic range that

more accurately rep-
resents the visual
perception of the

scene.

306 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 306

H D R I M A G E S A N D 3 D

For 3D rendering, tone mapping is less important, because we are primarily interested in

the HDR data present in the image for illumination purposes. Thus, our purpose is not

image display (as with showing a friend a photo) but luminance light measurements

recorded within the HDR image as a source for illumination in the 3D scene. Although

we cannot display HDR images without tone mapping, the 3D software does identify HDR

per-pixel values regardless of the current exposure. While extracting values for indirect

illumination simulations, the per-pixel value corresponds to the overall luminance, as

shown with the waveform in Figure 9.9 image A.

Thus, in 3D we simply provide an HDR image that contains a dynamic range repre-

sentative of a real scene, which is used to render richer lighting and reflection effects. If

you downloaded HDR Shop, notice that as you move the cursor over the image, the

RGB per-pixel values are displayed on the lower bar of the UI. Those values represent the

per-pixel luminance in the image regardless of the exposure. Thus, if you leave the cursor

at a given point and increase or decrease the exposure (with the plus and minus keys), the

value will remain the same, because it’s not dependent on exposure but represents the

overall scene luminance.

Thus, when you change the intensity of an HDR image in 3D, you are not changing expo-

sure but actually changing the image range, as with Photoshop or compositing. To clarify, if

you use a simple color gain operation (multiply) and set it to 0.5, you are scaling the high

dynamic range to half, not actually selecting a different exposure. Creatively speaking, it is

similar to adjusting exposure because as a result the lighting gets darker or brighter, but with

a lower dynamic range of detail. It is better to leave the HDR image untouched so that the

high dynamic range is not tampered and set the exposure in HDR Shop; setting the exposure

defines the default exposure used for viewing as well as influences the intensity (brightness)

of the rendered scene without reducing the dynamic range. Also, consider that you can render

HDR images as output so that the exposure of the render can be manually adjusted in

compositing. That ability is also available when you render 32-bit (non-HDR) images, as

discussed in Chapter 3; but with HDR images, the available range is even greater than with

32-bit images, as discussed next.

Maya, XSI, and 3ds Max all have at least one tone-mapping shader from the mental image

architectural library that you can use to tone map renders when using physical simulations of

light and physical shaders. The tone-mapping shader from this library is primarily intended to

balance the render when using the physical Sun and Sky shaders, which use realistic illumina-

tion values. We will examine these shaders in Chapter 13.

Using HDR images and LDR images with indirect lighting is not comparable. HDR images pro-

vide much richer colors and value, as shown in the color insert “HDR vs. LDR Rendering.”

the fundamentals of light ■ 307

08547c09.qxd 10/24/07 4:30 PM Page 307

LDR vs. HDR Image Formats

We must differentiate between image bit depth and brightness. When we render at a given

bit-depth, as discussed in Chapter 3, the range of values that can be used to express the color

shift from black to white is based on the image’s bit depth and its precision. Higher bit

depths provide for more accurate gradation from black to white. However, the increased

precision does not provide a means to represent luminance correctly, only an increased

precision within a given low dynamic range.

HDR images are typically stored in 8-bit files, where the alpha channel is used as an

exponent value for each pixel, referred to as an exponential notation. The notation, especially

with 32-bit HDR images, allows representing values by raising the RGB channel values to

the power of 10 multiplied by the exponent in the alpha channel, such as 5.63210 × n, where

n is the exponent. In this case, the value is already larger than that capable of being stored

in a 32-bit image (see Chapter 3 for 32-bit images). The resulting range of values is virtually

limitless, representing the varying luminance intensities, not limited to a black-to-white

linear range. If you use 32-bit images, the improved precision of the HDR image’s color

values reduces the chances of visible artifacts in gradation between the values, such as

banding; however, it has no significance on the exposure range. When used with 3D, you

really need a reference only for luminance, not a nice-looking image. If you intend on

using the HDR image as a background, you should tone-map the HDR image and apply it

as a background in compositing.

As discussed in Chapter 3, gamma encoding is used to remap the intensity of color values

in LDR images, by manipulating the gamma curve within the 0 to 1 range, remapping the

luminance for low-dynamic-range display devices. In contrast, HDR images use a gamma

curve of 1 (linear) because it represents the full dynamic range of the scene. Both gamma

correction and tone mapping deal with remapping the luminance values of each color

channel using a customized nonlinear curve to maximize color reproduction. The signifi-

cant difference between the two is that gamma is used to remap the distribution of values

that are already within a 0 to 1 range, whereas tone mapping is used to remap values from

a high dynamic range into a lower dynamic range between 0 and 1.

Light Transport and Shading Models
mental ray attempts to reproduce the interaction between surfaces and light, mimicking

several natural phenomena as a means to reproduce realism. Shading models are the basis

for reproducing surface response to light, typically manifested as complex shader trees

within host applications that are piped through a surface material.

When rendering, you can output either HDR or OpenEXR image formats, which are both HDR

image formats.

308 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 308

F U R T H E R R E S O U R C E S

Because this book is primarily focused on mental ray rendering, the topic of light is to some

extent beyond the scope of this book. What I’ve provided here is simply an introduction to

optics and the physics of light. I highly recommend that you pursue these topics further.

Some valuable resources include 3D lighting and synthetic imaging books as well as some

online resources such as Wikipedia (http://wikipedia.org). For photographic and HDR

imaging, refer to www.cambridgeincolour.com and www.debevec.org.

Our primary concern with respect to rendering concepts deals with the light absorption

and scattering characteristics of the surface material, be it metal, stone, glass, plastic, ceramic,

and so on. Advanced shading algorithms attempt to consider the absorption and internal

scattering (translucency) of materials such as those just cited. In real-world conditions, most

surfaces exhibit some degree of subsurface scattering that may appear as a shallow layer of

internal scattering or as deep scattering, such as with wax, minerals, liquids, and so on.

The Bidirectional Scattering Distribution Function (BSDF)
Most surfaces are not easily re-created with 3D because of their internal light-scattering

characteristics. The primary focus of most shading models (that is, Lambert, Blinn, Phong,

Cook-Torrance, and Ward) is on external light scattering, neglecting the effect of subsur-

face scattering on a surface’s appearance. These shading models use various illumination

models to resolve light transport in the scene. The illumination model is a function known

as the bidirectional scattering distribution function (BSDF), a model for light transport.

The shading models are the various shaders that examine the light at a shading point dur-

ing rendering. They may be simplistic (Lambert, Phong, Blinn), physically correct (Cook-

Torrance, DGS), and empirical (Ward, Strauss, Lafortune) shading models (discussed in

the sidebar “Shading Model Types”).

Internal light scattering that influences a surface’s materialistic visual characteristics

can be simulated with advanced shaders, be it “fake” workarounds or actual (physically

correct) subsurface scattering calculations. We further discuss these more complex

approaches to surface rendering in Chapter 14, “Subsurface Scattering.”

S H A D I N G M O D E L T Y P E S

The Lambert and Phong shading models provide visual feedback that is detached from physical accuracy. They uti-

lize the most elementary BRDF (BRDFs are a subset of BSDFs discussed in the following section) functions and pro-

vide an ad hoc solution, which is a basic means for shading in CG. The Lambert shader deals with diffuse light only,

and the Phong shader adds specular highlights. In contrast, physical models such as the Cook-Torrance shader

utilize complex illumination models (BRDF) that consider natural surface and light characteristics that are substruc-

ture microfaceted (Lambertian) reflectors, Fresnel reflections, wavelength dependency, and energy conservation

continued

light transport and shading models ■ 309

08547c09.qxd 10/24/07 4:30 PM Page 309

continues

(discussed in more detail later in this chapter). The visual result of using more physically accurate shading models

opposed to simplistic models becomes apparent when rendering complex surface types.

In the image shown here, you see two rows labeled A–F that compare the qualities of light using the Cook-Torrance

and Phong shaders. The geometry on the top row (A–C) uses a Cook-Torrance shader, and the bottom row (D–F) uses

a Phong shader. A large area light casts light into the scene, and you can see how each shader’s BRDF simulates the

reflected light at three different angles. You can see that the qualities of the reflected light with the Cook-Torrance

shader are visually more pleasing and accurate than with the Phong shader. Notice how the reflected intensity in A–C

shifts with the perspective (viewing angle), as opposed to the Phong shader (D–F) that maintains the same intensity.

Also, the visual appearance of the area light is better simulated in the top row. The Blinn shader would provide similar

results to the Cook-Torrance shader because they are similar aside from minor differences in their BRDFs (particularly

wavelength dependency and energy conservation) that make the Cook-Torrance a more physically accurate shader.

Also, for the purpose of realism, some shaders known as empirical shaders use scientific values to describe

reflectance, such as the Ward and LaFortune shading models. Empirical shaders provide “fast” realism based on scien-

tific accuracy, rather than applying complex shading mathematics to simulate the interaction of light with a surface.

In other words, they use BRDFs that don’t mimic realism based on accurate math but try to get as close as possible

based on observation, mimicking what we would expect to see. One form of empirical shader, such as the Lafortune

shader, allows us to use measurements of light reflectance gathered with scientific experiments. The results are then

applied to the shader in a form of a database of reflectance data. Thus, the shader doesn’t have to calculate physi-

cally accurate simulations; the shader has to only fit the data to a given condition, which is a much faster approach

to rendering shading models. Visually, empirical models provide for very realistic results that are in line with the

physical shaders, but they require fewer calculations.

You have already seen an empirical light shader in Chapter 6, “Lights and Soft Shadows,” when we used light pro-

files with a photometric shader and provided the shader with scientific data describing the light intensity, spread,

and decay. The shader model types are discussed in more detail throughout the chapter.

A B C

D E F

310 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 310

The BSDF Functions

BSDF consists of two component models: the bidirectional reflectance distribution function

(BRDF) and the bidirectional transmittance distribution function (BTDF), as shown in

Figure 9.11. For the most part, we’ll focus on BRDF as a function that describes surface

reflectance; however, the same concepts are true with BTDFs.

T H E F U N C T I O N

The BRDF function is a four-dimensional mathematical function that considers two

incoming dimensions and two outgoing dimensions and can be written like this, where

� is the radiant flux and � is the angle relative to the surface normal (the subscripts i and

r refer to incident and reflected):

fr = (�i, �i, �r, �r)

The function maps the relationship between the radiance (radiant flux) cast from a

source light and in a given direction (relative to the surface normal), as well as the radi-

ance from the surface in a given direction relative to the surface normal. Thus, the BSDF

calculates the surface reflectance considering the radiance (a term described earlier) cast

on a given shading point from a given direction and solid angle.

BSDF equations make several assumptions about the behavior of light, neglecting

subsurface scattering and assuming that light reflectance and transmittance occurs

from the same point on a surface. Essentially these models dictate that incident light is

reflected from the same point of incidence, as shown in Figure 9.11. They ignore the

possibility that incident light may penetrate and bounce around internally before exiting

at an offset position, as with translucent materials. Making such an assumption neglects

the absorption of light caused by internal scattering, and therefore the reflected light

may appear amplified in comparison to the same surface in real life. BSDF models also

assume that light is cast from an infinitely small light source, ignoring the random

spread of light from a given direction as a function of radiant exitance over a source

light’s emission area.

BSDF

Diffuse reflection Specular reflection Glossy reflection

BRDF

Diffuse transmission Specular transmission Glossy transmission

BTDF

Figure 9.11

BSDF light
models utilize
DGS reflectance
and transmittance
characteristics to
describe a shading
model.

light transport and shading models ■ 311

08547c09.qxd 10/24/07 4:30 PM Page 311

The mathematical complexity of the illumination model can be written to represent

either a more empirical or a more physically correct shading model (see the earlier sidebar

“Shading Model Types”). For example, in a shader that observes the conservation of energy,

BSDF functions would need to consider that the reflected radiance is smaller or equal to

the incident radiance (Lr ≤ Li), as with the Cook-Torrance shader. This means that on

such a shader, the reflected light can never exceed the incident energy. (For more on

energy conservation, see the section “Balancing Light Transport” later in this chapter.)

Heuristic and empirical BSDF models consider only the reflected light, ignoring energy

conservation as well as wavelength dependencies. Thus, incident (and reflected) light is

always considered as white light, without considering the wavelength dependencies, as dis-

cussed earlier in “The Physical Nature of Light.” Some shaders, such as Cook-Torrance or

other advanced spectral shaders, employ wavelength dependency into the BSDF. By doing

so, the BSDF can consider the degree of light scattering based on its spectral wavelength

characteristics and can be written like this, adding a wavelength dependency to the func-

tion (the � character):

fr = (�i, �i, �r, �r, �)

B I D I R E C T I O N A L I T Y

Another reflectance characteristic is reciprocity, which explains why BSDF is described as

“bidirectional.” This means that for a given point on the surface (v), if you swap between

the locations of the viewer (�) with the light (L), the BRDF (fr) function will still provide

the same result so that the following relationship applies:

fr = (v, L → �) or fr =(v, � → L)

Both statements are correct; hence, reciprocity can be written as follows:

fr = (v, L ↔ �)

This presents a BRDF that states that for a given point v, you can measure the

reflectance regardless of whether the light and viewer swap locations. Not all shaders pro-

vide reciprocity; for example, the Phong shader does not respect this rule, which is one of

the reasons it’s considered a simplistic shading model.

D I S T R I B U T I O N

Each surface may exhibit diffuse, glossy, and specular (also referred to as spread or mixed)

light scattering, as well as some combination of all three types. Diffuse, glossy, and

specular (DGS) reflections deal with the reflection of light as defined by the laws of physics

and as shown in Figure 9.11. Essentially, highly polished or mirror surfaces (shiny surfaces)

reflect light rays in a mirror (specular) direction. Diffuse and glossy surfaces simulate light

that scatters in more than one direction, providing a more diffused appearance. You can

also see in Figure 9.11 that with respect to these characteristics, DGS light reflection acts

312 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 312

the same for reflection or transmission but in opposite directions. The difference

between DGS reflection or transmission is then in how focused the scattered light appears

and whether the light scattering is isotropic or anisotropic, a topic discussed in the section

“Anisotropic vs. Isotropic Reflections” later in this chapter.

Both reflectance and transmittance light distribution can be drawn using different lobes

that describe the light-scattering characteristics (directionality and intensity) relative to

the surface normal. Figure 9.12 shows three lobes on polar coordinate systems. In image

A, you can see the fundamental concept behind drawing lobes based on a standard BRDF

such as a Phong shader. The light source hits the origin, a shading point in question, and

then the arrows determine the reflection intensity and distribution in 180° around that

point (similar to the images in Figure 9.11), which is a 3D hemisphere above the shading

point. If you consider that the inner circles in the chart represent intensity, then the length

of the arrows defines the light intensity in a given direction.

To simplify illustrating reflectance around a shading point, we can draw a line around

the arrow’s outer borders. We then easily visualize what the reflective lobe looks like, as

shown in image B. The top illustration (1) is representative of a standard shading model

such as a plastic ball that reflects more in a mirror specular direction, and the lower illus-

tration (2) represents a surface that exhibits retro-reflections, which are reflections that

reflect specular light back toward the light source as well as in mirror directions.

A

1

2

B

N

90°

180°0°

N
90°

180°0°

N
90°

180°0°

Figure 9.12

Drawing lobes on
polar coordinates
simplifies the
process of visualiz-
ing the light
reflectance model
(its BRDF).

light transport and shading models ■ 313

08547c09.qxd 10/24/07 4:30 PM Page 313

Diffuse, Glossy, and Specular Reflection

Let’s examine each of the light reflection and transmittance characteristics illustrated in

Figure 9.11. We can then further examine how these characteristics are implemented

with shaders in the following sections. Note that, at minimum, most illumination shad-

ing models have diffuse and specular components, and some, such as the DGS physical

shader, also have a glossy component. If the glossy component is not present, the specular

component determines the glossy nature of the reflected source light (highlights), a topic

discussed in detail throughout the reminder of this chapter.

S P E C U L A R R E F L E C T I O N

Figure 9.13 illustrates the law of reflection. As you can see, the angle between the incident

light and the surface normal (perpendicular to the surface face) is equal to the angle between

the reflected light and the surface normal (�i = �r). Thus, with specular reflections, an

observer will see the same form (the reflecting source) reproduced on the receiving surface.

Typical reflective surfaces are mirrors, polished metals or woods, marble, surfaces with

additional clear coatings such as vehicles (clear-coat shaders), and translucent or fully

transparent surfaces such as water, glass, and oil, to mention a few. Basically these highly

reflective surfaces don’t possess harsh surface grooves such as with diffuse surfaces, which

enables them to reflect more mirror images.

D I F F U S E R E F L E C T I O N

Diffused light reflects uniformly in a hemisphere over a given shaded point on a surface,

as with powders, cloth, and paper, where the surface appears the same regardless of its ori-

entation, as shown in Figure 9.14 image A. Diffused light reflection is more pronounced

with rough surfaces, where the interaction with light across the surface causes multiple

interreflections for a given ray, as illustrated in Figure 9.14 image B. In such cases, a

measurement of surface luminance would provide the same result regardless of the view-

ing (measuring) angle. Thus, for a given angle on incidence, the light intensity is uniformly

reflected in all directions, as shown in Figure 9.14 image A.

Specular reflection

θi θr

θi = θr

Figure 9.13

The law of reflection
is used for rendering

specular reflections
in CG.

314 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 314

Real-world diffuse light reflection is the foundation for mental ray’s global illumina-

tion feature set, in which a surface’s diffuse color is a result of incident light from light

sources, as well as reflected (indirect) light from surrounding surfaces (the environ-

ment). When using only direct illumination, the surface doesn’t receive indirect dif-

fused radiation; it receives only direct thermal radiation from a light source, as well as

glossy or specular reflections. Thus, the diffuse color component in shading models is

used to portray the effect of both incident light and environmental (bounced) light

influences. With direct illumination, the diffuse component portrays only diffused

direct light influences; in many cases, the diffuse color is either influenced with addi-

tional fill lights or the shader’s ambient color is mapped with a texture as a means for

mimicking bounced light influences.

Lambert’s Cosine Law

Almost all shading models provide a diffuse component based on Lambert’s cosine law.

This law describes the intensity of diffused light as dependent on the angle of incident

light, as shown in the following equation and in Figure 9.15:

Er = Ei × cos(�)

The energy of the incident light (Ei) is multiplied by the cosine of the angle between the

incident light vector (direction to the source light) and the surface normal vector, which

is a dot product equation. As the angle between the surface normal and the directional

vector to the light increases (up to a perpendicular angle of 90°), the intensity of the light

decreases. This happens because the cosine of 90 equals 0, and the cosine of 0 equals 1;

therefore, at perpendicular angles (90°) the diffuse light will terminate, and as the angle

declines to zero, the reflected light will increase in intensity. In Chapter 12 you can see a

complete example for a dot product equation to better understand its importance in

lighting and shading.

Diffuse reflection

A B

Figure 9.14

Diffuse light reflects
uniformly from each
surface point, based
on the light ray’s
angle on incidence.

light transport and shading models ■ 315

08547c09.qxd 10/24/07 4:30 PM Page 315

This leads us to another understanding of light interaction in CG models. Because light

is cast from an infinitely small source, the diffuse component always terminates as the angle

between the light and the surface normal reaches 90°. In real-world conditions, however,

light wraps around surfaces because light sources are typically not infinitely small and

because additional light is reflected from nearby surfaces (diffused indirect light bounce).

Hence, area lights, which have a larger light-emission region, provide softer light and a

more aesthetic appearance. They do this by extending the terminator point along a surface,

as discussed in Chapter 6.

G L O S S Y R E F L E C T I O N

Glossy reflections are present with surfaces that are not perfectly polished mirror surfaces—

in those that possess some degree of surface grooves. These surfaces are less rough than

diffused surfaces, representing a middle ground between diffuse and specular reflections.

Figure 9.11 shows the characteristics of glossy reflection. Glossy reflection spreads light in

a given direction, not uniformly across the surface, where the predominant angle repre-

sents the specular reflection.

Figure 9.16 illustrates the differences between specular and glossy reflections, as well as

between isotropic and anisotropic reflections (discussed next). Image A demonstrates

specular reflection, where incident light on the floor reflects a mirror image of the envi-

ronment. Image B demonstrates glossy reflection, where the reflection is clearly present;

however, it appears blurred because the incident light is reflected in more than just one

direction. Essentially, surfaces of such nature (glossy) possess a sharper, more specular

reflection for objects that are closer to their surface than those placed farther away. You

can see that as the chair appears farther away from the floor, its reflection tends to appear

glossier than specular. Thus, one of the advantages of glossy reflections is that they

Er = Ei cos(θ)+

Lambert’s cosine law

Direction to light

Surface normal

Figure 9.15

Lambert’s cosine law

316 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 316

provide for distance-based reflections. Image C demonstrates a complex mental ray

shader that provides for real anisotropic reflections that are dependent on the orientation

of the surface, as discussed next. We will look at simulating all these types of reflection with

mental ray shaders in Chapter 10, particularly the DGS shader, mib_glossy_reflection

shader, and the architectural material in host applications.

Anisotropic vs. Isotropic Reflections

You’ve seen that when light interacts with a surface, the reflected light characteristics

depend on the surface’s smoothness or roughness. With most surfaces in CG, the light

reflection is always isotropic. With isotropic surfaces, the roughness of the surface is not

spread out to follow a particular direction; there are no streaks or grooves across the sur-

face as with aluminum or brushed metals. Instead, the roughness is scattered uniformly

across the surface. Because the grooves don’t possess a particular pattern, isotropic light

reflection is not dependent on the angle of the surface relative to the viewer. In contrast,

anisotropic surfaces have grooves or microgrooves predominantly in a given direction.

The result is that the reflected light that interacts with the grooves reflects in a predomi-

nate direction, perpendicular to the grooves. With anisotropic surfaces, one of the more

significant effects is that the surface reflection appears to change based on the surface ori-

entation and the viewing angle. If you rotate an anisotropic surface, the glossy reflection

will appear to change. Also, surfaces with long microgrooves such as brushed metals

appear to stretch reflections across the entire surface, perpendicular to the grooves, as

shown in the Figure 9.16 image C and diagrammed in Figure 9.17.

A B C

Figure 9.16

A comparison
between (A) specu-
lar, (B) glossy, and
(C) anisotropic
glossy reflections

light transport and shading models ■ 317

08547c09.qxd 10/24/07 4:30 PM Page 317

To better understand anisotropic reflections, let’s consider the highlights that appear

along surface edges such as with beveled edges that capture highlights. In Figure 9.17 the

anisotropic microgrooves that emerge from the surface create a pattern of ridges and

troughs. Labels A–C each demonstrate a different characteristic of anisotropic reflections.

In Figure 9.17 label A we can see that the reflected light is primarily captured along the

ridges. Also, notice that light that falls into the troughs on the side facing the light is reflected

back in that direction, toward the light. Thus, only light that hits directly, or reflects inter-

nally, on the side facing the viewer becomes visible. In any case, the intensity of that reflected

light will be less than that of the reflected light along the ridge tops (label B). There we see

that light that hits the ridge tops scatters in various directions, providing for the appearance

of anisotropic glossy reflections. Thus, along the ridge top (a beveled edge), the surface

perturbs (bends) and provides various directions for specular reflections. As the (vector-to-

light) angle between the incident light and the surface normal increases (along the ridge

top), the light intensity will decrease, forming a directional-dependent glossy reflection.

In Figure 9.17 label C we can see that as long as there is an angle below 180° between

the incident light and the ridge, the anisotropic reflection will continue to capture and

reflect glossy highlights, showing how these ridges act as microscopic reflectors that stretch

the highlights. Essentially, these explanations provide insight into why anisotropic sur-

face reflections appear perpendicular to the surface grooves, as well as why the reflections

stretch across the surface as shown in Figure 9.16 label C.

The mental ray Ward shader provides a means for simulating an anisotropic shader’s

specular highlight only, which can be mapped with a texture to simulate light dispersion,

as discussed next. In addition to the Ward shader, the mental ray glossy shaders and the

Considering all these characteristics, it’s clear that anisotropic reflections are mostly glossy

reflections in which several microgrooves provide a glossy directional-dependent reflection.

θi θr

Anisotropic reflections

A B C

Figure 9.17

Anisotropic reflec-
tions occur when

surface grooves flow
in a particular direc-
tion, capturing and

stretching glossy
reflections perpen-

dicular to their
direction.

318 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 318

architectural material found within host applications provide for simulating real glossy

anisotropic reflections that stretch the reflection across the surface. We will review all

these characteristics in host applications in Chapter 10.

I S O T R O P I C A N D A N I S O T R O P I C D I S P E R S I O N

Another component of isotropic and anisotropic reflections deals with light diffraction. In

the earlier section “Light Dispersion,” we focused on that light disperses into its different

components as it travels through dispersive materials. With respect to anisotropic or

isotropic light reflections, dispersive surfaces will cause the different wavelengths of light

to fan out, causing white light to reveal its spectrum of color, as seen in oil stains, soap

bubbles, and on CD Rom’s to mention a few.

With isotropic dispersive surfaces, the light reflection (wavelength dependent) is typi-

cally shown as color fringes in highlight rims (see the Cook-Torrance shader later in this

chapter). With anisotropic surfaces, as the reflection is stretched along the surface perpen-

dicular to the grooves, the light diffraction causes the reflection to reveal longer streaks

of color as the reflection fans out across the surface, of course revealing the spectrum of

colors that manifested that light. This effect is typically noticeable with CDs, where as you

rotate the CD, you can observe the different colors of light, and you can see that the

reflection is direction-dependent based on the grooves and the viewing angle, as with all

anisotropic surfaces. You can simulate iridescence effects (light dispersion) using the

TEK2SHOOT shader presented in Chapter 10 Table 10.1 (Maya and XSI) as well as by

mapping the specular color of an anisotropic shader using a gradient ramp (more on

that later).

Diffuse, Glossy, and Specular Transmittance

The transmittance of light through matter provides for several effects based on how light

reflects, refracts, absorbs, and disperses in a dielectric medium. The most significant

components that affect transmittance are whether the medium is dispersive, its absorption

level, and its IOR. Dielectric media are resistant to radiation, absorbing and slowing down

the transport of light through the medium. The absorption level can be calculated using the

Beer-Lambert law. The topic of dispersive matter was introduced earlier in this chapter in

the “Light Dispersion” section.

S N E L L ’ S L A W O F R E F R A C T I O N

With respect to light transmittance, rays that transport between two different media with

different IORs follow Snell’s law of refraction, as shown in Figure 9.18. The law of refrac-

tion defines the relationship between the angle of incidence and angle of refraction, as

shown in the illustration. When the angle of incidence is parallel to the normal (�=0),

then the light transmits in a straight path, without bending (refracting). In contrast, for a

given ray (labeled b) at a given angle of incidence, referred to as the critical angle (�c), the

light reflects rather than refracts, as noted with the condition for �c (shown in the figure).

light transport and shading models ■ 319

08547c09.qxd 10/24/07 4:30 PM Page 319

In the case illustrated in Figure 9.18, the leftmost ray (a) travels from air into glass at a

30° angle of incident. The air has an IOR of 1, and the glass has an IOR of 1.5. As the ray

penetrates the glass, it perturbs (bends) and continues to travel into the dielectric at an

angle of 10.5°. When the ray exits the material, it re-enters air and resumes its initial direc-

tion, which has a 30° angle. In all cases, the transport of light through different dielectrics,

be it air, water, glass, or any other transmitting medium, will follow Snell’s law of refraction.

Clearly, for simulating such surfaces, you should use the correct IOR for realistic simula-

tion of transmission. Here are some common IOR values for reference:

S U R F A C E T Y P E I O R

Vacuum 1.0

Air 1.0003

Ice 1.31

Water 1.333

Ethyl alcohol 1.361

Turpentine 1.472

Benzene 1.501

Plexiglas 1.51

Crown glass 1.52

Flint glasses (light) 1.58

Dense glass 1.66

Fused quartz 1. 46

Diamond 2.419

Amber 1.55

In 3D it is common to overlook that a refracted ray bends twice—once as it enters the

medium and once as it exits, as shown in the figure. The second refraction is overlooked,

so the ray actually continues to travel at a wrong angle, resulting in inaccurate results by

not correcting for the angle when exiting the medium and moving back into air, as in the

The law of refraction

θr

θc

θ

θ

a
b

n` glass = 1.5

n air = 1
n sin(θ) = n` sin(θ)
θc n` sin(θr) = 1

Figure 9.18

Snell’s law of
refraction

320 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 320

example illustrated with the (a) ray. In Chapter 10 we will discuss these considerations

with the mental ray shaders in more detail.

T H E B E E R - L A M B E R T L A W

Another significant effect of dielectric media on light transport is light absorption. The

absorption depends on two primary factors: the distance light travels through the medium

and the density of its substance. Clearly, shorter distances within the surface will absorb

less light than larger distances, and as such, they will refract more light through the medium.

For example, green glass will show less coloration in thinner areas than in thicker areas that

absorb more light, possessing more of a green hue, as shown in the image “Glass Shark

Comparisons” in the Color Gallery. Notice how the glass is more absorbent along the

shark’s body than through the shark’s fins. Both examples also demonstrate Fresnel

reflections (discussed next) along the surface rims, a common effect with glass surfaces.

In addition to calculating the absorption through solid surfaces, the Beer-Lambert law

can also be used for participating media effects (covered in Chapter 12), measuring light

absorption between water droplets or particles present in the atmosphere.

S P E C U L A R A N D G L O S S Y R E F R A C T I O N

The manner in which light spreads internally can be diffuse, glossy, or specular refraction.

In most cases, we deal with specular refraction, which is typically seen when we place a

pencil in water, where the refraction offsets the surface but maintains its focus. You can

see this with the submarine example shown next. Diffuse refraction deals with the light

that spreads uniformly inside a translucent surface, which is a subsurface scattering effect,

which is not simulated with most refractive shaders (more about that later). Glossy refrac-

tions are then a blurred refraction as shown with frosted glass, crushed ice, or objects that

submerge into deep sea.

The Fresnel Equations

Discovered by Jean Augustine Fresnel in 1834, the Fresnel effect states that the perceived

light reflection and refraction change based on the viewing angle. It basically states that

incident light both reflects and refracts and that the amount of reflection or refraction is

based on a set of rules. Thus, the Fresnel equations determine the relationship between

reflected and transmitted light intensities across a surface, balancing the incident radiant

energy. When you observe water or glass over a long distance, as the glancing angle increases,

the surface becomes more reflective than refractive, making it impossible to see through the

surface. The most common example would be standing in a pool or the ocean so that as

The mental ray architectural material and dielectric physical shader support simulating light

absorption.

light transport and shading models ■ 321

08547c09.qxd 10/24/07 4:30 PM Page 321

an observer you can see through the water in your vicinity, and as you look farther away

the water becomes more reflective.

Figure 9.19 demonstrates specular refractions and Fresnel reflection with a refractive

water surface. At facing angles, you see clearly into the water; however, as the angle between

the viewer and water increases (along the edges), the water becomes more reflective, show-

ing the outer area of the tub.

Fresnel reflections are not limited to transparent surfaces and are common with highly

reflective surfaces. For example, metals or clear-coat covers (on vehicles) appear to reflect

more specular reflections at glancing angles; thus, as the angle between the surface and

observer increases, the surface possesses more specular reflections. In Chapter 10 you’ll

look at balancing reflections and refractions using physically correct light-transport simu-

lations with mental ray shaders.

You can see examples for glossy and clear glass, absorption and Fresnel effects in the color

inserts called “Glass Shark Comparisons.” The images also show how caustics and participat-

ing media effects are affected by the absorption of a surface, all topics demonstrated in

detail in the following chapters.

Figure 9.19

Fresnel reflections
are balanced based

on the viewing
angle.

322 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 322

mental ray Shaders
mental ray ships with a collection of shader libraries that provide both standard and phys-

ically correct shading models. Table 9.1 lists the mental ray shader libraries that are typi-

cally included with host applications. mental ray shaders either are simplistic or empirical

shading models that are not physically correct but render fast, or are more advanced phys-

ically correct shaders that provide realism. Realism is achieved by using shaders that employ

more accurate BRDFs (simulated based on physical optics) that account for energy con-

servation, Fresnel reflections, absorption, and wavelength effects, as discussed throughout

this chapter and in the sidebar “Shading Model Types.”

S H A D E R L I B R A R I E S P U R P O S E

Base This provides a collection of common and special-purpose compo-
nent shaders (discussed in the next section).

Physics The architectural and physics shader libraries offer physically cor-
rect (energy-conserving) shading models that are typically used
with indirect light simulations. Both libraries are discussed in “
Physical Shading Models” later in this chapter and demonstrated
in Chapter 10.

Architectural In addition to the previous description, this library offers light, sky,
and tone-mapping shaders for rendering high dynamic range light-
ing scenes typically with Final Gather.

Subsurface This offers a variety of complex shaders for translucent and “deep”
subsurface light scattering. This library is examined in detail in Chap-
ter 14, “Subsurface Scattering.”

Contour This is used for nonphotorealistic rendering (NPR), offering a wide
range of 2D post-process effects using output shaders that can draw
surface contours.

Paint This provides additional shaders that extend the base library’s abili-
ties, specifically for designing vehicle shaders, typically used for car
commercials. These shaders offer robust control over surface specu-
larity and reflectivity using the mental images car paint phenome-
non shader.

Lume This offers an additional collection of custom shaders, typically as a
plug-in library, available with XSI and 3ds Max some of which have
been discussed in Chapter 3.

The Base Shader Library
The mental ray base shader library provides the majority of the common isotropic and

anisotropic illumination shading models that you are already accustomed to (Lambert,

Phong, and so on). In addition to these shading models, the base library provides a collec-

tion of component shaders that act as texture, environment, sample compositing, data

conversion, and light, as well as other shaders, as discussed in Chapter 1, “Introduction to

mental ray.” Table 9.2 lists the base shaders, most of which you can find in each host

application (hosts may omit certain shaders).

Table 9.1

mental ray Shader
Libraries

mental ray shaders ■ 323

08547c09.qxd 10/24/07 4:30 PM Page 323

C A T E G O R Y S H A D E R S

Illumination Lambert

Phong

Blinn

Cook-Torrance

Ward

Ward derivatives

Hair

Volume Volume

Fur

Photon Photon basic

Shadow Shadow transparency

Sample compositing Reflect

Refract

Transparency

Opacity

Continue

Dielectric

Two sided

Refraction index

Ray marcher

Raytracing Glossy reflection

Glossy refraction

Occlusion elated Ambient occlusion

Fg occlusion

Bent normal env

Texture space mapping Texture vector

Texture remap

Texture rotate

Bump basis

Bump map

Bump map2

Passthrough bump map

Textures Lookup

Lookup2

Filter lookup

Checkerboard

Polka-dot

Polka-sphere

Turbulence

Wave

Table 9.2

Base Shader Library
Component Shaders

324 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 324

continues

C A T E G O R Y S H A D E R S

Environments Lookup spherical

Lookup cube1

Lookup cube6

Lookup background

Lookup cylindrical

Lookup spherical

Data Conversion Color alpha

Color average

Color intensity

Color interpolate

Color mix

Color spread

Light Point

Spot

Infinite

Photometric

Light utility Blackbody

cie_d

Lightmap Lightmap write

Lightmap sample

Lens Lens clamp

Lens stencil

The shader names omit irrelevant prefix labels such as mib_ (mental images base library), illum, and texture, and they

are not necessarily organized in the same order as shown in host applications (mainly for clarity). Also, the table doesn’t

list geometry shaders.

So far we have used shadow, displacement, and light shaders, as well as camera lens,

output, environment, and volume shaders, and most of these appear in Table 9.2 as part

of the base shader library. As you can see, this library provides a wide range of shaders.

Not all of these are meant to be used solely with surfaces, but also can be used as source

lights and camera (lens and environmental) effects. In the following sections and in

Chapters 10 and 11, we will utilize several of these shaders in host applications, showing

how they can be used to form complex shaders (shader trees). You also further examine

examples with the physics and architectural shader libraries, correlating them to the

previous discussion of light transport models.

mental ray shaders ■ 325

08547c09.qxd 10/24/07 4:30 PM Page 325

mental ray Materials
The sole purpose of a material is to apply the connection between different shader types

and surfaces. A material acts as an overall shader program that “collects” within it differ-

ent shader functionalities for a given surface, comprised of nine possible categories (types)

that are shown in Table 9.3. We have already used some of these connections, as with the

shadow shaders in Chapter 7, “Shadow Algortihms.”

S H A D E R T Y P E P U R P O S E

Illumination Provides the primary connection used to apply a shading model to a
surface, with the purpose of defining the light transport character of a
surface with respect to the direct lighting in the scene. The illumination
connection is also referred to as surface or material in hosts, as shown in
Figures 9.20, 9.21 and 9.22.

Photon Provides an illumination model for use with indirect illumination only
(photons). The shader evaluates the transport of energy and color
between different surfaces in the scene (color bleeding). Thus, indirect
illumination simulations don’t utilize the illumination shader, only the
photon shader, as you will see in Chapter 12.

Shadow Provides a connection for shadow shaders, as discussed in Chapter 7.

Volume Enables volumic effects within containers (surfaces) such as smoke, mist,
haze and fire to mention a few. See “Participating Media (PM) Effects” in
Chapter 12.

Photon volume Is equivalent to the photon and illumination shader relationship
described earlier. This shader is then used to apply volumic effects with
indirect illumination photons, making them visible as smoke, or mist
(and more) in the air, within the surface boundaries.

Environment Applies environmental reflections by projecting texture colors onto a
surface. We have already referred to environment shaders with cameras;
in a similar way, they can be connected to a surface to avoid raytracing
environment reflections.

Displacement Used for displacement mapping, as discussed in the CD excerpt called
“Surface Approximation Methods.”

Light maps Used for writing color data to image files on disk, such as surface lumi-
nance or texture colors. This light-baking process is also commonly
referred to as texture baking or render maps. We will use light maps in
Chapter 14.

Contour Used with contour shaders from the contour shader library for NPR
rendering (see Table 1 in the CD excerpt called “Surface Approximation
Methods”). This book does not cover these shaders, other than using
them in the CD excerpt as a means to see geometric tessellation during
rendering, drawn as contours along the surface edges.

Aside from the illumination shader, each additional category may (optionally) be piped

with a shader (or shader tree) that provides relevant information. Figure 9.20, Figure 9.21,

and Figure 9.22 show the mental ray material connections in each host application, where

you apply the different shader connections. The illumination category is the only required

category that defines a surface’s primary shader characteristics (BSDF), which is its light

transport model. If that material is used with indirect illumination simulations, then a

Table 9.3

Material Connec-
tions for Different

Shader Types

326 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 326

photon shader is also required (see Chapter 12 for more details on indirect illumination).

Thus, the material pipes several component shaders, each providing some specific func-

tionality. Further, for each category, a complex shader can be used, utilizing several

component shaders (forming a shader tree) before the top node of the tree connects to

the material’s illumination input. Note that the top node isn’t necessarily an illumina-

tion shader; it may be a sample compositing or data conversion shader such as the opacity

opacity, reflection, or color mix shaders, as shown in Figure 9.20 and Figure 9.21. Thus,

component shaders take the illumination model, such as a Blinn or Phong shader, and

then process the output color before passing it into the material’s illumination input, as

with the common practice of mixing color from various shaders.

Figure 9.21

XSI simple shaders
connected to a
material that reveals
all the possible
shader connections
in the Render Tree
window

Figure 9.20

Maya Material con-
nections for the
Maya Shading
Engine and the lay-
out shown in the
Hypershade window

mental ray shaders ■ 327

08547c09.qxd 10/24/07 4:30 PM Page 327

Monolithic Materials

Monolithic materials are shaders, like the architectural (mia) material,

that provide all the internal material connections and functionalities built

into a single shader interface. Typically these are host-specific shaders

that utilize several component shaders and provide illumination (diffuse,

transparency, refraction, reflection, and so on), shadow, and photon shader

support.

Figure 9.23 shows a 3ds Max Blinn shader’s mental ray Connections;

you can see that the Surface (illumination), Shadow, Photon, and Displace-

ment mapping links all appear locked, because they are all driven internally

through the main shader settings. Similarly, you can see in Figure 9.24 that

XSI’s monolithic (host-specific) Phong shader drives three connections to

the material: Surface, Shadow, and Photon. You are not required to apply

additional photon or shadow shaders to retrieve transparent shadows or to

use indirect illumination support when using host-specific shaders in Maya,

XSI, and 3ds Max, because all of them provide monolithic “all-in-one”

shader solutions. However, when using mental ray–specific shaders, you

must include all the additional connections, or their functionalities will be

missing. For example, if you didn’t apply a photon shader when using

indirect illumination, that surface would not be active in the simulation.

Figure 9.22

3ds Max mental ray
material shown in

the Material Editor
window and the lay-

out shown in the
Schematic view

328 ■ chapter 9: The Fundamentals of Light and Shading Models

Figure 9.23

3ds Max mental ray Connection menu
for a Blinn material reveals the mono-
lithic nature of standard shaders

08547c09.qxd 10/24/07 4:30 PM Page 328

P H E N O M E N O N S H A D E R S

It’s important to distinguish between monolithic materials and phenomenon

shaders, which are shaders that internally comprise a complex shading tree.

The complexity derives from the number of options that are provided for

controlling illumination characteristics such as ambient, diffuse, reflection,

transparency, and other color components, which are all part of the illumi-

nation shading model. Thus, when these options are all provided to the

user though a single node’s interface, the shader is referred to as a phenom-

enon shader, comprising several component shaders.

For example, in Figure 9.25 image A you can see a mental ray base Phong shader in

XSI, without any additional features. However, in Figure 9.25 image B you can see the XSI

host-specific Phong shader, providing several additional “component” options (the upper

tabs), all through a single shading node’s interface. This process is rather common with

host-specific Lambert, Phong, Blinn, Cook-Torrance, and other shaders that are provided

as both monolithic and phenomenon material shaders for easy usage. Thus, a monolithic

shader may utilize a phenomenon shader for the illumination input.

All host-centric shaders are basically a mix of both concepts, where the shader is a

monolithic shader, and the illumination model is a phenomenon shader that provides

robust color control over the surface illumination. Hence, host-specific shaders, such as

the Phong shader shown in Figure 9.25 image B, possess phenomenon features, as well as

additional (monolithic) functionalities such as a shadow shader with control over color

and transparency and a photon shader for indirect illumination control. The photon

shader’s settings in most cases are derived automatically from the illumination model;

thus, you are not required to specify the color values twice, once for direct lighting and

once for indirect lighting.

A B

Figure 9.25

Image A shows the
simple mental ray
Phong shader in XSI.
Image B shows the
standard XSI Phong
shader, which is a
“phenomenon”
monolithic XSI
shader.

mental ray shaders ■ 329

Figure 9.24

XSI demonstrates
how a single mono-
lithic shader can
drive several differ-
ent material inputs.

08547c09.qxd 10/24/07 4:30 PM Page 329

M A Y A A N D 3 D S M A X H O S T - C E N T R I C S H A D E R S

Maya-centric and 3ds Max–centric shaders (those not originally intended for mental ray)

are a form of phenomenon shaders. All host-centric shaders are exported as mental ray

phenomenon shaders during the render.

Maya shaders have additional mental ray tabs that enable further control of mental

ray–specific features such as glossy reflections and refractions that are supported only with

mental ray rendering. Using the mental ray ➔ Photon Attributes menu, you can also spec-

ify different settings for the photon shader with any of the standard (Maya-centric) illumi-

nation shaders, as shown in Figure 9.26.

With 3ds Max, once you disable the locked connection for any of the mental ray inputs

under the mental ray Connection menu (shown in Figure 9.23), you can then map a new

component shader for that function, overwriting the monolithic shaders default output

for that feature. Doing so enables you to have separate control over the different shader

types that connect to the mental ray material.

Base Shaders and Shader Math
In this section, we examine basic shader settings and shader math using mental ray base

shaders. Regardless of whether you use host-specific or mental ray shaders, the shader

options (and math) provide similar functionality with the difference in available complex-

ity (robust phenomenon shader vs. base shader). Thus, these calculations are the same for

a given shader type in each host application, regardless of the extent of color options it

provides (diffuse, reflection, and so on). The primary difference between the shader types

Figure 9.26

Maya shaders have
mental ray tabs that
enable further con-

trol over mental
ray–specific raytrac-
ing features, subsur-
face scattering, and
the photon shader.

330 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 330

(physical, empirical, and so on) is in the level of complexity implemented with their BRDF

math—how they calculate illumination and combine the contributions of diffuse, glossy,

and specular light scattering.

Typically, shaders evaluate color by following the BSDF rules discussed earlier, apply-

ing those concepts using shader math internally, as part of the shader’s source code. The

mental ray base shaders’ illumination models all offer ambient and ambience color com-

ponents (shown in Figure 9.31 later in this section) that together define an ambient light

contribution. When ambient color is applied, it acts as an additional light source spread-

ing color uniformly across a surface, regardless of light direction. The ambience color is

multiplied by the ambient color so that if you specify a 50 percent gray ambient color, you

can then map the ambience color with a texture file that will never exceed 50 percent gray

in value (brightness).

To clarify, the ideal is that a texture file applied to one of the two components may

include any range of brightness that is then dialed down when multiplied by the other

component so that together they balance the total ambient contribution. Essentially, if the

ambient and ambience options are both gray values, the lower of the two will prevail as

the final ambient light contribution. Host-specific shaders omit the ambience option since

you typically map a texture to the ambient color and dial that color down through the

texture’s color settings. In XSI and 3ds Max there are global (scene) ambience options that

correlate to the mental ray ambience color discussed here, and are examined with Final

Gather in Chapter 13.

The Diffuse Shading Model

Diffused light reflections (see the section “The Bidirectional Scattering Distribution Func-

tion (BSDF)”) in shading models obey Lambert’s cosine law, as discussed earlier. Hence, a

diffuse-only shader (with no specular or glossy reflection) is commonly referred to as a

Lambert shader. The process for evaluating surface color with a Lambert shader requires

two stages, evaluating the ambient contribution and evaluating the diffuse contribution.

Once the ambient color (ambient × ambience) is evaluated, the diffuse color is evaluated

based on the light’s color contribution (color from various light sources) and the light’s

angle of incidence at a shaded point. Once both contributions (ambient and diffuse) have

been evaluated, the results are added together in a nonphysically correct fashion, provid-

ing the final surface color. Let’s clarify some of these terms and equations.

With respect to mathematically addressing Lambert’s cosine law, a dot product is eval-

uated between the surface normal (vector a) at the sampled point and the directional

With respect to rendering passes and compositing, the internal shader math executed during

rendering (described next) acts as a guideline for compositing different color contributions

(passes) in 2D composting applications.

mental ray shaders ■ 331

08547c09.qxd 10/24/07 4:30 PM Page 331

vector to the light from that sampled point (vector b). See Figure 9.15 earlier in this

chapter. The dot product (see Chapter 12 for a dot product example) between the two

vectors (a and b) is described with the following equation:

a.b = |a| × |b| × cos�

The vectors’ magnitudes are multiplied by the cosine of the angle between them. This

dot product provides a means for evaluating the light influence at a given point based on

Lambert’s cosine law; however, it neglects the light’s spectral energy (all wavelengths reflect

at an equal intensity) and light absorption at that point using this simplified (BRDF)

function. Thus, the dot product solely provides reflectance information on the relationship

between two vectors from the incident sampled point. The dot product result is then mul-

tiplied by the light color and then the diffuse color as follows:

(dot product × light color) = light contribution × diffuse color = diffuse color contribution

Essentially this means that the diffuse color intensity (reflected radiance) is scaled

down along a surface based on the source-light’s color (and intensity) and the dot product,

providing the final diffuse color contribution. The result is then mathematically added

with the ambient contribution to provide the final surface color at a given shading point.

O R E N - N A Y A R D I F F U S E S H A D I N G

With respect to diffused surface qualities, the typical diffuse component with most shader

types (Lambertian diffuse) provides for a very “CG look,” rather than a natural look of dif-

fused light that scatters across a surface. One aspect of rough surfaces, such as shown in

Figure 9.14 image B, is that the inner reflections that take place on a surface carry more

diffused light across the surface as the angle between the surface normal and direction to

the light increases. The diffused light doesn’t fall off as quickly as with the Lambert cosine

law; rather, it maintains its reflected intensity toward more glancing angles (with respect

to the light), and then it rapidly diminishes until it reaches a perpendicular angle. For

example, consider dirt—it doesn’t appear to have a clear falloff as with Lambert’s cosine

law. Rather, it has a more natural termination of light when it’s in shadow, where all other

areas (in light) appear relatively uniformly lit.

The Oren-Nayar shader (not part of the mental ray base shaders) is used to accommo-

date this sort of characteristic. Figure 9.27 compares the typical Lambert diffuse (image

A) with an Oren-Nayar diffuse (image B). You can examine the color version of the

Oren_Nayar Shading image in the Chapter 9 folder on the companion CD. As you can see,

the Oren-Nayar diffuse maintains a relatively uniform intensity leading to the glancing

angles. Typically the transition from a standard diffuse (image A) to an Oren-Nayar dif-

fuse is controlled with a roughness parameter, where rougher surfaces lean toward the

Oren-Nayar diffuse characteristics. The types of surfaces that are more prone to this sort

of diffuse quality are sand, ceramics, paper, powder, dirt, clothes, rough stones, and even

skin. Clearly, almost all of these surface types may have a rough or more polished surface,

such as glossy paper vs. standard paper.

332 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 332

With Maya, XSI, and 3ds Max, the Oren-Nayar diffuse shading is available as part

of the mental ray architectural material. In addition, 3ds Max provides a standard

Oren-Nayar-Blinn shader.

Specular Shading Models

Specular shading models add a specular color contribution that deals with source light

reflections on a surface, providing surface highlights. Essentially, specular light reflections

provide mirror reflections across surfaces. With specular shading models the specular

reflection is divided into two components, specular color (emulated) and reflection color

(and/or reflection intensity), which are typically acquired with raytracing (environment

mapping acts as a nonraytraced reflection color). Once the specular contribution (for

both components) is evaluated, the results are mathematically added with the diffuse

color, typically a Lambert diffuse model, as follows:

[Ambient + Diffuse] + [Specular + Reflection (environment/scene)]

The first pair of brackets represents the diffuse shading models, and the second pair

represents the specular shading model.

A B

Figure 9.27

A standard Lambert
diffuse (A) is com-
pared to an Oren-
Nayar diffuse (B),
demonstrating the
differences in light
falloff qualities.

mental ray shaders ■ 333

08547c09.qxd 10/24/07 4:30 PM Page 333

R E F L E C T I O N C O L O R

Reflection color provides specular reflections of objects in the environment that are

acquired through raytracing secondary rays. With mental ray base shaders, deriving reflec-

tion color requires that you add the sample compositing mib_reflect shader. The sample

compositing shader can be a reflection, a refraction, an opacity, or any other sample com-

positing shader, based on the additional functionality you intend on adding, in this case

reflections. This sort of network is shown in Figures 9.20 and 9.21 with Maya and XSI

and is constructed as follows:

Shading model (Phong, Blinn, and so on) out color → sample composting shader
input → material illumination input

The reflection color provides specular reflections for the environment, whereas the

specular component on the base shader deals only with source light reflections. Thus, when

using such networks, you can scale the reflection color independently from the specular

color. With host-specific shaders, the relationship between specular color and reflection

color differs:

XSI With XSI shaders, the specular color contribution is independent of the reflection

color contribution. Thus, the properties found for a given shader under its Illumination

tab ➔ Specular properties are independent of the properties found under the Transparency/

Reflection tab ➔ Reflection properties.

Maya and 3ds Max With Maya (that is, Specular shading ➔ Specular Color) and 3ds Max

(that is, Basic Parameters ➔ Specular), the specular color acts as a multiplier for the reflec-

tion color (intensity). Thus, if you dial down the specular color to black (zero), then both

highlights and scene reflections will be disabled. Essentially, this approach is correct because

the total reflection for both components (highlights and scene reflections) represent the

specular to glossy reflectivity of a surface, which in real life is not divided into two separate

components. However, the additional reflectivity control enables you to control the reflec-

tion intensity, which with respect to the specular highlights will either be equal or be lower

in intensity.

S P E C U L A R C O L O R

Specular color, as cited earlier, provides only source light reflections (which is not true with

the DGS physics shader). To clarify, since 3D light sources are represented as infinitely small

light-emission points, they fail to provide information about their physical size, with the

exception of area lights. Because of their infinitely small scale, we cannot correctly simu-

late source light reflections on surfaces merely by evaluating specular reflections, because

the light’s physical size is misrepresented. Thus, the specular component with base shaders

(generally most shaders) addresses source light glossy to specular reflections by providing

334 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 334

a means for simulating the size, shape, intensity, color, decay rate, and distance from the

light, for a given source light.

Figure 9.28 utilizes a rectangular area light to demonstrate how the specular compo-

nent (raytracing disabled) tries to accurately mimic the source light’s shape, distance, and

intensity. As you can see, in image A the light is farther away from the surface than in

image C (illustrated with the companion screen grabs). As the light gets closer to the sur-

face, the highlight increases in size and better represents the source light’s rectangular

shape, demonstrating how the shape and size of highlights are defined by the actual source

light’s size. Thus, when using area lights, the shape of the light is recognizable as part of

the specular reflection. With glossier surfaces, the highlight tends to defocus, revealing less

of the source light shape and more of a blur. With infinitely small light sources, the specu-

lar component options are then used to manually simulate the light’s size, shape, and

intensity, as well as the surface’s glossy nature, as discussed next.

A B C

Figure 9.28

The influence a
source light shape
has on specular
reflections

When creating metallic surfaces, the specular color reflects the metal’s diffuse color; thus,

when creating shaders for metallic objects, you should typically use the diffuse hue (HSV) for

the specular color and control the specular intensity using the value.

mental ray shaders ■ 335

08547c09.qxd 10/24/07 4:30 PM Page 335

M E N T A L R A Y S P E C U L A R S H A D I N G M O D E L S

The different specular shading models (Phong, Blinn, Cook-Torrance, Ward, and Lafor-

tune) use different mathematical calculations (or scientific data) for defining the shape

and glossiness of the specular highlight by using different BRDF approaches. That is, one

BRDF model may model light reflectance more accurately than another. It’s important to

realize that the specular component that is used for simulating highlights typically utilizes

a glossy lobe and not a specular lobe (projected light directionality, as shown in Figure 9.11).

This characteristic is noticeable as blurred specular rims, rather than sharp mirror high-

lights. Essentially, the specular color within host application shaders is incorrectly labeled,

because it is actually a glossy reflection, not a mirror (specular) reflection. The extent of

the glossiness is defined by the specular exponent or other option, depending on the spec-

ular shading model. Thus, glossy highlight rims indicate how smooth or rough a surface is.

This falls in line with diffuse fundamentals discussed earlier in the chapter, where rougher

surfaces are more diffused, as are their (glossy) reflections.

As the approach for generating these highlights differs between shaders, that difference

is occasionally misinterpreted as follows: one shader is considered good for sharp highlights

(such as plastic) , whereas the other is better for rougher highlights (such as rough, dry

wood). Creatively speaking, this approach is correct and allows us to easily construct

shaders; thus, we commonly use a Phong shader for sharper highlights and Blinn shader

for rougher highlights. However, this approach is a result of convenience and does not

consider the physical accuracy of the shader (see the earlier sidebar “Shading Model Types”).

When considering physical accuracy, target surfaces are rendered using scientific data

and compared with various shading models that attempt to reproduce similar results. To

clarify, the target surface, which is based on scientific measurements of light reflectance,

compares different shading models that attempt to reproduce the same surface character-

istics. Essentially, the shading model that produces the least amount of error (in reflectance)

is considered to most faithfully reproduce the physical nature of the target surface. Some

of the following websites provide detailed examples and papers on reflectance comparisons

between different models, where Cook-Torrance appears to be the most accurate for sur-

face (reflectance) reproduction:

http://people.csail.mit.edu/wojciech/BRDFValidation/index.html

http://people.csail.mit.edu/addy/research/brdf/index.html

www.graphics.cornell.edu/online/measurements/reflectance/index.html

Phong Specular

The Phong specular shading model is the oldest and least accurate specular model. It

calculates the specular intensity based on the dot product between the vector to the

viewer (�) and the reflection vector (R), raised to the power of the specular exponent (n).

The result is multiplied by the specular color (ks) and the light intensity at that point (fatt),

336 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 336

as shown in the following equation. Note that fatt refers to a fraction of light at a given

point assuming that light attenuates over distance.

I (Phong output) = Ambient + Diffuse + (ks × fatt × (R .�)n)

The exponent (n) provides the rapid specular light decay (for the highlight), where higher

values produce a smaller and sharper highlight. The Phong model neglects some basic BRDF

rules, particularly reciprocity, energy conservation, and Fresnel reflections. Thus, the high-

light does not appear stronger (or wider) at glancing angles, which is a fundamental specu-

lar characteristic. Also, the Phong model does not consider per-wavelength (�) spectral

reflections; thus, all light wavelengths reflect based on an equal IOR. Finally, as the diffuse

and ambient contributions are added as separate components using addition, the total

color value for a given shading point can easily exceed the total incoming irradiance at that

point, and thus the shader will not be physically correct for energy conservation.

The mental ray base Phong shader has an Exponent option for specifying the exponent

value. With XSI the Specular Decay property is used, as shown in Figure 9.25 image A.

With the Maya-centric Phong, the Specular Shading ➔ Cosine Power is used, and with the

mental ray Phong shader, the Exponent attribute is used. With 3ds Max, the Phong shader

Specular Highlights ➔ Glossiness is used as the exponent, and the Specular Level attribute

defines the highlight intensity, similar to an opacity scale.

B L I N N A N D C O O K - T O R R A N C E S H A D I N G M O D E L S

We have already introduced most of the important concepts for specular shading models,

including the Phong shader equation, which gets only more complicated with the Blinn

and Cook-Torrance models. These models provide more control and sophistication over

the specular component by factoring in additional options. With respect to computational

efficiency, they improve on the Phong model in that they don’t require calculating a

reflection vector to define the light intensity seen with the Phong equation cited earlier.

Instead, they use a halfway vector between the light’s position and the viewer, initially

introduced with the Blinn-Phong shader. Essentially it provided faster computation times

as well as better visual results while comparing reflectance with real surfaces opposed to

the Phong model. The modified Blinn model (as with mental ray’s shader) later added a

roughness parameter that is similar to the Cook-Torrance roughness, providing better

control over the highlight appearance based on a microfaceted substructure.

Microfacets

The Cook-Torrance model assumes that a surface’s substructure is constructed with an

enormous number of Lambertian microfacet reflectors, as shown in Figure 9.29. The

microfacets reflect light based on their orientations and densities. They can self-shadow,

casting shadows on each other by occluding incoming light, or can mask the reflected light

from exiting the substructure, as shown in Figure 9.29. Not all specular shading models

actually account for these microfacets, but it is the underlying concept (of their existence)

that explains the glossy nature of specular highlights. Specular models that fail to account

mental ray shaders ■ 337

08547c09.qxd 10/24/07 4:30 PM Page 337

for these facets will appear to have sharper highlights, such as with the Phong shading

model. Shading models that properly account for microfacets better mimic diffuse to

glossy surfaces and, generally speaking, most surface types.

Note that the Cook-Torrance (and Blinn) shader is an isotropic shading model. The

orientation of the microfacets is random since if they all flowed in the same direction, the

surface would simulate a more anisotropic reflection.

Fresnel Reflections

The Cook-Torrance model considers the reflectivity of a surface, based on the viewing

angle and thus factors in Fresnel reflections. As the angle between the viewer and the sur-

face increases, the highlights tend to get larger and more intense, as shown in Figure 9.30

image A (Cook-Torrance). In image A (Cook-Torrance) you can see two renders; the top

one is at a glancing angle, where the highlight increases in intensity (and size), and the

bottom image shows the highlight at a facing angle. In image B you can see the same renders

using the Phong shader, which maintains its relative intensity and size as the angle changes.

You can see another comparison between the Phong and Cook-Torrance shading models

utilizing an area light in the sidebar “Shading Model Types.”

Spectral Reflections

In addition to Fresnel reflections and a microfaceted substructure, the Cook-Torrance

model also factors in per-wavelength reflections. Thus, different wavelengths may reflect

at different angles based on the surface’s index of refraction. Essentially this enables the

Cook-Torrance models to render color-fringing effects on the outer rims of the highlight.

You can see this effect while trying to simulate the image shown in Figure 9.30 image A on

the top, where the outer portions of the highlight will change color based on the shader’s

settings, as specified by the user.

Microfacets

Shadowing

Masking

Figure 9.29

Microfacets across a
surface either mask

or shadow each
other.

338 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 338

Shader Settings

The evaluations of microfacet reflectivity, meaning the intensity, angle, and density, is

based on a few different components that are controlled with the Specular Color, Rough-

ness, and IOR options, as shown in Figure 9.31 image A, a Cook-Torrance mental ray base

shader. The Roughness option defines the microfacets’ slope; larger values provide for

more spread-out specular highlights. The IOR option represents the index of refraction

for reflected light that is incident on the microfacets; for example, a metal surface’s reflec-

tion directionality depends on the metal’s IOR value, where increasing frequencies of

light tend to bend more as they are reflected. Higher IOR values tend to make the high-

light appear sharper. As you can see, the IOR parameter for the Cook-Torrance model

(Figure 9.31 image A) is provided as an RGB color value, allowing you to specify a dif-

ferent IOR for each wavelength accounting for per-wavelength (�) spectral reflections.

A B
Figure 9.31

Cook-Torrance (A)
and Blinn (B) mental
ray shading models
shown in Maya

A B

Figure 9.30

Comparing Cook-
Torrance reflections
with the Phong
shading model

mental ray shaders ■ 339

08547c09.qxd 10/24/07 4:30 PM Page 339

The mental ray Blinn shader utilizes a less comprehensive BRDF, removing wavelength

dependency. You can see in Figure 9.31 image B (a Blinn shader) that IOR is a scalar value

and not an RGB color value. With XSI the IOR is labeled Specular ➔ Refraction, and with

3ds Max the roughness is controlled with the Specular Highlights ➔ specular level and IOR

is controlled with Glossiness.

T H E W A R D S H A D E R

The mental ray Ward shader is used for simulating anisotropic reflections, as discussed

earlier in the section “Anisotropic vs. Isotropic Reflections.” Notice that unlike other

shaders, the specular color is labeled Glossy, indicating the glossy nature of anisotropic

reflections. The shader utilizes two options for controlling the highlights spread:, Shiny U

and Shiny V, as shown in Figure 9.32 (the XSI

Anisotropic shader). These options apply the ratio,

intensity, and length for the highlights, along either

the U or V coordinate.

The highlight orientation is based on the U and

V surface coordinates, as derived from the surface

(first surface derivatives). The surface derivatives

are more efficient with NURBS surfaces that use U

and V profiles to draw a NURBS patch, and they

define the U and V coordinates along those pro-

files. With polygons, the results can be less pre-

dictable, especially with surfaces that have complex

forms as there are no predefined U and V profiles

that are used by the software to reference U and V

coordinates.

Host applications handle defining surface derivates for polygon surfaces automatically.

Maya has two versions for the mental ray Ward shader, mib_illum_ward and mib_illum_

ward_deriv. You should typically use the mib_illum_ward_deriv shader with NURBS sur-

faces (further discussed in Chapter 10), which automates deriving the surface coordinates

rather than expecting you to provide them. Aside from the mental ray shaders Maya also

has its own host specific anisotropic shader. In XSI the Ward shader is Anisotropic, and in

3ds Max you can select anisotropic shading for the Standard material and control the shiny

U and V ratio with the Specular Highlights ➔ Anisotropy option.

Anisotropic Orientation and Scale

Highlight orientation (rotating the highlight across the surface) is one of the most signifi-

cant components of anisotropic shading. First, the Shiny U and V options permit stretch-

ing the highlight along only one direction, be it U or V, lacking any control over orientation.

Furthermore, the surface U and V coordinates may be unpredictable as cited earlier with

340 ■ chapter 9: The Fundamentals of Light and Shading Models

Figure 9.32

The Anisotropic
shader settings

in XSI

08547c09.qxd 10/24/07 4:30 PM Page 340

polygon objects; hence, you’ll require additional control for aligning the highlight. In

addition the orientation of the highlight may change based on a brushing direction, as

with brushed metals.

To control orientation, mental ray has the mib_texture_rotate component shader that

enables rotating the U and V orientation. Similarly, this option is already built into Maya’s

host-specific shader with the Angle attribute; in XSI, with the Anisotropic Orientation prop-

erty seen in Figure 9.32 ; and with the similarly labeled Orientation parameter in 3ds Max.

In addition to simulating anisotropic highlights, you can also create effects such as

anisotropic dispersion, where the highlight reveals the light wavelengths that manifested

the incident light. A simple example such as a CD is achieved by mapping the Glossy color

option with a color gradient (spectrum). You then need to apply appropriate U and V set-

tings; typically one coordinate should be set with a value of 1. Thus, if Shiny V is set with a

higher value (for example, 6), it will define the thickness of the highlight (making it thinner

and sharper as you increase the value), and then Shiny U will define the length along the

U coordinate. If U is set to 1, then the highlight will stretch across the entire surface; in

contrast, higher values will contract the highlight length. Try applying a value of 1 on a

NURBS torus, and notice how the highlight wraps around the entire surface.

Anisotropic Reflections

Since anisotropic shaders (Ward or host-specific) don’t provide anisotropic reflections for

environments and scene elements, you should consider adding custom anisotropic reflec-

tions. To clarify, all the host-specific anisotropic shaders provide anisotropic highlights

and isotropic reflections. For anisotropic reflections, you can use the DGS shader or the

architectural material, which supports anisotropic highlights and reflections, as shown

earlier in Figure 9.16 image C. Alternatively, you can also connect the anisotropic shader

with a glossy reflection shader (mib_glossy_reflection) that supports anisotropic reflections.

We take a closer look at creating complex shader trees for controlling surface orientation

and anisotropic reflections with brushed metal in Chapter 10.

Physical Shading Models
As mentioned earlier, mental ray ships with a collection of physics shaders, as well as the

physically correct architectural material (mia). The physics shader library includes DGS,

dielectric, parti volume, transmat (a utility more than a shader), physical light, and physi-

cal lens shaders. You have already examined the physical lens shader with depth of field

(Chapter 4, “Camera Fundamentals”) and learned about applying a physical light shader

with area lights (Chapter 6). The parti volume shader (participating media) is covered in

Chapter 12 with direct and indirect illumination (volume caustics). The architectural

material basically renders the DGS and dielectric shaders obsolete, acting as a robust “all-

in-one” shader, with superior functionalities for creative, technically complex shading

(tweakable BRDF), and optimization options for improved performance.

mental ray shaders ■ 341

08547c09.qxd 10/24/07 4:30 PM Page 341

The physics shaders and the architectural material shading models are intended for use

with realistic light simulations, such as with indirect illumination (GI and FG). Regardless

of indirect light, these shading models offer a wide range of abilities. Physical shaders

accurately model light reflection and transmission while considering energy conservation.

Note that different physical shaders possess different levels of physical correctness, as dis-

cussed per shader in Chapter 10.

Balancing Light Transport

When using nonphysical shaders, an important consideration deals with energy conserva-

tion. Essentially, we already established that light photons are timeless particles of energy

that are reflected, transmitted, or absorbed from matter. The total radiant exitance (out-

going energy) at a given point cannot exceed the total incident energy and thus needs to be

balanced between the reflected and refracted light, as with Fresnel reflections. Therefore, the

different diffuse to specular reflection (and refraction) intensities are all weighed against

each other. For example, highly reflective surfaces reflect most of their energy with specu-

lar reflections and as a result possess less diffuse reflection.

For energy conservation, the total combined RGB values for diffuse, glossy, and specu-

lar components need to add up to a value of 1 (color normalized to a 0 to 1 range) so that

the total radiant flux will not exceed a value of 1. To clarify, regardless of the light’s inten-

sity value, the light value is multiplied by the different shader components. Thus, if the

total mathematical equation for all the different light-scattering components adds up to 1,

that means at the brightest point on the surface the radiant exitance will not exceed 100

percent of the incident light. However, if the total value for all the reflection and transmis-

sion components (for RGB channels) adds up to 2, then at the brightest point the light

flux would multiply by 2, magnifying the radiant exitance.

When implementing shading models and defining the levels for diffuse, glossy, and

specular light reflection, it’s up to you to consider how those different light contributions

are balanced to better resemble realistic surface characteristics. Typically you shouldn’t

have a Blinn shader with a bright diffuse and specular, as well as fully reflected (reflection

color), because that shader will reach overexposure quickly as well as magnify the light

intensity. Note that most BRDF functions evaluate the energy independently for each

component. Thus, the overall material output is not energy-conserving once you add

ambient light with diffuse light and specular light.

Energy-conserving shaders are shaders that limit the total reflected light (radiance exitance)

not to exceed the total incident light (irradiance) flux.

342 ■ chapter 9: The Fundamentals of Light and Shading Models

08547c09.qxd 10/24/07 4:30 PM Page 342

With respect to using standard (base) and physical shaders as well as indirect illumina-

tion in the same scene, the likelihood of incoherent results increases for the different

shading models. To clarify, the non-energy-conserving shaders typically appear brighter

than energy-conserving shaders, because they amplify radiant flux rather than conserve

flux based on the irradiance (incoming flux), whereas physical shaders will not allow

radiant flux to exceed the irradiance. The topic of energy conservation is further discussed

with physical shaders in Chapter 10.

mental ray shaders ■ 343

08547c09.qxd 10/24/07 4:30 PM Page 343

08547c09.qxd 10/24/07 4:30 PM Page 344

mental ray Shaders

and Shader Trees

The main purpose of this chapter is to better acquaint you with shader func-

tionalities and shader trees. Essentially, the in-depth look you’ve taken at light transport

(Chapter 9, “The Fundamentals of Light and Shading Models”) and mental ray shaders

(throughout the book) should help you recognize and understand similar shader charac-

teristics found in various custom shaders or host-specific shaders, as well as with different

rendering software. The aim is to encourage you to design your own shading trees using

various component shaders, regardless of the platform (software) and available tools

(shaders). After you master this information and understand shaders and shader arith-

metic, you will become more productive in your own workflows.

Chapter 9, “The Fundamentals of Light and Shading Models,” introduced the common

shading models found within the base shader library. In this chapter, I’ll further discuss

mental ray and host-specific shaders, shader trees, and resources for locating custom men-

tal ray shaders via the Web. All host applications provide most of the base, physics, and

architectural shaders that are covered within this book. In this chapter, while examining

shader trees, you’ll examine other component shaders as required, which deal with partic-

ular tasks such as color (or scalar) math, color mixing, and data conversions. Maya pro-

vides all the mental ray shader libraries with their “raw” mental ray settings; hence (on

occasion), I use Maya UI snapshots for presenting mental ray–specific shader options fol-

lowed with references to equivalent shaders and options in each host application. This

chapter covers the following topics:

■ Installing Custom Shaders

■ DGS and Dielectric Shading Models

■ Glossy Reflection and Refraction Shaders

■ Brushed Metals with the Glossy and Anisotropic Shaders

■ The Architectural (mia) Material

C H A P T E R 1 0

08547c10.qxd 10/24/07 4:34 PM Page 345

Installing Custom Shaders
In addition to mental ray shader libraries and host-specific shaders, there are useful

resources on the Web for obtaining custom mental ray shaders. The importance of online

resources, particularly for users who aren’t coders, is that they greatly extend the mental

ray shader collection that ships with these host applications. Table 10.1 lists useful online

resources with comments about what each listing offers. These resources provide addi-

tional shaders that extend your ability to render complex color effects; you’ll find improved

procedural shaders (4D fractal, noise, cell, and turbulence shaders) or custom raytracing

effects, such as complex lens shaders or shading models that, for example, include within

them several specular terms (options for Blinn, Phong, Lafortune, or Ward anisotropic

highlights) and empirical data for reflection models, such as the Tek2shoot illumination

shader (see Tek2shoot listed in Table 10.1).

S O U R C E C O M M E N T S

www.binaryalchemy.de and available on the CD** This is a great collection of custom mental ray
shaders for XSI, Maya, and 3ds Max. The shaders
are intended for XSI; however, there are additional
resources (seen in the following sections) that help
implement them in Maya and 3ds Max. Some of
this site’s best shaders are the ray length (retrieve
information on surface edges) texture shader, and
oily specular shader. This site offers a great collec-
tion of color mixer textures, improved shadow
shaders, and more. It also sells some advanced vol-
umetric shaders for special effects.

www.pixero.com and available on the CD** Jan Sandström provides a variety of mental ray for
Maya and 3ds Max shaders (mostly Maya). Jan pro-
vides several include (.mi) and AETemplate files
for implementing mental ray shaders (such as the
Binary Alchemy or TEK2SHOOT shaders) in Maya
and 3ds Max, as shown in the following tutorials.
He also has other useful shaders such as a good
tone mapping shader (JS_ExposureControl) and
output shaders (for glare), amongst several others.
If you are a Maya user, this site is for you.

www.tek2shoot.com and available on the CD** This site provides a powerful illumination shader
that contains several realistic features including an
iridescent coating (because of interference) such
as with bubbles or oil spills (coating shader on CD).
The robust illumination shader also comes with
various Fresnel preset files for different types of
shaders (on the CD), as well as support for the
Lafortune specular shading model. All shaders are
available for XSI, and the Illumination (all-in-one)
shader is also available for Maya thanks to Jan
Sandström (under the TEK2SHOOT folder). This
shader is by far one of the most robust illumina-
tion shaders available.

Table 10.1

Online Resources for
Custom Mental Ray

Shaders*

346 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 346

continues

S O U R C E C O M M E N T S

www.Mymentalray.com This site is a small mental ray community site pro-
viding a variety of shaders for download. You
can find the P.30 shader collection (from Puppet),
which provides robust frame buffer control for
pass rendering (see Chapter 3, “mental ray Out-
put”), really fantastic. The same collection includes
a Z-depth shader that supports rendering trans-
parency into (RGB) depth pass. You can also find
various other shaders for all host applications on
this site, such as bump combiner shaders, color
mixers, subsurface scattering, and more.

Horvátth Szabolcs offers some great Maya and
mental ray shaders (and tutorials), including the
lm_2DMV motion vectors shader Maya files cov-
ered in Chapter 8, “Motion Blur.” He also has
shader utilities for custom user frame buffer
passes and a ray type shader. The ray type shader
very useful for many purposes, a topic discussed in
Chapter 13, “Final Gather and Ambient Occlusion.”
For some of his shaders, such as the reflection util-
ity, 3ds Max users can get an updated .mi file
from the www.maxplugins.de site mentioned
later in this table.

Pavel Ledin (Puppet) provides a collection of
shaders for all platforms. His p_MegaTK shader is
one of the best alternatives to exporting custom
color passes in Maya and 3ds Max (see Chapter 3,
“mental ray Output”). He also has various other
useful shaders such as custom Z-depth, constant
shading, light wrapping, and data conversion
shaders to mention a few. Most are available on the
CD for all host applications in the CustomShaders/
Puppet folder.

www.alamaison.fr/3d/lm_2DMV/lm_2DMV_ref.htm La Maison, a studio in France, developed the
lm_2DMV shader demonstrated in Chapter 8,
“Motion Blur,” for motion vectors motion blur. You
can get the files for each host application at this
site. The files required for each host is discussed in
Chapter 8, “Motion Blur.”

www.XSIbase.com/ This is a good resource for shaders and links to
other useful sites.

http://binaryiris.com/ This is Alan Jones` XSI mental ray shaders.

www.duikerresearch.com/free/index.html This is a great resource for component shaders for
all host applications.

www.maxplugins.de/ This is one of the best resources for 3ds Max men-
tal ray shaders. You can find the include (.mi) files
you need for installing several mental ray shaders
that come form a variety of other resources, such
as those cited above.

* Before using these shaders, you should become familiar with any license agreements that are posted on the sites or
included with the downloadable files.

** Find these files on the CD by going to ChapterFiles/CustomShaders and looking for each individual set of files by
name.

http://puppet.cgtalk.ru, a switch to English
button is on the home page; shaders also available
on the CD**

http://www.impresszio.hu/szabolcs/ and
available on the CD**

installing custom shaders ■ 347

08547c10.qxd 10/24/07 4:34 PM Page 347

Besides improving your ability to render visually pleasing results, other resources

improve mental ray’s functionality, allowing you to export custom user frame buffers

from host applications, such as custom passes (that is, the p_MegaTK shaders discussed

in Chapter 3, “mental ray Output”; see Puppet shaders in Table 10.1), motion vectors

(Chapter 8, “Motion Blur”), and even a transparency supported Z-depth pass (Puppet

p_Z shader). Z-depth passes are well known for their inability to represent transparency,

and thus installing such a custom shader significantly improves your ability to cope with

depth-based effects while compositing.

In the following sections of this chapter, you will primarily look at mental ray physical

shaders, as well as using advanced shaders and networks. For the purpose of completing

these tutorials, XSI users are required to install the physical shaders from TEK2SHOOT

or the XPhysics shader collection (details are provided later in this chapter).

For users who want to install custom shaders from online resources (shown in Table 10.1),

the following sections will demonstrate how to install the Binary Alchemy shaders in each

host application. The same procedure should be followed while installing most other

custom shaders, although some shaders may include specific installation instructions.

The Binary Alchemy shaders provide a good example of the involved process with each

host application, even though I will not show how to use any of these shaders in the

following sections (with one exception).

Installing the Binary Alchemy Shaders
Because these are mental ray shaders, their installation requires merely adding two files

into the host root directory, as described next. With XSI on most occasions, shaders are

packed in XSI add-on files that are easier to implement. Each host application requires a

different set of shaders (provided in CustomShaders/BinaryAlchemy on the CD) to complete

the installation, described within the following installation steps:

1. Navigate to the download page (for the most current shaders). Go to www.binaryalchemy.de.

Navigate to Development/Software/Shader ➔ Shader Collection – Essential Mental Ray

Shaders (under Public Releases) ➔ Download. You should now see the license and down-

load instructions for various collections in the new page that appears.

2. Download the files required for your host application. You can download the current

files or use the ones provided on the CD. Each host requires the compiled shaders from

this site. XSI users will download an XSI add-on file, Maya users will download all the

The TEK2SHOOT, Puppet, Horvátth Szabolcs, Binary Alchemy, and Jan Sandström shaders

have been kindly provided by their authors and are available on the companion CD in the

ChapterFiles/CustomShaders folder. These shaders can be used in all host applications; see

their notes on installation and licensing within their relevant folders and ZIP files.

348 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 348

declaration and DLL files required for Maya, and 3ds Max users will download all the DLL

files, as well as download modified declaration files from another source, as described here:

XSI Select “v22.3 XSI 6.01 Addon Linux+Windows, 32+64 bit,” which prompts you

to download the ZIP file. Once the collection is downloaded, install the XSI add-on

file found in the ZIP archive by following the steps in the “Installing XSI Physical

Shaders” section. The same file is available on the CD:

ChapterFiles/CustomShaders/Binary Alchemy/XSI.

Maya and 3ds Max Both Maya and 3ds Max download the v22 Maya Files ZIP file

and extract the contents into any folder. The same ZIP file is available on the CD:

ChapterFiles/CustomShaders/BinaryAlchemy/Maya.

3ds Max 3ds Max users also need to download additional (different) include files.

Download the BA_color_mixer shader (or any other BA_ shader will do) from

www.maxplugins.de ➔ mental ray shaders ➔ Texture shaders; I found it (and other BA

shaders) under the third page. To download the include file, click the link in the sen-

tence that says “…the Include file for Max can be downloaded here.…” You will be

prompted to save a ZIP file labeled BA_Shader_Collection_Includes.zip, which con-

tains all the include files for the BA shader collection, modified for 3ds Max. The

DLL files are provided from the Maya collection cited in the previous step.

3. Install the Shaders with Maya and 3ds Max. You now place the correct files in their men-

tal ray directories for each host. Once they are placed correctly, you can launch your host

application and find the new BA shaders loaded within the Maya Hypershade window or

the 3ds Max Material/Map Browser window.

Here are the steps for Maya and 3ds Max:

1. Open the directory folder where you extracted the ZIP file. You should see three

folders labeled Scripts, HTML Files, and mental ray, as well as an HTML page

that launches the shader help files.

2. In the mental ray folder, you will find mental ray–specific folders containing all

the declaration files and DLL files. The lib folders contain compiled shaders for

different computer systems including Windows 32-bit (lib folder), Windows 64-bit

(lib_x64 folder), and Linux systems (lib_Linux). Open the appropriate folder for

your system, and copy all the DLL (or SO) files.

Here are the steps for Maya only:

1. Open the Maya installation path and navigate to the mental ray directory, as

shown for a Windows system with the following path: C:\Program Files\

Autodesk\Maya8.5\mentalray\.

2. Open the lib directory, and paste all the copied DLL (or SO) files within

that folder.

installing custom shaders ■ 349

08547c10.qxd 10/24/07 4:34 PM Page 349

3. Go back to the extracted ZIP folder directory, and open the mental ray/include

folder. Copy all the .mi declaration files, and return to the Maya installation path

and paste all these declaration (.mi) files in the Maya 8.5\mental ray\include folder.

4. Under the ZIP folder’s directory, locate the scripts/AETemplates folder. Open the

folder and copy all the AEBA MEL files. These files describe the shader interfaces

that appear in the Attribute Editor window.

5. Under the Maya installation path, locate the AETemplates directory, and paste

there all the MEL files. This directory is typically found under the following path:

C:\Program Files\Autodesk\Maya8.5\scripts\AETemplates.

6. In some cases, custom shaders will also include XPM files in an icons directory,

which you can place in the Maya8.5\icons directory.

At this point, if you followed all the steps correctly, you can launch Maya and start using

these shaders. You can find the shaders within various rollouts under the Create mental

ray Nodes rollout in the Hypershade window.

Here are the steps for 3ds Max only:

1. Open the 3ds Max installation path and navigate to the mental ray directory, as

shown for a Windows system with the following path: C:\Program

Files\Autodesk\3ds Max 9\mentalray.

2. Open the shaders_autoload/shaders directory, and paste all the copied DLL (or

SO) files within that folder.

3. Open the directory with the include files (BA Shader Collection Includes), down-

loaded earlier from www.maxplugins.de.

4. Copy all the declaration files (.mi files), and return to your 3ds Max mental ray

directory, as described in step 2.

5. Open the shaders_autoload/include directory, and paste within it all the declara-

tion files. These declaration files have been modified to work with 3ds Max.

You can now launch 3ds Max and find the BA shaders in the Material/Map Browser

window when mental ray is set as the current (production) renderer.

Installing XSI Physical Shaders
You may have noticed that XSI does not include the physics shader library by default.

Before I cover these shaders in the following section, you may want to first install them.

There are two options you can choose from:

• Download and install the physics library from Net View. In Net View, select XSI Net ➔

Render, and locate the XPhysics Lib add-on.

• Alternatively (and better), you can use the TEK2SHOOT (www.tek2shoot.com) unex-

posed Mental Ray shaders collection provided on the CD (TEK2SHOOT/XSI_

350 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 350

32_64_bit/T2S_MentalRay1_1.xsiaddon), which provides a wide range of shaders,

including the glossy shaders (required for the following sections), physical light,

DGS, dielectric, participating media, and others. The add-on file provided on the

CD supports both 32- and 64-bit systems and are better implementations than the

XPhysics library. You will also find the T2S_Materials_Menu.xsiaddon file, which

when installed adds a T2S menu to your Materials menu so you can load them

directly.

To install the shaders, place the add-on file in your user directory, which on my Win-

dows system is as follows:

C:\users\your name\Softimage\XSI_6.0\Addons\

In XSI, from the main menu bar, select File ➔ Plug-in Manager. In the Plug-in Manager

window, right-click User Root, and select Install .xsiaddon, as shown in Figure 10.1. Navi-

gate to the directory (where you placed the file), and select the add-on file. Once installed,

you can then find the shaders in their appropriate directories.

From the XSI toolbar, select Get ➔ Material ➔ More, and navigate to the user directory.

You can use the Paths shortcut button to quickly navigate to the add-ons path. Note that

both libraries provide monolithic shaders that include the illumination and photon shaders,

so you don’t need to concern yourself with manually connecting a photon shader to the

material. See the help files for additional information on installing XSI add-ons.

Figure 10.1

Installing add-ons
in XSI

The TEK2SHOOT shaders are required for various tutorials in this chapter and in Chapter 12;

their installation is very easy.

installing custom shaders ■ 351

08547c10.qxd 10/24/07 4:34 PM Page 351

DGS and Dielectric Shading Models
Chapter 9, “The Fundamentals of Light and Shading Models,” discussed diffuse, glossy,

and specular (DGS) reflections and mentioned that mental ray provides a DGS shader. In

the following sections, I’ll first review the DGS and dielectric shaders, and then I’ll review

mib_glossy_shaders, which greatly improves performance for glossy reflections. Then, in

the section “Brushed Metals with the Glossy and Anisotropic Shaders,” I’ll review a shader

tree that implements brushed-metal anisotropic reflections with the mib_glossy_shader

and the Ward shading model.

The DGS Shader
The DGS shader acts as a shading model implementation for DGS physical shading func-

tionalities. Its purpose is to present a physically correct shading model that accurately sim-

ulates diffuse, glossy, and specular light scattering, accounting for energy conservation. As

shown in Figure 10.2, the shader provides three main components: diffuse, specular, and

glossy reflections and refractions. The diffuse component supports only diffuse reflectance

(diffuse transmission is characterized as subsurface scattering in translucent surfaces). The

specular and glossy components support both reflectance and transmission. The incident

light energy that is reflected from a DGS shading model is defined by the total color values

of all three diffuse, glossy, and specular components. As discussed in Chapter 9, “The

Fundamentals of Light and Shading Models,”—

specifically in the “Balancing Light Transport”

section—to maintain light reflection up to or

less than 100 percent of the incoming light, the

color values you specify for the RGB components

should not exceed a value of 1. For example, in

terms of grayscale (RGB values are equal), the

diffuse component is set to a value of 0.4, glossy

is set to 0.4, and specular is set to 0.2; hence, the

total value when combined equals 1.

The Specular Component

The specular component controls raytrace reflections and refractions only. Thus, with

respect to highlights, the specular component does not render highlights; you can see this

in Figure 10.3 image A, where only the floor appears reflected on the sphere. In image A

the area light visibility option is disabled so that it does not appear reflected, behaving like

other source lights. However, when visibility is enabled (image B), the area light geometric

shape appears reflected, as shown in Figure 10.3 image B. As you can see (image B), the

area light shape renders a raytrace specular (mirror) reflection of the light’s geometric shape

on the sphere’s surface. Thus, unlike other base shaders, the DGS specular component

does not control emulated highlights, only raytrace reflections.

352 ■ chapter 10: mental ray Shaders and Shader Trees

Figure 10.2

The mental ray DGS
shader in Maya

08547c10.qxd 10/24/07 4:34 PM Page 352

The transparency (Transp) and index of refraction (IOR) attributes shown in the DGS

interface enable surface transparency and refraction. When you specify a transparency

level and index of refraction, the specular component controls focused refractions, such as

with water or glass. When Transp is set to 1, the surface renders full refractions, as shown

in Figure 10.4 image A, which uses a 0.8 specular gray. There are a few points to note with

respect to specular refractions:

A

B

C

Figure 10.3

Specular vs. glossy
reflections with the
DGS shader

dgs and dielectric shading models ■ 353

08547c10.qxd 10/24/07 4:34 PM Page 353

• The specular and glossy components control the surface color and transparency level.

Thus, a specular value of 1 (white) will render full transparency, and a 50 percent

value with a green tint, will render a semitransparent green surface.

• If the specular color is set to black, even with full transparency, the surface will appear

opaque because the transmission is canceled when the specular component is dis-

abled (set to black).

The Glossy Component

The glossy component supports reflections and refractions, just as with the specular com-

ponent, as well as source light highlights. In Figure 10.3 image C, the specular color is set

to black, and the glossy color is set to white. As you can see, the floor is reflected on the

sphere, and a highlight that corresponds to the area light’s emission area (its rectangular

shape) appears reflected. Note that the area light visibility is disabled, and thus the high-

lights are not rendered as raytrace reflections but as part of a shader emulation of highlights,

as discussed in Chapter 9, “The Fundamentals of Light and Shading Models” in the

“Specular Shading Models” section. Since we established in Chapter 9 that the term specu-

lar highlights with base (or other) shaders typically has a glossy nature, in the case of the

DGS shader the specular and glossy components are correctly associated (labeled) with

that specific function (specular vs. glossy reflections or refractions).

The main benefit of the glossy component is that it provides glossy scattering for both

reflections and refractions, distance-based scattering, and anisotropic or isotropic scatter-

ing. The following considerations apply:

• The amount of “blurriness” in the reflection or refraction is controlled with the Shiny

option, providing isotropic scattering only. Higher values (from 100 to 200) yield

sharper (more specular) results, and lower values (below 50) provide glossier scatter-

ing. You can see examples for DGS Glossy reflections in Chapter 9, specifically in

Figure 9.16 image B (isotropic) and image C (anisotropic).

A B

Figure 10.4

Specular vs. glossy
refractions using the

DGS shader

354 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 354

• As the reflected surfaces get farther away from the reflective surface, the reflection or

refraction will appear glossier (also shown in Figure 10.16). Thus, the DGS shader

supports distance-based reflections that dictate that as the distance between surfaces

increases, their reflections become glossier based on each surface’s glossy character, as

discussed in the section “Glossy Reflection” in Chapter 9, “The Fundamentals of

Light and Shading Models.”

• A Shiny value less than 50 provides significant glossiness, as shown in Figure 10.4

image B, where a Shiny value of 5 was used to simulate a deep ocean surface with a

highly glossy refraction. Notice how the submarine becomes less recognizable over

distance, demonstrating distance-based glossiness. Thus, glossy transparency enables

simulating translucent refractions, such as with deep water, wax, or frosted glass,

which are typically dense substances that absorb a lot of light while scattering light

internally.

• Notice that along the edges of the water surface where the water touches the check-

ered wall, the checkers in the water appear in focus; they don’t appear blurred in close

proximity to the water surface. This again demonstrates the distance-based character

of glossy refractions (or reflections).

• Note that unlike the dielectric shader and architectural material (discussed later in

this chapter), the DGS shader does not support light absorption; however, the glossier

and darker the surface, the more it appears to absorb light. Thus, to better simulate

glossy absorption, use low Shiny values (such as15 to 25) and darker glossy color

values.

The subsurface shaders are better geared toward subsurface scattering effects in highly

translucent surfaces, whereas for deep materials (Figure 10.4 image B) or materials that

exhibit less translucency, such as with frosted glass and ice (not fully diffused refractions,

more of a glossy transparency), shaders such as the DGS, architectural material, and glossy

shaders are better suited for rendering the glossy refraction effect.

Glossy Anisotropic Scattering

When the Shiny option is set to a value of 0, it is effectively disabled and the Shiny_u and

Shiny_v options are enabled instead. These two options provide the same functionality as

with the Ward shader’s Shiny U and V options (see “The Ward Shader” in Chapter 9,

“The Fundamentals of Light and Shading Models”), accommodating anisotropic scatter-

ing by utilizing separate U and V values. Thus, higher values provide sharper reflections

(or refractions), and lower values are glossier. As with the Ward shader, the difference

between their values defines a ratio for the highlight, as shown in Figure 10.5 image A,

where Shiny V is set to 1 and Shiny U is set to 40. Notice that because Shiny V is set to 1,

the highlight wraps around the entire surface. If Shiny V is set to a value greater than 1, the

dgs and dielectric shading models ■ 355

08547c10.qxd 10/24/07 4:34 PM Page 355

highlight will wrap around only a partial area of the surface, as shown in Figure 10.5 image

B (Shiny V set to 4). If Shiny V in this case is used to determine the extent of the highlight

across the surface, then Shiny U defines its thickness, where higher values will provide for

a sharper (thin) effect and lower values will appear glossier (wider-spread highlights). The

glossy color has the same purpose as discussed earlier, controlling the highlight brightness

and color (the intensity of the glossy effect).

The Dielectric Shading Model
The mental ray dielectric shader is a physically correct shader that supports several fea-

tures discussed in Chapter 9, “The Fundamentals of Light and Shading Models.” These

include Fresnel equations, which balance the ratio between the reflections and refractions

intensity, the Beer-Lambert law for simulating internal absorption within the dielectric,

and Snell’s law of refraction. The architectural material enhances those abilities with glossy

refractions and a customizable BRDF interface providing further control over Fresnel

reflections (more on that later in this chapter).

The main purpose of the dielectric shader is to model an interface between two differ-

ent media, where you indicate the refraction into the first medium and also the refraction

when entering the second medium.

This solves one of the conundrums of rendering dielectric surfaces, where the refraction

going into the surface is calculated but the refraction upon exiting the surface is not. Typi-

cally, an additional surface can be modeled that applies that corrective refraction. For

example, a glass of water would require an index of refraction of 1.5 entering the glass and

The DGS glossy Shiny U and Shiny V options support rendering both anisotropic highlights

and reflections (raytrace), a topic discussed in more detail in the section “Brushed Metals with

the Glossy and Anisotropic Shaders,” which includes an advanced shader tree example using

the Ward shader and the mib_glossy_reflection shader for generating anisotropic highlights

and reflections.

A B

Figure 10.5

Anisotropic shading
with the DGS shader

356 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 356

an index of refraction of 0.8 when exiting the glass and entering water based on a water

index refraction of 1.3. Recall that Chapter 9, “The Fundamentals of Light and Shading

Models,” explains how an index of refraction represents the ratio of the speed of light

between two mediums; therefore, in this case, the ratio from glass to water is written like

this: 1.3 ÷ 1.5.With the dielectric shader you don’t need to do the math; just apply the

index of refraction value for each medium based on a standard vacuum to medium inter-

face (that is, 1.5 for glass, 1.3 for water, and so on). Using the shader is not clear-cut, and

there is room for confusion; the following explanations will help you understand how to

resolve such cases.

Dielectric Options and Light Absorption

You can see the dielectric shader’s interface in Figure 10.6. Similar settings in each host

are reviewed in the following section. The Col attribute defines the color for the glass, and

its absorption level based on the Beer-Lambert law. The Col attribute’s luminance color

value, defined with the V parameter on an HSV color scale, defines an absorption coeffi-

cient for the dielectric. The absorption is applied using an exponential rate for light decay

through the dielectric. A Black value (a value of 0)

corresponds to full absorption, and white (a value

of 1) corresponds to a fully transitive dielectric,

meaning there is no absorption. Values within

that range (from 0 to 1) indicate a percentage of

absorption per unit length in world space coordi-

nates, through the dielectric. Thus, at a value of

0.5, there is 50 percent absorption, and at 0.1 there

will be 90 percent absorption per unit length

through the dielectric.

The Col_out attribute defines the nature of the second dielectric and its absorption

level, which will become clearer shortly. The Ior and Ior_out attributes define the indices

of refraction for the first and second dielectric interfaces, respectively. Thus, in the case

of a simple glass, the Ior attribute is set to 1.5 (glass ior), and the Ior_out attribute is set to

1.0, which is the IOR in vacuum (or air); in such a case it has no effect unless Col_out is

set to show the effect of absorption (using a darker color value than white) from the exter-

nal dielectric. Thus, the second set of options (Col_out and Ior_out attributes) is used to

describe an external environment that surrounds the dielectric, whereas the first set of

options describes the internal character of the dielectric. The external environment may

then be any type of matter, which is a different dielectric substance.

Phong_coef defines a Phong-based specular highlight using a simple exponent value,

as described in Chapter 9, “The Fundamentals of Light and Shading Models.” The

Ignore_normals attribute ignores the surface normals while defining the front and back-

sides of the surface. When enabled, polygons that are facing the camera are considered as

dgs and dielectric shading models ■ 357

Figure 10.6

The dielectric shader
enables you to
model an interface
between two differ-
ent dielectrics that
have different
indices of refraction.

08547c10.qxd 10/24/07 4:34 PM Page 357

the front side of the surface regardless of their normal direction; they are rendered as if

their normals were facing the camera. Basically, the direction of the normals is used to

define whether a ray is refracting into dielectric, which will use the first set of Col and Ior

attributes, or refracting out of the dielectric, which then uses the second set of Col_out

and Ior_out attributes.

R E N D E R I N G G L A S S W I T H T H E D I E L E C T R I C S H A D E R

The dielectric shader is the only shader that provides the ability to model two separate

interfaces. Even the architectural material deals with only one interface at a time, so the

modeling considerations when using the dielectric are different than in most other cases.

Essentially, the approach is a bit easier with the dielectric shader. Figure 10.7 shows a

modeling scheme for a dielectric glass with a liquid substance such as water. Slice B shows

a split view of the glass and the liquid. Slice A shows the different surface interfaces that

are applied with three dielectric shaders. The arrows indicate the surface normals, which

are crucial for defining the first and second interfaces.

The first surface, shown with the normals A, B, and C, represents the portion of the

glass that interacts with air; therefore, the Ior attribute is set to 1.5, and the Ior_out attrib-

ute is set to 1.0. Notice how a section of that surface also defines an interface between the

glass and the liquid, shown with the normals C and D (D on the liquid surface). With the

dielectric shader, you can model only two interfaces. So, the shader for the outer surface

(normals A, B, and C) uses an air to glass dielectric shader, because the light travels from

Slice A Slice B

A B

C

D

E

D

A B 1.5 / 1.0

C D 1.5 / 1.33

E 1.33

Figure 10.7

Modeling two differ-
ent dielectric inter-
faces for creating a
glass with an inter-

nal fluid

358 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 358

air into glass and then back to air as it exits the glass on the other side, aside from were it

enters the liquid, which is handled with the next dielectric shader.

The liquid in the glass is divided between two interfaces: the glass-to-liquid interface

(normals labeled D) and the air-to-liquid interface (normal labeled E). The surface with

the normals labeled D has the Ior attribute set to 1.33 (entering the liquid), and the Ior_out

attribute is set to 1.5 (exiting into the glass). The E interface represents the liquid surface

that interfaces with air and therefore is an air-to-liquid interface, where the Ior attribute is

set to 1.33 and the Ior_out attribute is set to 1.

A B S O R P T I O N I N T H E S E C O N D D I E L E C T R I C

The second dielectric’s Col_out attribute specifies the absorption rate through the external

(second) dielectric. The best way for you to visualize its effect is with a glass example. Con-

sider that the base of the glass is a solid (thick) where you can see the absorption through

the glass. The glass sides are thin, and between them a volume of air (or other dielectric)

exists. The air is represented by the second dielectric using the Col_out absorption and

Ior_out attributes. If you set the Col_out attribute to a high absorption rate, you will see

its absorption effect (a dark color) between the glass sides (within the empty volume) but

not through the base area of the glass, which is never exposed to the second dielectric

because it’s a contained volume.

F I N A L C O N S I D E R A T I O N S

When you are not using the dielectric shader, you need to consider the difference in the

IOR between different interfaces, something this shader calculates for you. You can refer to

the section “Diffuse, Specular, and Glossy Transmittance” in Chapter 9, “The Fundamen-

tals of Light and Shading Models,” for a list of common indices of refraction for different

dielectric substances. In addition, the dielectric shader does not support transparent shad-

ows, and thus you can use a separate shadow shader (see Chapter 7, “Shadow Algorithms”).

Or better yet, you can use caustics, a topic covered in Chapter 12, “Indirect Illumination.”

You can see comparisons between different types of glass renderings, demonstrating

absorption, glossiness (frosted glass), and Fresnel reflections, using the dielectric shader

and architectural material in the color inserts under “Glass Shark Comparisons.” In the

following section, you will see how you need to be resourceful while developing a dielec-

tric shader tree; however, when the dielectric shader is set correctly, it simply provides for

nice glass renderings.

To help realize the differences of the dielectric shader, consider that in comparison with

other refraction shaders, which provide vacuum-to-dielectric interfaces using a single IOR

option, the dielectric shader extends that ability by supporting two different dielectric inter-

faces (such as glass to liquid); the dielectric shader is not limited to a vacuum-to-dielectric

interface, which is the common dielectric interface used with most refraction shaders.

dgs and dielectric shading models ■ 359

08547c10.qxd 10/24/07 4:34 PM Page 359

Colored Glass Effects

One of the problems the dielectric shader presents is applying color to glass. Although you

can easily specify a color for the glass within the shader, or even map it with a texture that

has some color pattern, doing so presents two problems:

• The absorption of the dielectric is defined by the value of the color, as cited earlier.

Thus, different colors will have an unwanted effect on absorption.

• You may want to layer a texture on top of the glass, as with a label; however, if white

represents full transparency with no absorption, how do you add a white label (or any

texture color) that appears opaque or blends with some transparency?

The solution is to use the mental ray mib_color_mix shader (or any color mixers) to

mathematically mix color from a texture with the color from the dielectric. This way, the

dielectric shader passes its color evaluation to the color mix shader, and then the color mix

shader adds (or blends) that result with the texture color, as shown in Figure 10.8. The figure

shows a simple shader tree in Maya using the mental ray mib_color_mix shader (labeled C)

that adds the color from a texture file (labeled A) with the color from a dielectric shader

(labeled D). By doing so, the color values specified with the dielectric shader represent the

glass absorption and base color (transparency color), unaffected by the texture color.

A

B C

D

Figure 10.8

Creating color glass
effects using the

dielectric shader and
the mib_color_mix

shader

Another great shader for rendering glass is the Lume (shader library) glass shader that pro-

vides various options for controlling the appearance of glass.

360 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 360

T H E M I B _ C O L O R _ M I X S H A D E R O P T I O N S

The mental ray mib_color_mix shader (available in host applications), whose interface is

shown in Figure 10.9, can take several color entries and blends them together based on a

blending mode. Each color entry has an associated weight option that is used as a masking

channel for the color influence. The first attribute, Num, defines how many of the color

entries will be used while blending colors. To clarify, when Num is set to 1, only the

Color_0 attribute is used, and if Num is set to 2, then both Color_0 and Color_1 will be

used, and in both cases they are blended based on their associated mode and weight

options with the Color_base attribute. You can use these blending modes like you blend

layers in Photoshop.

C R E A T I N G T H E S H A D E R T R E E

For the color glass effect, I want to apply a simple compositing trick; I want to mask out

the color areas of the label, shown as the texture file labeled A in Figure 10.8, from the

dielectric shader so that it appears as an opaque labeled on a glass surface and it doesn’t

show any transparency through the label. To achieve this effect, I use a black-and-white

mask (labeled B) derived from the texture file (labeled A) as a hold-out mask for the

dielectric shader’s color values; the mask is multiplied by the dielectric shader to remove

its influence across the surface where the texture has color values (other than black), effec-

tively cutting out a hole for the label. This process is known as an over composite in com-

positing software (discussed further in following chapters). Here are the basic steps:

1. I connect the label texture (labeled A) to the mib_color_mix shader’s Color_base

attribute and the dielectric shader to the Color_0 attribute.

2. I connect an inverted mask (labeled B) of the

texture (A) to the mib_color_mix Weight_0

option using a luminance shader. Since the

mib_color_mix weight options use scalar (sin-

gle channel) values, I use the Maya luminance

shader (shown with the large RGB letters) to

convert the RGB color values from the mask

labeled B to a single scalar value for the

Weigt_0 attribute. Similar RGB-to-scalar

shaders are available in each host; also, since

the mask is already black and white, I could

have just used any of the R, G, and B channels

instead of a luminance shader. Note that the

mask should not have any gray color values;

only black and white colors should be used if

you want it to complexly mask out an area, as

with this example.

dgs and dielectric shading models ■ 361

Figure 10.9

The mib_color_mix
shader’s options

08547c10.qxd 10/24/07 4:34 PM Page 361

3. With respected to an inverted mask, notice in Figure 10.8 that the mask (labeled B)

appears black where the texture (labeled A) has color, and white where it doesn’t. The

mask is inverted so that areas that appear as white in the mask define the areas where

you see color from the dielectric shader, and the black color defines areas where the

dielectric shader is masked out. As mentioned earlier, I want to multiply the colors

from a mask with the dielectric shader, carving out a hole in the dielectric shader’s

colors for the texture color. Thus, I use an inverted mask of the texture as a weight

value for the dielectric shader; it multiplies the black-and-white scalar values from the

mask by the dielectric shader’s R,G, and B color values, a typical masking operation.

4. I then set the mib_color_mix shader’s Mode_0 attribute to Add. This way colors from

the dielectric shader that have not been masked out (the white areas of the mask) are

added over the black color values shown in the texture (A).

5. Finally, the mib_color_mix shader is connected to the material shader as an illumina-

tion shader, as discussed in Chapter 9, “The Fundamentals of Light and Shading

Models” under “mental ray Materials.”

M A Y A

The mib_color_mix shader is located in the Data Conversion section of the mental ray

nodes in the Hypershade window, and the luminance shader is in the Color Utilities sec-

tion of the Maya nodes. In Figure 10.8, the mib_mix_color shader is connected to the

ShadingEngine node’s mental ray ➔ Custom Shaders ➔ Material Shader.

X S I

In XSI you can re-create the same network using the dielectric shader from the TEK2SHOOT

library (see “Installing XSI Physical Shaders” earlier in this chapter). However, the shader

tree presented in this section can be applied in the same way with any other XSI refraction

shader. Thus, you don’t need the physics dielectric shader to create this type of shader tree;

it’s a common exercise in masking (combining) different source shaders using a mask.

T A K I N G I T A S T E P F U R T H E R

The procedure described for colored glass effects can be used with different math operations

to add labels or custom effects onto surfaces. For example, you could use grayscale mask

values and different blending modes to combine the colors from the texture and shader

together. This way you can show some transparency through the label, even a variation in

transparency, based on the mask’s grayscale values and the blending mode.

Furthermore, the texture map (A) can alternatively be provided as a shader, such as a

Lambert shader, instead of a texture file. This way I use one shader to define the material

character of the label and another to define the character of the glass. These concepts are at

the backbone of complex shader trees, where you apply traditional compositing theories

while constructing shader math procedures using various component shaders.

362 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 362

For the mib_color_mix shader, you can use one of the color mixer shaders found in the

Render Tree window under Nodes ➔ Mixers ➔ Mix_2colors or Mix_8colors (when mixing

more than two colors). The shaders use the same settings as shown in the earlier example;

however, in this case the mix_2color will suffice. Just as in the earlier case, the mix shader

is connected to the Material ➔ Surface input.

If you look at the Mix_8colors shader, you will see the Base Color property referred to

as the Color_base attribute and a list of layers that can be enabled when you click their In

Use property; clicking the In Use property is the same as setting the Num attribute dis-

cussed earlier with the mental ray shader. Also, you don’t need to use a shader to convert

RGB values to scalar values since the XSI color mix shaders use RGB values for the Weight

properties.

If you do want to apply an RGB to scalar conversion for other purposes, you can use

the Color to Scalar shader found under the Render Tree ➔ Nodes ➔ Conversion menu.

3 D S M A X

With 3ds Max you can follow a similar process to re-create a similar shader tree; just use

the following steps:

1. Open the Material Editor window, and load a mental ray material from the Get Mate-

rial button into an empty slot.

2. Select the mapping button under the material’s Material Shaders rollout ➔ Basic

Shaders ➔ Surface parameter to apply a new shader. From the Material/Map Browser

window, select the (3ds Max) Mix shader shown mapped in Figure 10.10.

3. Select the Color #1 parameter, and map it with the “Material to Shader” shader from

the Material/Map Browser window, as shown in Figure 10.10. Under the Material to

Shader Parameters, map the Material parameter with a dielectric shader; you can use

the glass (physics_phen) shader. The glass shader should be set with the desired set-

tings for the glass base material characteristics.

4. Under the mix shader’s Mix parameters, map the Color #2 input with the color

shader. This input may be mapped with a bitmap for a label, a procedural texture, or

an illumination shader by using yet another material to Shader shader. Use the Mix

Amount mapping parameter to map the cutout mask, as shown in Figure 10.10 and

described in the earlier tutorial.

Once you complete all these steps, you have re-created a network similar to that pre-

sented in Figure 10.8. The only difference is that you have little influence on how the

dielectric and the color texture are mathematically

combined, a topic discussed in the earlier sidebar

“Taking It a Step Further.” To clarify, the mix shader

will simply cut out the influence of one shader to

benefit the other, based on the masks’ values.

dgs and dielectric shading models ■ 363

Figure 10.10

The 3ds Max Mix
shader is used to
combine a dielectric
with color based on
a cutout mask
image.

08547c10.qxd 10/24/07 4:34 PM Page 363

How can you develop the same type of effect as described previously, where the mask

controls the areas with color influence (from the bitmap) and a mode option (as described

for the mib_color_mix shader) defines how color is superimposed with the dielectric

shader’s color? Instead of using the Mix shader as described in step 2, map the mental ray

shader’s Surface parameter with the Binary Alchemy color mixer shader (the BA Color

Mixer is available on the CD in the BinaryAlchemy folder), provided you installed it cor-

rectly (described earlier under “Installing Custom Shaders”).

You can then apply a dielectric shader (for example, Dielectric Material) to the Layer

color parameter without using the “Material to Shader” shader. Apply the color texture

(bitmap or texture) to the Base color parameter and the cutout mask to the Weight (color)

parameter (for the dielectric shader). The Use scalar weight should be disabled so that the

cutout mask image (or texture) RGB values are used; thus, you don’t need to apply an

RGB-to-scalar conversion as described earlier with the luminance shader. Finally, the BA

Color Mixer shader’s Mix mode parameter specifies the math function used to combine

both layers. However, you can not easily determine the arithmetic for each mode since

they appear numbered rather than labeled. Table 10.2 summarizes the mode operations

correlating to a mode number.

M O D E N U M B E R M E T H O D

01 Screen

02 Multiply

03 Add

04 Subtract (base minus layer)

05 Subtract inverted (layer minus base)

06 Difference [abs (subtract)]

07 Output white

08 Output black

09 Output black (opaque alpha)

10 Use base color (no operation)

11 Use layer color (no operation)

Glossy Sampling and Raytrace Control
The mental ray DGS and depth of field physical shaders base their raytrace sampling qual-

ities on global scene anti-aliasing settings, so to get better quality, you must increase the

sampling for the entire scene. To clarify, when rendering depth of field, glossy reflections,

or glossy refractions, multiple samples are taken to improve the quality and reduce visible

noise. Thus, for good-quality renders, you are required to increase the max sampling level,

which significantly increases the render time, rather than just increase sampling for the

surfaces in question. For example, Figure 10.4 image B (using the DGS shader) required

Table 10.2

The Binary Alchemy
Color Mixer Modes

364 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 364

several hours of rendering for a print resolution image. I discuss a better option for ren-

dering the same image in a matter of minutes later in this chapter.

Another point of consideration involves the length of raytrace rays. As you increase the

sample settings for glossy effects (making a surface appear glossier), the number of ray-

trace rays increases. By limiting the length (reach) of rays, you can significantly reduce the

render times while maintaining the quality of the effect. Typically, at the max ray distance,

an environment image (or some color value) would be used as a source for distant reflec-

tion values so that raytracing is in effect only for a given distance, beyond which the envi-

ronment image is used.

The greater the distance a ray travels to extract color values for reflections or refrac-

tions, the glossier they appear on the surface. The glossier the appearance, the more ray

samples are required to produce a better result. By limiting ray distances, you effectively

specify a given area in the scene that affects the glossy reflection or refraction colors; any-

thing beyond that distance has no effect. Thus, surfaces that are placed far from the reflec-

tive (or refractive) surface that contribute to poor-quality glossy reflections, which visually

appear grainy, will not be used (sampled). The result is that your render will use fewer

samples (raytrace rays), sample shorter distances, look better in the render (without arti-

facts), and, most important, render faster.

Fortunately, most host-specific and custom shaders provide shader-dependent sam-

pling (per-shader multisampling), allowing you to increase the render quality at the shader

level. Also, some mental ray shaders provide limiting options for defining a max distance

for raytrace rays, such as with the glossy shaders, and architectural material, as you will

soon see. Per-shader sampling and raytrace distance control are amongst the more sought

out features, especially with heavy raytrace shaders. An example would be a depth-of-field

lens shader that enables you to increase the sampling only when required (for out-of-focus

areas), rather than for the entire scene as with the mental ray physical_lens_dof shader

discussed in Chapter 4, “Camera Fundamentals.” You can experiment with the Binary

Alchemy DOF shader provided in the Binary Alchemy shader collection on the compan-

ion CD that has built-in shader sample options (see the earlier Table 10.1).

DGS, Dielectric, and Host-Specific Shaders
Host applications have their own settings that support DGS shading. Both Maya and XSI

monolithic shaders have built-in per-shader sampling for glossy reflections and refrac-

tions. Also, Maya and 3ds Max ship with the mental ray DGS and dielectric shaders, and

with XSI you can easily add the physics library as described earlier in the section

“Installing XSI Physical Shaders.”

With host-specific shaders, typically Fresnel reflections and light absorption are not

supported. However, each host application supports creating custom Fresnel reflections

using shaders that control the reflection and refraction intensity along a surface based on

dgs and dielectric shading models ■ 365

08547c10.qxd 10/24/07 4:34 PM Page 365

a facing ratio between the camera and the surface normal. These shaders enable you to

design your own Fresnel shaders for illumination shaders that don’t support Fresnel reflec-

tions. You can find examples in the Chapter 10 folder for each host on the companion

CD. Next I’ll cover host-specific shaders and the mental ray dielectric and DGS shaders in

host applications.

Maya

The previous sections presented the mental ray DGS and dielectric shaders and their attrib-

utes in Maya. In addition to these mental ray–specific shaders, all the Maya-centric shading

models have incorporated a mental ray tab that includes blurred reflections and refractions,

as shown with a Maya Blinn shader in Figure 10.11. The only advantage of these shaders

over the DGS shader is that the samples for the blurred reflection and refractions can be

controlled on a per-shader basis, as shown with the Reflection or Refraction Blur, Blur

Limit, and Rays attributes. However, the DGS shader is energy conserving and provides for

better shading. These attributes also have equivalent global scene limits in the Render Set-

tings window under the mental ray tab ➔ Raytracing rollout, as discussed in Chapter 2,

“Rendering Algorithms,” in the “Enabling and Controlling Raytracing” section. I’ll clarify

the shader characteristics with a few points using the scene shown in Figure 10.12.

Figure 10.11

Maya host-specific
shader settings for

glossy reflections
and refractions

366 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 366

Images 1 and 2 use Maya Blinn shaders, and image 3 uses the mental ray DGS shader.

The purpose of this example is to demonstrate how surface A reflects the reflection of the

sphere (labeled C) on surface B (labeled D); it demonstrates the rendering qualities of the

reflection shown on surface A (labeled F) of the reflection on surface B (labeled D). Note

that surface A is set with high raytrace limits, and all the changes are applied only to the

raytrace attributes of surface B.

In Chapter 2, “Rendering Algorithms,” we discussed the raytrace attributes found

under a Maya shader’s Raytrace Options rollout (shown contracted in Figure 10.11). The

Reflection Limit attribute, unfortunately, has a “double” effect that can lead to some

confusion:

• It limits the number of raytrace reflections shown on that surface, as discussed in

Chapter 2, “Rendering Algorithms.”

• It also limits the number of reflections from that surface on other surfaces, as shown

in Figure 10.12 image 2. Notice that when the Reflection Limit attribute for surface B

(the floor) is set to 2, the sphere’s reflection is shown on surface A (the wall), labeled F

in image 1. However, after setting the Reflection Limit (for surface B) to 1, the reflec-

tion (F) is not shown on the wall in image 2. Thus, the shader limits for surface B

have the double effect of limiting reflections on both surfaces, regardless that each has

its own shader with its own limits.

The Reflection Blur attribute, under the mental ray rollout of a Maya shader, acts like

the mental ray shiny options discussed earlier with the mental ray DGS shader, defining the

glossy nature of the surface. Higher values increase the reflection glossiness. When render-

ing glossy reflections (Reflection Blur greater than 0), the Reflection Rays attribute provides

per-shader sampling. Higher Reflection Rays values provide for better-quality glossy

reflections (and also increase the render time). The same is true for the Refraction Blur

and Refraction Rays attributes, which provide glossy refractions, similar to those shown

with the DGS shader earlier in Figure 10.4 image 2.

1 2 3

C

D

E

F

G

A

B

Figure 10.12

Reflection limit
attributes for Maya-
centric shaders
(images 1 and 2) and
mental ray DGS
shaders (image 3)

The scene reflectionBlurLimits.mb is available in Chapter 10’s Maya folder on the com-

panion CD. You will find Blinn and DGS shaders with appropriate labels that you can experi-

ment with while reading the tutorial.

dgs and dielectric shading models ■ 367

08547c10.qxd 10/24/07 4:34 PM Page 367

For the Reflection Blur Limit and Refraction Blur Limit attributes, keep in mind the

following points as you examine Figure 10.12:

• The Reflection Blur Limit attribute is supposed to limit the number of times blurred

reflections will reflect in the scene, as does the equivalent attribute in the Render Set-

tings window under the Raytracing rollout. The same is true for the Refraction Blur

Limit attribute. For this example, the global limit settings are set high (5), and all the

following changes are applied to surface B’s Blinn shader.

• If surface B has a Reflection Blur Limit attribute set to 0, the reflections (D and G) on

surface B will appear sharp, without any reflection blur.

• At a Reflection Blur Limit of 1, the reflections appear glossy, as shown in image 1 with

the labels D and G on surface B.

• In image 1, clearly you can see that the reflection labeled F doesn’t account for the

reflection blur D shown on surface B; it appears sharp rather than glossy.

• Consider that if you increase the Reflection Blur Limit attribute (on surface B) to a

higher value (2 or higher), you would expect the reflection blur (D) to appear in the

reflection labeled F, on surface A. However, that is not the case as shown in image 1,

where all the settings were set high (over 2), yet the reflection on surface A (F) doesn’t

appear to capture blurred reflections from surface B.

• Currently, the Reflection Blur Limit attribute is not working as expected. I expect

Autodesk will correct this “bug.” Thus, you should apply similar tests with your ver-

sion of Maya. Note that you can apply the same blurred reflection settings for the

Reflection Blur and Reflection Rays attributes of surface A; however, in such a case,

the reflected sphere labeled E would also appear blurred, which is most likely an

undesired effect. If you want a mirror reflection of surface B on the wall (A), the

reflection should appear blurred only in F, as shown in image 3.

• Image 3 utilized mental ray DGS shaders for both surfaces, and as you can see, the

blurred reflection is captured as expected. However, in this case, the scene sampling

had to be set high, consequently increasing the render time significantly.

• Note that mental ray shaders are not affected by the Reflection or Refraction Blur

Limit global attributes found under the Render Settings window ➔ Raytracing rollout.

Thus, even if they are set to 0, glossy reflections or refractions will render correctly.

XSI

The previous sections presented the mental ray DGS and glossy shaders and their attrib-

utes in Maya. If you installed the XSI XPhysics or TEK2SHOOT mental ray libraries, you

will find those shaders with the similar settings. Note that with the dielectric TEK2SHOOT

shader, the Col and Col_out attributes, shown in Figure 10.6, are labeled Inside and Out-

side Persistence Color, respectively. With the XPhysics library the naming conventions are

368 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 368

identical to the previous discussions. Note that both shader libraries provide monolithic

shaders that are both illumination and photons shaders, thus with these shaders you don't

need to connect a separate photon shader when using indirect illumination, as discussed

in Chapter 12, “Indirect Illumination.”

For the most part, the DGS reflection and refraction glossiness is already integrated in

the options for glossy reflection and refraction in XSI’s illumination shading models, as

shown with an XSI Phong shader in Figure 10.13 using the Transparency section’s Frost

and Samples properties and the Reflection section’s Gloss and Samples properties. How-

ever, these shaders are not energy conserving as with the physics DGS and dielectric shaders;

that means they don’t limit your reflected light

values to 100 percent of incoming light.

The refraction Frost and the reflection

Gloss properties are equivalents to the mental

ray shiny options discussed earlier. Thus, these

settings apply the extent of the refraction or

reflection blur. The advantage of XSI’s illumi-

nation shaders over the physics DGS shader is

with the Samples properties that provide per-

shader sampling control for glossy reflections

and refractions. Thus, by increasing the Sam-

ples property value, the glossy render quality

improves, without a need to increase the global

sampling level for the scene, as with the DGS

shader. Note that blurred reflections are always

isotropic, even when using the anisotropic shader.

3ds Max

The 3ds Max mental ray DGS shader is located in the Material/Map Browser window labeled

DGS Material (physics_phen). It is a monolithic DGS shader that includes the relevant pho-

ton shader for use with indirect illumination simulations, a topic discussed in Chapter 12,

“Indirect Illumination.” The shader parameters are similar to the ones presented earlier,

with the exception that it doesn’t support anisotropic shading, omitting the Shiny U and

V options. You can use additional complex shaders for DGS reflections or transmissions

that support anisotropic shading, which are covered later in this chapter in “Brushed Metals

with the Glossy and Anisotropic Shaders” and in “The Architectural (mia) Material.”

You can load the dielectric shader from the Material/Map Browser labeled Glass

(physics_phen). This too is a monolithic material that includes a photon shader, derived

from the Glass (physics_phen) parameters (more on that in Chapter 12, “Indirect Illumi-

nation”). The Col and Col_out parameters, shown in Figure 10.6 with the dielectric

shader, are labeled Light Persistence and Outside Light Persistence respectively with the

dgs and dielectric shading models ■ 369

Figure 10.13

XSI Phong illumina-
tion shader’s glossy
reflection and
refraction properties

08547c10.qxd 10/24/07 4:34 PM Page 369

Glass (physics_phen) shader. Basically, all the parameters work as described earlier, with

the addition of a Persistence Distance parameter. The Persistence Distance parameter is

used with the Light Persistence parameter to define the absorption rate through the dielec-

tric. If a surface is n units thick (world space coordinates), then using that n value for the

Persistence Distance parameter defines the correct size of the surface for absorption; it

scales the absorption rate to a certain percentage so that after n units the surface will

appear to absorb light based on the absorption value defined with the Light Persistence

parameter. Trial and error experimentation will help you visualize its effect on absorption.

Fresnel Shader Trees

Most shaders don’t account for Fresnel reflections or refractions, and in such cases you

want to use simple shader trees to add Fresnel reflections and refractions to a surface.

These shader trees can connect to either Maya-, XSI-, or 3ds Max-centric shaders, or men-

tal ray illumination shaders, such as with the mental ray base shaders. Let’s examine the

steps for creating Fresnel reflections in each host with the purpose of seeing how host-spe-

cific shaders can be used to create complex shader effects; it’s a thought-provoking exer-

cise based on Fresnel reflections with the purpose of better understanding how shader trees

can be connected for various purposes. You can see the shader tree in XSI in Figure 10.14,

which is constructed in a similar way in each host application. You can see the rendered

result of using this tree in Figure 10.15.

You will find a scene file for each host application labeled “FresnelReflections” in the

Chapter 10 directory under your host’s directory; use the scene to examine the connec-

tions discussed in this tutorial. Note that each scene consists of the following:

• A sphere, used for the complex shader tree shown in Figure 10.14.

• A floor surface, used to reflect color on the sphere. It is also intended to show the

effect of refractions through the sphere.

• An environment shader is used locally with the sphere’s shader tree to provide non-

raytrace environmental reflections. The environment shader is also here so that you

can see the effect of Fresnel reflections in your host’s shader preview: Maya Hyper-

shade, XSI Shaderballs, and 3ds Max Material Editor.

Figure 10.14

The tutorial shader
graph for Fresnel

reflections and
refractions, shown

in XSI

370 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 370

• The spherical environment image file labeled LATLONG.tif is also provided in each

host’s tutorial folder in the Chapter 10 folder for the environmental projection.

• A spot light is used with raytrace shadows. Notice how the shadows are affected by the

shader in each host.

Once you complete the following steps in your host, look at the section “How It Works

(All Users)” for details on this shader as well as additional steps.

M A Y A

In the Maya file on the CD I included two sets of shader networks. One shader tree is

based on using a Maya Phong shader, and the other network is based on using Maya and

mental ray components shaders with the mental ray Phong shader; the mental ray tree

includes a shadow shader and sample compositing shaders, which is thus a more compre-

hensive network. Both shader trees accomplish the same effect.

Here are the steps for the Maya-centric shader tree, equivalent to the shader tree shown

in Figure 10.14:

1. In the Hypershade window under the Create Maya Nodes rollout, create the follow-

ing nodes:

• An illumination shader such as a Phong shader.

• A Ramp node from under the 2D Textures rollout without any texture support

(disconnect the place2DTexture node or any other projection nodes).

Figure 10.15

An XSI render of
three different
shapes that are
applied with the
shader tree seen in
Figure 10.14

dgs and dielectric shading models ■ 371

08547c10.qxd 10/24/07 4:34 PM Page 371

• A Sampler Info shader (found under the General Utilities rollout). It is used in

the same way as the XSI Incidence shader shown in Figure 10.14.

• A Env Sphere shader from under the Env Textures rollout.

• Create a Maya File node and load the LATLONG.tif environment image, and

assign it to the Env Shader’s Image attribute.

2. Connect the Env Sphere shader to the Phong’s Reflected Color attribute. Similar to

the mental ray environment shader shown in Figure 10.14, it provides local environ-

mental reflection color. The mental ray shader tree provided in the scene file uses an

environment shader (mib_lookup_spherical1) to connect to the ShadingEngine

node’s mental ray ➔ Environment shader input.

3. In the Connection Editor window, connect the Sampler Info’s Facing Ratio attribute

(output) to the Ramp node’s UV Coord ➔ V Coord input.

4. Select the ramp node, and in the Attribute Editor make sure that Type is set to V

Ramp. Set the Ramp to a black (top color) to white (bottom color) gradient. The top

color correlates to direct angles (facing angles), and the lower color correlates to

glancing angles.

5. Connect the Ramp’s outColor output to the Phong shader’s Specular Color attribute.

If you prefer using a graph (instead of the ramp shader) to define the transition from

white to black across the surface, you can use the Remap Value shader found under the

Color Utilities rollout. See “How It Works (All Users).” Just make sure you use the Remap

Value’s outValue to connect to the Specular color attribute and not the outColor output.

The Value rollout under the remap value shader’s attributes controls the gradation.

X S I

Here are the steps for the XSI shader tree shown in Figure 10.14:

1. In the Render Tree window from the Nodes menu, create the following nodes:

• An illumination shader (Blinn, Phong, and so on).

• Illumination ➔ Incidence shader. Mode should be set to Surface/Camera

(default).

• Mixers ➔ Gradient shader.

• Environment ➔ Environment shader. Set the Environment Mode property to

Spherical mapping, and load the LATLONG.tif file.

2. Connect the environment shader to the Material Environment input property as

shown in the figure.

3. Connect the Incidence shader to the Gradient shader’s Input property (shown labeled

“FresnelReflections” in Figure 10.14).

372 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 372

4. Set the gradient to a white to black gradient using the White/Black preset. The gradi-

ent shader’s leftmost marker (white) correlates to glancing angles, facing away from

the camera, and the rightmost marker (black) correlates to facing angles, toward the

camera.

5. Connect the gradient output to the illumination shader’s Specular and Reflectivity

properties as shown in the figure. The gradient shader now controls the intensity of

highlights and reflections across the surface based on the viewing angle.

6. You can use a separate gradient shader for each component (specularity and reflectiv-

ity) providing you with more control.

7. Use the incidence shader’s Bias and Gain properties to further control the gradation

extent and its glossiness as follows:

• Lower values for the Bias property will flatten the effect, whereas higher values

push the gradation closer to the surface edge. The Bias defines the location

(boundary line) on the surface where the gradation takes place.

• The Gain acts as a multiplier that further controls the transitions falloff rate

along the border line. Higher values provide for a more linear (flat) transition

and lower values provide for a faster (exponential) transition, sharpening the

effect (explore these properties with the provided scene file).

• A typical glass Fresnel reflection would have a higher Bias value (such as 0.75)

and a lower Gain value (such as 0.25).

In XSI you can also use other shaders such as the Nodes ➔ Raytracing ➔ Dielectric

shader instead of the incidence shader to balance the light transport across the surface.

The incidence shader provides abilities for controlling color based on the angle between

two vectors, such as the camera’s perspective and surface normal (used in this example) or

the light direction and surface normal.

3 D S M A X

Here are the steps for the 3ds Max shader, equivalent to the shader tree shown in

Figure 10.14:

1. In the Material Editor window using the standard 3ds Max material, select an illumi-

nation shading model (Blinn, Phong, and so on). I used a Blinn in the scene file pro-

vided on the CD.

2. Set both Ambient and Diffuse colors to black.

3. Under the mental ray Connections rollout, map the Environment parameter with an

Environment (3dsmax) shader. Similar to the mental ray environment shader shown

in Figure 10.14, it provides local (for this shader only) environmental reflections.

dgs and dielectric shading models ■ 373

08547c10.qxd 10/24/07 4:34 PM Page 373

4. Under the shader’s Environment (3dsmax) parameters, map the Map parameter with

a bitmap shader and load the LATLONG.tif environmental image. Under the bitmap’s

Coordinates rollout, enable the Environ radio button, and set Mapping to Spherical

Environment.

5. Under the Blinn shader’s basic parameters, map the Specular color parameter with a

Gradient Ramp from the Material/Map Browser window.

6. From under the Gradient Ramp Parameters, set the ramp as a white (leftmost color,

position 0) to black (rightmost color, position 100) ramp.

7. Set the Gradient Type parameter to Normal, which maps the color to the surface

based on the angle between the direction to camera and surface normal vector. The

ramp now controls the intensity of highlights and reflections across the surface based

on the viewing angle.

8. The white color (position 0) defines the color at glancing angles, facing away from the

camera. The black color controls the color toward the camera, at facing angles.

H O W I T W O R K S (A L L U S E R S)

In all host applications, gradient shaders are used to map the intensity of the reflection

color across the surface based on the viewing angle. To build a dependency on the viewing

angle, each host uses an additional shader that provides information on the dot product

between the two vectors (see Chapter 11, “mental ray Textures and Projections,” for a

detailed discussion on dot product math and 3D) that are as follows:

• The surface normal vector

• The direction to the camera vector

The dot product is extracted in each host using the following shaders and parameters:

• In Maya, the sampler info shader’s Facing Ratio attribute.

• In XSI, the incidence shader is set to Surface/Camera.

• In 3ds Max, you use the Normal option for the Type parameter, which is built into

the gradient shader.

Each of these shader parameters extracts information about the angle between two vec-

tors using values that range from 0 to 1, which is a dot product. A value of 0 refers to

glancing angles (perpendicular vectors), and 1 refers to facing angles (parallel vectors).

In 3D, gradient shaders are used to map color onto a surface based on the color’s posi-

tion on the gradient’s scale, which is also indicated with 0 to 1 values. In all host applica-

tions, the gradient shaders have been set so that the white color is at position 0 and the

black color is at position 1. Thus, after the host evaluates the angle between the two vec-

tors (the dot product), it determines which color will be used at that sample location; if

the normal is facing away from the camera (glancing angles), the dot product returns a

value of 0, and thus the gradient color indicated at position 0 (white) is used for that

374 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 374

sample location. In this way, the white to black colors that range from position 0 to 1 are

mapped to the surface based on a viewing angle that also ranges from 0 to 1.

For our purpose, we used the gradients to define the intensity of highlights and reflections

in each host, where white is fully reflective and black is not. You can now use the color posi-

tion on the ramp, as well as select different interpolation methods (linear, cubic, and so on),

to control the transition rate between both colors, providing controllable Fresnel reflections.

A D D I N G R E F R A C T I O N S

Ideally with refractive surfaces you want to map the intensity of refractions and reflections

based on Fresnel reflections. Thus, as the angle between the camera and normal increases

toward glancing angles, the surface becomes more opaque and reflective. To do so, you

can use the same connections described earlier to add angle depended refractions. In other

words, create another gradient shader with the same connections described earlier, and

map it to the shader’s transparency color (already applied in the scene files). Figure 10.15

shows the end result of this network rendered in XSI; it shows Fresnel reflections and

refractions using three different simple shapes over some text.

You can see the refraction gradient shader (a duplicate of the reflection gradient shader)

connection in Figure 10.14, labeled FresnelRefractions. As you can see, it too is connected

to the incidence shader that, in this case, drives transparency based on the viewing angle.

Also, don’t forget to set the index of refraction to a desired value; I used 1.5 for glass with

the rendered example and in the scene files.

With Maya and XSI shaders, a black transparency color refers to fully opaque; if you

duplicated the reflection gradient shader, you need to invert it for the refraction gradient

shader as follows:

• In Maya, under the ramp texture’s attributes, labeled FresnelRefractions, I enabled

the Invert attribute under the Effects rollout.

• In XSI, under the FresnelRefractions gradient shader properties, I enabled the Invert

Direction property.

Glossy Reflection and Refraction Shaders
The focus of this section is on the mental ray base library mib_glossy_reflection and

refraction shaders. They are among the more important and powerful component shaders

that ship with mental ray; they significantly improve render times and enhance glossy

abilities, providing higher performance glossy reflection and refraction rendering. In fact,

phenomenon shaders such as mi_car_paint_phen build on their abilities (together with

Maya users: to see raytrace shadows through the refractions, you need to increase the

Shadow Depth Limit attribute (2 or higher) for the source light in the Attribute Editor, in the

Shadows ➔ Raytrace Shadow Attributes rollout.

glossy reflection and refraction shaders ■ 375

08547c10.qxd 10/24/07 4:34 PM Page 375

other component shaders), offering more robust illumination shading models. Also, the

architectural material (reviewed later) has the same abilities and more. Therefore, review-

ing these shaders is as an important introductory review for the architectural material.

Note the following comments for XSI and 3ds Max:

• 3ds Max does not currently have the mib_glossy shaders, but I expect they will

become available in the future. Regardless, the architectural material is present and,

as cited earlier, provides even more capabilities. You can also use the Reflection

Utility shader provided by Horvátth Szabolcs (available on the CD in ChapterFiles/

CustomShaders/Horvátth; get the 3ds Max include files from www.maxplugins.de) that

provides several nice features for controlling anisotropic reflections with 3ds Max. See

the 3ds Max tutorial in the section “Brushed Metals with the Glossy and Anisotropic

Shaders” later in this chapter.

• With XSI, you need to install the TEK2SHOOT XSI add-on (provided on the CD and

described earlier). You can then find the mib_glossy shaders in the install path from

the T2S_Mentalray path. XSI has two built-in raytracing shaders (Render Tree ➔ Ray-

tracing), Reflection and Refraction Diffuse. These less robust shaders are already

implemented with the XSI illumination shaders such as the Phong and Blinn under

the Transparency/Reflection properties tab.

We’ll begin by reviewing the glossy reflection shader and then make some quick com-

parisons with the glossy refraction shader.

The Glossy Connection
The mib_glossy reflection and refraction shaders are basically two illumination shaders

that deal solely with specular to glossy reflectance and transmission. Regardless of whether

your host categorizes them as illumination shaders or some other component shader type,

in my opinion they are not illumination shading models such as the DGS or Blinn. Rather,

they’re sample-compositing shaders. These shaders are meant to be piped with an illumi-

nation shader that provides diffuse color and highlights, just as with any other sample

compositing shader, such as an mib_reflection shader. Thus, glossy shaders deal only with

raytracing reflections and refractions; they do not provide highlights.

You can see the mib_glossy_reflection shader interface in Figure 10.16, which has a

Ward illumination shader connected to the Base_material attribute. The Glossy shader

Maya and XSI users: you can find a file labeled “GlossyReflections” under your host’s directory

in the Chapter 10 folder. The file has a basic shader tree setup using the glossy reflection

shader, assigned to a sphere. XSI users: you need to have the TEK2SHOOT shaders installed,

as cited earlier.

376 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 376

can then be connected to the material’s illumination port, as shown in XSI in Figure 10.17

(using a Phong instead of the Ward). You can also see in Figure 10.16 and Figure 10.17

that an environment map has also been connected to the glossy shader, providing glossy

environmental reflections.

The environment map should be connected to the shader directly as shown in Fig-

ures 10.16 and 10.17, connected to the material’s environment input (Maya shading

engine and XSI material), or applied as a camera shader as discussed in Chapter 3,

“mental ray Output.”

In the Maya and XSI scene files, the environment map is connected directly to the mental ray

material environment input. The reason for preferring the material connection will become

clear after you read the section “Glossiness and Multisampling” later in this chapter.

Figure 10.17

A basic glossy
shader tree.
Phong and environ-
ment shaders are
connected to the
mib_glossy_
reflection shader,
which is then con-
nected to the
mental ray material.

Figure 10.16

The mib_glossy_
reflection mental ray
shader Interface

glossy reflection and refraction shaders ■ 377

08547c10.qxd 10/24/07 4:34 PM Page 377

Reflection Control
The Reflection_color and Environment_color attributes (Figure 10.16) control the reflec-

tion intensity (for scene reflections) and environmental reflections (environment maps

only), respectively. A white color provides for full reflectivity and black disables the reflec-

tions completely. These separate options allow you to balance scene vs. environment

reflection intensities, although in theory they should be set to the same value. The biggest

difference between the two components is that sampling scene reflections requires ray-

tracing, whereas sampling environment reflections requires only a projection map using

an environment shader, as shown mapped in Figures 10.16 and 10.17.

The Max_distance and Falloff attributes increase the render performance by limiting

the reach of raytrace rays. When Max_distance is set to a nonzero value, that value repre-

sents the maximum distance raytrace rays can query the scene for reflections. Over that

distance, as the distance limit is reached, the reflection color transitions from scene reflec-

tions to environment reflections, providing a gradual transition of color. This way you

don’t see a sudden cutoff of scene reflection colors at the max distance, rather a smooth

transition from one reflection color to the next. The Falloff attribute defines the rate of

change from scene reflections to environment reflections over distance. The value defines

a power function so that a value of 2 is equal to a square falloff transition and a value of 1

is equal to linear falloff. Higher falloff values provide more nonlinear (faster) transitions

from scene reflections to environment reflections.

Using the Max_distance and Falloff attributes can also help blend scene reflections with

environment reflections before a 3D scene suddenly “ends.” To clarify, look at Figure 10.18.

Image A doesn’t use these features, so you see the full scene reflect on the sphere before the

environment reflections appear. As you can see, the sphere is placed on a small floor with

one spot light so that the floor doesn’t provide for nice reflections; along the floor’s border

there is no light, and you see the dark (black) areas from the floor appear before the environ-

ment reflection. However, in image B, by setting the Max_distance attribute to 10 and Falloff

to 2, you can see how the environment blends with the scene before reflecting the corners of

the floor, providing for a much nicer and more aesthetic reflection effect.

As discussed earlier in the section “Glossy Sampling and Raytrace Control,” with distance-

based reflections a significant amount of sampling is required to maintain quality. When the

sampling is too low, you typically see artifacts such as grainy reflections. Thus, using the

attributes discussed earlier to limit the reach of raytrace rays greatly reduces the chance of

poor quality glossy reflections and also reduces the overall amount of sampling required for

a reasonable result.

Environment sampling with glossy shaders is not a raytrace process; you can disable raytrac-

ing altogether, and you will still see the environment reflect on the surface, but not the scene.

378 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 378

Fresnel Reflections
The mib_glossy shaders enable simulating custom Fresnel reflections, as discussed in

Chapter 9, “The Fundamentals of Light and Shading Models” in the section “The Fres-

nel Equations.” The Reflection_base_weight and Reflection_edge_weight attributes

(Figure 10.16) are used to balance the reflection intensity at facing angles and glancing

angles, respectively. These attributes act as multipliers against the reflectivity across the

surface so that a value of 1 provides 100 percent reflectivity and lower values gradually

decrease the reflectivity. Edge_factor acts as a bias that controls the transition from the

reflection at glancing angles to facing angles. Higher values provide for a narrower

(faster) transition from glancing angles to facing angles, meaning the reflection outline

is more distinct.

The sphere shown in Figure 10.19 uses a glossy reflection shader with a black Phong

shader (no diffuse) that is connected to the glossy shader’s Base_material attribute; the

Phong’s sole purpose is to contribute white specular highlights. Also, a white environment

map has been applied to the glossy shader, enabling you to see the reflection area as white

gradation along the surface. Notice how in all the images the reflection intensity increases

toward glancing angles. All the images use the same base weight of 0 and edge weight of 1

so that ideally there is no reflection at facing angles and full reflections at glancing angles,

making it easier to identify the Fresnel characteristics. The Edge_factor in image A has a

value of 1 and a value of 4 in image B. Notice how a higher edge factor provides for a

tighter reflection along the surface rim. The Falloff attribute discussed earlier affects the

transition from reflection to environment colors in the same way, where higher values

provide for faster transitions.

A B

Figure 10.18

Limiting the dis-
tance of raytrace
rays in image B
helps blend the
environment and
scene reflections.

glossy reflection and refraction shaders ■ 379

08547c10.qxd 10/24/07 4:34 PM Page 379

Since the mib_glossy shaders don’t provide specular highlights, the highlight shown in

Figure 10.19 is provided by the Phong shader. However, the highlights seen in images A

and B contradict Fresnel characteristics; highlights are also a reflection component, and

thus they too should respect Fresnel characteristics and appear stronger at glancing angles.

To remedy this, a custom shading network was used to add Fresnel characteristics to the

Phong’s specular color, as shown in image C, where the highlight intensity is visible along

A

B

C

Figure 10.19

Fresnel reflections
using the glossy

shaders and a Phong
specular highlight

380 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 380

the rim, toward a glancing angle. I used the same connections described earlier in the

“Fresnel Shader Trees” section. The connection is applied to the Phong shader’s specular

color in the “Glossy Reflections” scene file for Maya and XSI.

Glossiness and Multisampling
The glossy shader supports multiple sampling on a per-shader level, rather than requiring

high scene level sampling values, a topic discussed earlier in “Glossy Sampling and Ray-

trace Control.” The Samples attribute is used to define the per-shader sampling by speci-

fying how many additional raytrace rays (in addition to the initial secondary ray; see

Chapter 2, “Rendering Algorithms,” for raytracing rays) are used to sample glossy reflec-

tion colors. A value of 0 provides a specular reflection, because only one secondary ray

(the initial ray) will be cast into the scene, and thus glossy reflections are effectively disabled.

A value of 1 or higher will provide glossy reflections. Good values range from 32 to 64.

Anisotropic or Isotropic Glossy Reflections

The glossy shaders U_spread and V_spread attributes (Figure 10.16) act just like the DGS

shiny U and V attributes, defining the ratio of anisotropic (or isotropic, a 1 to 1 ratio)

reflections, as well as their glossy extent. The difference between these settings and the

Ward and DGS is simply the values’ usable range. In this case, the usable range is between

0–1 where 0 is specular and 1 is significantly diffused (extremely glossy). Good values

typically range from 0.05 to 0.1, so you may want to start low while examining the result.

When both U and V are equal, you have isotropic scattering, and again, the larger the

value, the glossier the reflection. With glossier reflections, more samples are required to

prevent grainy results; thus, with higher U and V spread values, more samples are required

to produce a quality effect.

Environmental Sampling

An additional optimization option is the Single_env_sample attribute, which allows the

environment to be sampled as a specular reflection, meaning with a single environment

sample. Remember, as discussed earlier, sampling the environment color from an envi-

ronment map is not a raytrace process but a shader projection. However, the glossy shader

is still required to calculate multiple samples from the environment image to produce a

When the U and V spread values are set with a high ratio (such as 0.01 and 0.1), the reflection

appears very anisotropic, and that too requires a lot of samples to produce a quality effect.

The Samples attribute specifies the quality of the glossy reflection only, whereas the U and V

spread options (discussed next) define the glossy nature of the reflection.

glossy reflection and refraction shaders ■ 381

08547c10.qxd 10/24/07 4:34 PM Page 381

glossy effect, which in many cases can prove to be a waste of time. As an alternative, you

can provide an already blurred environment map, which has the effect of improving the

quality of glossy reflections from the environment, as well as reducing the render time, as

explained next.

Because the environment map is typically farther away from the surface than other

objects, it is one of those elements that is more prone to grainy glossy effects, as a result of

distant based glossiness (see the section “Glossy Sampling and Raytrace Control” earlier in

this chapter). The idea is then to use a blurred environment map that appears glossy and

enable the Single_env_sample attribute, which will take only one shader (specular) sample

from this preblurred environment map; the reflection will appear glossy because the image

is blurred. In such a case you may want to connect a blurred version of the environment

image to the shader and use a nonblurred image for other purposes, such as the back-

ground image. The environment reflection will be derived from the image mapped to the

glossy shader, when one is provided.

U S I N G T H E S I N G L E _ E N V _ S A M P L E A T T R I B U T E

As noted earlier, you can connect the environment map directly to the glossy shader or to

the mental ray material (Maya shading engine and XSI material), as shown in Figure 10.20

in XSI. As you can see, the Environment shader in the figure connects directly to the

Material ➔ Environment property and not to the glossy shader’s Environment property, as

shown earlier in Figures 10.16 and 10.17. It is also connected in this way in the provided

Maya and XSI scene files.

The reason I prefer the material connection is because the Single_env_sample attribute

will not function correctly (“broken”) when the environment map connects directly to the

glossy shader. Thus, when enabled and the environment is mapped to the glossy shader,

you won’t see environment reflections render at all. When disabled, it will render the envi-

ronment applying the glossy effect, as dictated by the U and V spread attributes. However,

when you map the environment directly to the material and the Single_env_sample attrib-

ute is enabled, it will render a specular reflection of the environment as expected, and

when disabled, it will apply the glossy effect to the environment, also as expected.

When using a preblurred environment map, map it directly to the mental ray material, and

enable the glossy shader’s Single_env_sample attribute, which will then function correctly; it

will take only one color sample from the environment projection.

Figure 10.20

Connecting an envi-
ronment shader

directly to the men-
tal ray material,

shown in XSI

382 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 382

The DGS Shader vs. the Glossy Shader
Unlike the Ward shader discussed in Chapter 9, “The Fundamentals of Light and

Shading Models,” DGS anisotropic effects apply to highlights, reflections, and refractions.

Essentially this solves one of the Ward shader’s limitations—that highlights appear

anisotropic and reflections isotropic. However, with respect to anisotropic reflections or

refractions with the DGS shader, the scattering does not realistically simulate anisotropic

reflections. To clarify, DGS anisotropic reflections are a result of extending (stretching) an

isotropic reflection across the surface in a specific direction, based on the shiny U and V

values and ratio. In contrast, more realistic anisotropic reflections (as shown in Figure 10.16

image C in Chapter 9, “The Fundamentals of Light and Shading Models,”) that “stretch”

along the surface grooves can be applied with more complex shaders such as the mib_glossy

shaders and the architectural material. These shaders recalculate the surface normals to

mimic surface grooves along a particular direction, and only then do they calculate the

light scattering (glossy) contribution along those grooves. This enhanced ability extends

the DGS’s anisotropic reflection abilities, providing better anisotropic scattering.

The floor shown in Figure 10.21 image A has a DGS shader applied. The floor under

image B has the glossy reflection shader. Notice how the anisotropic reflection under

image A appears very blurred and doesn’t reach as far as the one seen under image B.

To make the anisotropic reflection stretch along the surface (image A), a very low Shiny

U value (2) was required, resulting with a very blurred appearance. That means that I

had to use a high Max sample level (4) for the scene, which provided a reasonable ren-

dered result but an extremely slow render time. In contrast under image B (the glossy

reflection shader), you can see that the object maintains a more focused anisotropic refec-

tion; it looks better and more realistic opposed to the one in image A that looks like a

large blurred smudge across the surface. In fact, lower U and V spread values for the glossy

shader allow you to control the glossiness effect and maintain the anisotropic reflection.

To clarify, with the DGS shader I had to use a very low Shiny U, which significantly

blurs the reflection; overblurring the reflection is the only way I could stretch the reflec-

tion across the surface so that it looks anisotropic. However, with the glossy shader, the

shader determines the microgroove characteristics of the surface by reorienting the nor-

mals (perturbing) to simulate rows of surface grooves. By doing so, the reflection can then

be calculated based on the perturbed normals applying glossiness to a given extent, as

defined by the user. With the glossy shader, the anisotropic reflection will reflect from sur-

face grooves and stretch correctly across the entire surface, as expected (and seen in image

B), without requiring you to increase its glossiness to force it to blur (cover) across the

surface as with the DGS shader (image A). The only condition is that you specify a ratio

for anisotropic reflections, such as 0.05 and 0.1, with the glossy shader’s U and V spread

attributes.

glossy reflection and refraction shaders ■ 383

08547c10.qxd 10/24/07 4:34 PM Page 383

More important is that at standard sample levels, even at a low max sample level of 1,

the glossy shader provides decent results because the sampling is applied on a shader basis;

compare that to the DGS shader, which required extreme measures for decent quality.

Glossy Refractions
The glossy refraction shader, shown in Figure 10.22, is similar to the glossy

reflection shader, except that it offers IOR (index of refraction) and Refraction

Color properties instead of reflection properties. As with the reflection shader,

a white Refraction Color provides for full refractions. Also note that the

shader provides the same controls for Fresnel refractions that deal with the

refraction’s intensity based on a viewing angle but does not reflect any color.

You can combine both shaders to develop a shader with both reflections and

refractions with correlating Fresnel settings; however, for most purposes

that may be a bit overkill.

The main differences with the glossy refraction shader are three different

color inputs instead of one (Base_material attribute) input with the glossy

reflection shader and the Reverse Back Side property. The three color inputs

correspond to a top material, deep material, and back material and are not

shown in the XSI window in Figure 10.22 (you can see them in Maya’s UI

implementation for this shader).

A B

Figure 10.21

Two images com-
pare the DGS (A) and

glossy reflection
shader (B)

anisotropic reflec-
tion abilities

384 ■ chapter 10: mental ray Shaders and Shader Trees

Figure 10.22

The mib_glossy_
refraction shader

in XSI

08547c10.qxd 10/24/07 4:34 PM Page 384

Figure 10.23 shows the network where you can see those inputs available in XSI’s Render

Tree window, where each input is receiving a different illumination shader. These inputs

are similar to the base material with the reflection shader. However, in this case, they allow

you to specify different colors for controlling the glossy refraction over distance. In XSI,

once these properties are mapped with shaders, as shown in the figure, those shaders

appear as additional tabs in the shader’s interface, as shown with the Phong, Lambert1,

and Lambert tabs in Figure 10.22.

The top material defines the appearance of the surface from the front side, facing the

light as shown in Figure 10.24. Note that front and backsides are not dependent on a view-

ing angle, only relative to the light’s position. Label 1 represents the front side of the sur-

face facing the light, and label 2 represents the backside. (The top and sides of the polygon

cube are considered as part of the front side.) This scene setup is used in the following

examples to demonstrate the glossy shader’s characteristics.

1

1

2

Figure 10.24

The scene used for
rendering the glossy
example. The place-
ment of the light
defines the front
surfaces vs. the
back surfaces.

The scene presented in the following example is available on the companion CD in the Maya

and XSI folders under the Chapter 10 directory, labeled “GlossyRefractions.” I highly recom-

mend you experiment with the scene while reading through this section. XSI users: you need

to have the glossy refraction shader installed using the TEK2SHOOT unexposed mental ray

shaders, presented earlier and provided on the CD.

Figure 10.23

The glossy refraction
shader network with
three illumination
shaders connecting
to the top, deep, and
back material inputs

glossy reflection and refraction shaders ■ 385

08547c10.qxd 10/24/07 4:34 PM Page 385

In Figure 10.25, the top material has been set to black (diffuse color) using a Phong

shader, and the deep material is set to white using a Lambert shader. Essentially, the spec-

ular component should be included as part of the top material, and thus a Phong shader

was used. (I’ll talk about that more later.) Let’s clarify the relationship between the top

and deep materials with the following points using Figure 10.25 image A:

• The top material defines the color on the surface front (described earlier), and the

deep material defines the internal color.

• Max Distance defines the distance over which the top material color fades to the deep

material color. Lower values will show a brighter deep material color within the sur-

face. The Falloff property defines the falloff rate for that gradation, where higher

numbers provide for faster falloff rates. Higher values will transition to the deep

material faster, thus also making it appear brighter in the surface. With respect to

“brighter,” it means that you see more of the deep material’s color in the surface.

These two options are similar to the glossy reflection shader’s Falloff and Max dis-

tance options discussed earlier.

• Any surface placed within the glossy volume (a cube in the figure) inherits color from

the top and deep materials, based on their distance from the top (front/facing the

light) of the surface. In Figure 10.25 image A, notice how the white deep material is

more present in the volume as the top (black) material fades to white over the Max

Distance value. Consider the following points:

• The top material shows its dark color along the volume container’s edges, where

it is close to the container’s sides, and on the sphere and stairs as they gradually

fade to white.

• Notice that the topmost outer cube (for the stairs) appears gray (its “natural”

color); however, the one placed directly beneath, placed within the volume,

inherits the top material color and appears black.

A B

Figure 10.25

Two examples using
the glossy shader

where image A
demonstrates the

effect on the front of
the surface and

image B demon-
strates the effect of

translucency seen
through the back

surface

386 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 386

• You can see the stairs reappear as black at the bottom of the cube as they get

closer to the front side of the cube, which is also facing the light and thus utilizes

the top material.

• If Max Distance is set to zero, the deep material is not used (disabled).

• The Max Distance property is aimed at improving raytracing by limiting the distance

raytrace rays can travel in the scene, as discussed with the glossy reflection shader and

in the section “Glossy Raytrace Control.” However, with the glossy refraction shader,

the Max Distance property essentially takes on a new meaning; it enables you to sim-

ulate light absorption through matter along the defined distance. Note that light

absorption is not physically simulated with this shader (the glossy shaders are not

physical shaders) as it is with the dielectric shader, but the effect of light absorption

is made possible by means of blending the top and deep materials over a specific dis-

tance and with a given falloff rate.

The Back Material

The purpose of the back material is to define the color shown reflected back toward the

front from within the surface; it is the color you see internally along the surface walls

reflected back towards the camera. To see its effect, I recommend you set the top and deep

materials to a black color and then set the back material with a bright diffuse color as well

as increase its ambient color. Since the back material refers to polygons that are facing

away from the light, by using ambient color

you effectively force the shader to show the

back material color in the render. Further-

more, if you set the top material to a pure

red, disable the deep material by specifying

a zero Max Distance value, and set the back

material to a pure green, you will clearly see

the color separation across the surface, as

shown in Figure 10.26 and in the “Back-

Mat1,” “BackMat2,” and “BackMat3”

color images provided on the CD in the

Chapter 10 folder. Consider the following

points based on the color scheme cited

earlier, while looking at the color images

and Figure 10.26:

• The volume’s sides that are facing the light, labeled A and C in Figure 10.26, will

appear red. Basically, the internal objects will inherit the top material color, thus

when looking into the cube through the front sides, everything will appear red. You

can see this in the color image labeled “Backmat2.”

A

C

B

glossy reflection and refraction shaders ■ 387

Figure 10.26

The glossy refraction
shader’s back mate-
rial effects

08547c10.qxd 10/24/07 4:34 PM Page 387

• The volume’s sides facing away from the light will appear green (back material), as

shown in all the color images and in Figure 10.26 label B. However, in this case, the

internal objects will appear black since they inherit color only from the top and deep

materials, looking from a frontal side (they don’t receive any light).

• Consider the cube has front, left, right, and back sides. The front face, as shown in

Figure 10.26 labeled C, is facing the light. If you look through this front face, you can

see the left side of the cube. In such a case, the red and green from both front and

back materials blend in color, as shown in the color image labeled BackMat2.

• To further clarify the reasons for effect noted in the previous point, consider that every

face seen from inside, meaning you are observing it through the volume, will render

based on the back material color. You can see this effect in the color image “Back-

Mat3.” This image looks at the cube from behind so that the front side (labeled C in

Figure 10.26) appears through the volume. Notice that it is green and not red, since

we are not looking at it from a frontal perspective but seeing it through the volume.

Furthermore, the same is true for the top of the surface, which we know is facing the

light; however, it too appears green when you see it through the sides, as shown in the

color images “BackMat1.”

• Finally, if you enable the deep material, it would act in the same way as the top mate-

rial. The top and deep material will define the appearance of the surface when looking

at outer faces that are facing the light. The back material then handles all the faces that

are seen internally through other faces.

The Back Material and Through Scattering

Technically, the glossy shader reverses the normals for the faces that are seen through the

volume. Those are the faces that render using the back material color. If you look at the

surface from the back on the outside, without using any ambient color with the back

material, the volume will appear black. The reason is that those faces that reflect light

internally, back toward the viewer, are not receiving any light when viewed from the back

side (opposite the light’s direction); hence, they render black. It is an important point to

realize since it tells you that for the back material to contribute color, it needs to receive

light from the outside, seen through the volume and reflected back toward the viewer

(reflected from the inner faces). Thus, using some ambient color with the back material

really helps show a more translucent effect by mimicking light that is reflected internally.

It only looks that way; obviously, it doesn’t apply any real subsurface scattering.

Keep in mind that while observing the volume from the back, you won’t see any of the

top or deep material colors appear through the back. However, what if you want to simu-

late through scattering—the scattering of light seen through the volume, and in the case of

the glossy shader, the light scattering from the front (top and deep materials) faces, seen

through the volume on the back side, as shown in Figure 10.25 image B. For that effect,

388 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 388

the Reverse Back Material property (shown in Figure 10.22) allows you to better simulate

translucent effects of through scattering. When enabled, it renders the top material through

the backsides, using the back material color. In other words, if the top material is red and

the back material is green, the light seen through the bottom of the cube in Figure 10.25

image B labeled 2, will render green. It is the top materials scattering seen through the

back, affected by the back material. Technically, when the Reverse Back Material property

is enabled, the normals of faces seen through the volume are not reversed; therefore, they

allow you to see the effect of light rendered from the front side.

The Glossy Refraction Shader in Action

You can use the glossy shader to create complex effects by using different procedural

shaders and shader trees for the top and deep materials. Figure 10.27 shows an example of

an ocean render; the color version is in the chapter’s folder on the companion CD labeled

“OceanShot.” The top material has Maya’s ocean shader (also used for the displacement

mapping), and the deep material has a brighter greenish color. This makes the water

appear brighter below the ocean surface. If I decrease the max distance, the top material

(the ocean shader) would render a darker top surface. You can use this sort of effect, for

example, to create phosphorescent tropical waters or water that is illuminated by bright

lights from a nearby hovering helicopter by using local lights (with fast decays) close to

the ocean surface that help reveal the deep material. In this case, a low max distance value

helped make the ocean appear deep, where the submarine fades out quickly. Also this

scene used 32 samples for the glossy refractions, and rendered in only about five minutes

on my laptop at a resolution of 2100 × 1180, which is extremely fast for glossy refractions,

compared to hours of waiting for Figure 10.4 image B using the DGS shader.

Figure 10.27

A practical example
of using the glossy
shader to create a
complex ocean
effect that is opti-
mized for efficient
rendering

glossy reflection and refraction shaders ■ 389

08547c10.qxd 10/24/07 4:34 PM Page 389

Maya users note that the ocean shader tends to cause a crash when connected directly

to the glossy shader; therefore, I used an RGB to HSV shader to transfer the color from the

ocean shader to the top material. I then used the Connection Editor to connect the ocean

shader’s displacement output to the shading engine’s Displacement Mat. Attribute (the

Maya centric displacement input).

As you saw in Figure 10.23, the glossy refraction shader in XSI connects to the mater-

ial’s surface, shadow, and photon inputs. This shader works well with global illumination

(using the TEK2SHOOT shader). With respect to shadows, it is not a shadow shader;

therefore, shadows cast through the volume appear opaque unless you connect an alterna-

tive shadow shader. Furthermore, with Maya you also need to use a different photon

shader (try the dielectric or basic photon shaders), as well as leave the shadow shader dis-

connected or use a transparent shadow shader.

Brushed Metals with the Glossy and Anisotropic Shaders
Until now, while discussing anisotropic reflections, we’ve dealt with simulating highlights

perpendicular to grooves that stretch along a direct path, such as along the V coordinate.

These reflections assume that the surface grooves travel in straight lines along the selected

coordinate. We also mentioned that in XSI and 3ds Max the anisotropic shaders allow for

orienting the highlight, so you can think of it as placing a rotational dial in the center of

the highlight and turning it until it runs along the path you desire. However, with brushed

metals, the highlight orientation changes along the surface, as shown with the rendered

example in Figure 10.28 image B. This example is based on the brushed metal shown in

the table photo in Figure 10.28 image A. You can see the final color version (Figure 10.28

image B) in the color gallery labeled “Brushed Metal Plate.” Note that with metals, the

metals diffuse color needs to be present in the specular highlights and reflections, tinting

those colors in accordance with the metals diffuse “natural” color.

You can find the scene files and textures for each host application in the relevant host direc-

tories in the Chapter 10 folder on the companion CD; the scene file is labeled AnisoTable in

each case.

With both glossy shaders, the max distance is defined in world space units; therefore, sur-

faces of varying sizes will require different distance values.

As with the glossy reflection shader, changing the ratio of the U and V spread values renders

anisotropic refractions that appear to disperse light internally. Try it with the example scene

to observe the effect of anisotropy in refractions.

390 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 390

The purpose of this tutorial is to show you how several component mental ray shaders

and host-specific shaders can be used to form a complex shader tree and effect. Thus,

through this tutorial you will learn more about mental ray component shaders and how

they are used.

Orienting the Highlight
The mib_texture_rotate component mental ray shader, as shown in Figure 10.29 (in Maya),

allows you to rotate texture vectors (U and V coordinates) using an Angle option that

ranges from 0 to 1. Similarly, in the XSI anisotropic shader, the Anisotropic Orientation

property is applied as a color value that ranges from 0 to 1 (black to white). With 3ds Max,

the anisotropic shader’s Orientation parameter specifies degrees, where basically the

usable range spans from 0 to 180. With the component shader (and XSI), to orient a

brushed-metal highlight, you then select values from 0 to 1, which are equivalent to 0° to

360° rotations. Basically, any degree greater than 180° repeats the cycle, so that 0° –180°

provides the same range as 0° –360°.

Notice that the mib_texture_rotate Angle attribute is mapped with the grayscale scalar

value extracted from the texture shown in Figure 10.30 image A, providing white-to-black

color information for orienting the UVs, where black is equivalent to 0°, 50 percent gray is

equal to 180°, and white is equal to 360°, which

is an Angle value of 1. The same image is

used to map the orientation in the XSI and 3ds

Max’s anisotropic shaders. 3ds Max users

should note that black to white is equivalent

to 0–255 (the RGB color values), so if the image

is remapped to a range of 0–180, then it will

apply rotations along 180° (more on that later).

A B

Figure 10.28

An outdoor table
(image A) exhibiting
anisotropic and
Fresnel reflections,
and a rendered ver-
sion of a similar
effect (image B)

brushed metals with the glossy and anisotropic shaders ■ 391

Figure 10.29

The mib_texture_
rotate shader is used
to rotate UVs on a
surface, enabling
you to reorient the
anisotropic reflec-
tions based on a
texture.

08547c10.qxd 10/24/07 4:34 PM Page 391

Thus, the use of a black-and-white image provides control over perturbing the UV

coordinates along the surface. To clarify, if the anisotropic reflection (highlight) travels

along the V coordinate, then by applying this image you rotate the V coordinate several

times along the surface. By doing so, the anisotropic shader attempts to follow the new

(perturbed) path while “drawing” the highlights. This point is really all you need to

understand to come up with several different approaches for creating brushed-metal sur-

faces. I further discuss the topic of texture coordinates and vectors in the tutorials later in

this chapter and in great detail in Chapter 11, “mental ray Textures and Projections.”

The Brushed-Metal Texture Map
Figure 10.30 image B and image C show the single plate that was tiled several times for the

brushed-metal map. The difference between image B and image C is that image C also

uses a stretched fractal shader to form grooves along the rotation, so the reflection breaks

up and doesn’t appear flat, as shown in the color insert version (“Brushed Metal Plate”).

Clearly, you can create different types of maps to define the orientation of highlights on a

surface using Photoshop.

You can use the images “Brushed Intensity1” and “Brushed Mask1” (Figure 10.30 B and C) that

are under the chapter folder on the CD to test anisotropic highlights on a surface while viewing

the effect on a single cycle (it's not a tiled image). It should help you build a better understand-

ing for the effect values have on the anisotropic appearance.

A B

C

Figure 10.30

Black-to-white
images used to

rotate the
anisotropic shader
across the surface,

providing a
brushed-metal

appearance

392 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 392

The Networks
Let’s examine brushed-metal networks using anisotropic highlights and reflections in each

host. The purpose is to create the effect shown in the “Brushed Metal Plate” image in the

color gallery and in Figure 10.28 image B. Since the network is applied using different

approaches, you may want to read through the other hosts to get some other ideas or

insight. As noted earlier, I’m using these networks to further show other useful compo-

nent shaders as required by the network in each host application.

Maya

Figure 10.31 shows the graphed network in Maya using the mib_glossy_reflection, Cook-

Torrance, and the anisotropic Ward shaders that are all used as illumination shaders, as

well as additional component and Maya-specific shaders, such as ramp textures used for

remapping color values. I load the image file brushedMetalPlateTile.tif (on the CD in

Chapter 10/Maya/sourceimages) with a Maya file node labeled A (also shown in Figure 10.30

image A). I then convert it to a grayscale scalar value with the Maya luminance shader

labeled B and then connect to the Angle attribute of the mib_texture_rotate shader labeled

C. To apply this connection, you can either drag and drop the luminance shader over the

Angle attribute or use the Connection Editor window. You can see the mib_texture_rotate

connections in Figure 10.29 and in the scene file. These connections apply the rotational

information based on the texture map’s color values, ranging from 0 to 1 (0° to 360° rota-

tion), as cited earlier. To determine the surface’s texture coordinates (U and V vectors), a

mental ray mib_texture_vector shader labeled D is used.

The mib_texture_vector shader’s Select attribute is set to 0 (by default), which extracts the

UV coordinates from the surface, as they are defined (UV layout) in the UV Texture Edi-

tor window (all the attributes should remain at default). The mib_texture_vector ➔ OutValue

A

B

D

C

I J

E

K

F

G H

Figure 10.31

The brushed-metal
network in Maya

brushed metals with the glossy and anisotropic shaders ■ 393

08547c10.qxd 10/24/07 4:34 PM Page 393

value connects to the mib_texture_rotate ➔ Input value (drag and drop), providing the

mib_texture_rotate shader with texture coordinates that it can then perturb based on the

texture map values. In other words, the texture vector shader is used to extract the UV

coordinates from the surface as they appear in the UV Texture Editor. The

mib_texture_rotate then deforms those UV coordinates according to the texture map.

A N I S O T R O P I C H I G H L I G H T S

mib_texture_rotate (image C) connects to the Ward shader labeled E providing orienta-

tion for the anisotropic highlights. Notice that I’m using the Ward shader and not the

Ward_deriv shader, which automatically derives UV coordinates from NURBS surfaces

(see Chapters 9 and 11 for Ward shading and coordinates). This is a key element for the

network. As shown in Figure 10.32 image A, using the Connection Editor I connect the

mib_texture_rotate U vector attribute to the Ward shader’s U vector attribute (Figure 10.32

image A labeled 1) and similarly connect V to V (Figure 10.32 image A labeled 2). By

doing so, mib_texture_rotate provides modified (rotated) UV coordinates to the Ward

shader, which will use those coordinates when defining the anisotropic character of high-

lights across the surface. At this point, the Ward shader will render highlights based on the

orientation of the texture map.

A N I S O T R O P I C R E F L E C T I O N S

As cited earlier, the new UV coordinates provide information for anisotropic reflections,

and until now I’ve focused on highlights, applying the new coordinates to the Ward

shader; the Ward shader only provides anisotropic highlights. We also need to apply the

same logic for the glossy reflections. First I connect the mib_glossy_reflection shader (G)

A B

1

2

Figure 10.32

The Ward shader
used for creating the

anisotropic high-
lights (image A) and

the Ramp texture
(image B)

The mib_texture_vector shader provides different methods for deriving or defining (projec-

tions) the surface UV coordinates. I discuss texture coordinates using this shader and others

in detail in Chapter 11, “mental ray Textures and Projections.”

394 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 394

Select the gradient D and change the HSV value for its rightmost marker (the 50 per-

cent gray). If you set it to black, you will see the anisotropic reflection as it appeared before

you connected the vector math node (no perturbation). If you set it to white, you should

see how the influence increases and forms a “double” effect. Basically at a value of 1 (white),

the UVs perform a 360° rotation so that at 50 percent gray in the texture map image (the

center of each disk), a new cycle is initiated, shown as “double” directional highlights.

F I N A L S T A G E S

At this point, everything is set up for combining the different color influences and finaliz-

ing the shader. However, I want to add a cutout mask to control the reflection intensity

based on the highlights. To clarify, the reflection is now oriented correctly; however, it still

reflects at 100 percent across the surface (aside from the glossy shader’s Fresnel effect).

Create a new anisotropic shader (Figure 10.33 image G) and apply the same connections

(Orientation property)and values used for the Shiny U and V properties as with the first

anisotropic shader. Set its Diffuse and Ambient colors to black, and disable transparency

and reflections. This shader acts as a black-to-white mask for the reflection, based on the

specular highlight’s intensity. Here are some setup tips:

• The specular highlight is the most reflective area on the surface, whereas the reflection

color should be set to have a more spread-out effect (glossier) and at a lower intensity.

Thus, you reduce the shader’s output color contrast using a remapping process.

• Connect the anisotropic shader to a new gradient (Mixers ➔ Gradient) (Figure 10.33

image H), which can be used to remap the color output.

• Set a color range with less contrast, such as from 0.2 to 0.6 (leftmost marker to right-

most marker). A minimum value of 0.2 assures that the surface is always reflective,

dependent on the glossy shader’s Fresnel effect. In any case, the reflection value

won’t exceed 0.6 once the connections are finalized; this is your max reflection value

control.

• In addition, you can use the (HSV) hue and saturation scales to tint the reflection

color according to the metal’s diffuse characteristics, which is a required step with

metallic reflections.

• You can also decrease the Shiny U option (the higher of the two) slightly so that it

appears glossier.

• Connect the new gradient (H) to the glossy shader Reflection and Environment color

properties. (In this case, we only have environment reflections so that it is essential to

map the Environment color property.)

After the final masks are set, create a Mixers ➔ Mix 2 Colors shader (labeled J). Connect

the anisotropic shader labeled C to the mix s colors ➔ base_color input, labeled J. This pro-

vides the diffuse color and specular highlights. Then connect the glossy shader to the sec-

ond input (color 1), and set Mode ➔ Add. Adding the anisotropic shader with the glossy

brushed metals with the glossy and anisotropic shaders ■ 401

08547c10.qxd 10/24/07 4:34 PM Page 401

reflection shader in this way superimposes the diffuse and specular highlights with the reflec-

tion color. The mix 2 color is then connected to the material (M) Surface input providing

the final surface color. At this point, you are all done; you can now use the different gradi-

ent shaders for exploring color and value influences on controlling anisotropy.

3ds Max

Until now this chapter reviewed several mental ray base shaders, including the glossy

shaders. The base shaders for the most part have equivalents in 3ds Max; however, the

glossy shaders are not implemented. Since Autodesk’s intention is to increase the compat-

ibility between Maya and 3ds Max, I assume we will see these shaders implemented in

future versions. Let’s first examine the straightforward approach using the 3ds Max

anisotropic shader and then further develop the concept using the architectural material.

You can also experiment with the reflection utility shader provided by Horvátth Szabolcs

on the companion CD (ChapterFiles/CustomShaders/Horvátth/for_Max/ReflectionUtil-

ity.mi), which provides similar capabilities to the glossy reflection shaders

A N I S O T R O P I C S P E C U L A R H I G H L I G H T S

For creating brushed-metal highlights, in an empty slot in the Material Editor, set a default

shader to Anisotropic, as shown in Figure 10.35. Under Anisotropic Basic Parameters,

increase the Specular Level parameter to control the intensity of the highlight. Set Glossi-

ness to 0, and set the Anisotropy parameter to 100. You should notice a clear highlight

streak in the shader preview. As you can see, the Anisotropic Basic Parameters ➔ Diffuse

and Orientation (under Specular Highlight) parameters are mapped with textures.

The Anisotropy parameter defines the thickness

of the highlight as it stretches along the surface,

where lower values produce a more glossy effect.

Thus, Anisotropy actually defines the glossiness of

anisotropic highlights. The Glossiness parameter

defines the anisotropy of the highlight, including the

extent to which the highlight wraps around the sur-

face, where higher values produce “shorter” high-

lights. With this shader, the Glossiness parameter is

the equivalent to the mental ray Ward shader’s Shiny

option, but here you need to specify a value of 0

instead of 1 to render a highlight that wraps around a

surface. While tweaking the visual appearance of the

highlight, you should reduce the Anisotropy param-

eters slightly to add glossiness to the highlight.

402 ■ chapter 10: mental ray Shaders and Shader Trees

Figure 10.35

The 3ds Max
anisotropic shader
enables you to cre-
ate brushed-metal

specular highlights.

08547c10.qxd 10/24/07 4:34 PM Page 402

Create a directional light and simple plane surface in the scene. Aim the light at the sur-

face, and map the surface with the anisotropic shader. Render an image at an angle similar

to the one shown in Figure 10.28 image B. See that you can identify the anisotropic high-

light on the surface; you may have to change the Orientation parameter to a value of 90,

rotating the highlight 90°.

D I F F U S E C O L O R

Map the Diffuse parameter with a 3ds Max Gradient Ramp shader from the Material Map

Browser. You can use the gradient shader to define diffuse surface characteristics for

metal by remapping the brushed metal’s black-to-white colors. This allows you to main-

tain the brushed-metal pattern; however, you need to reduce the contrast so the effect is

subtler. Under the Gradient Ramp Parameters rollout, set the Gradient Type parameter

to Mapped, which enables the Source Map slot, as shown in Figure 10.36. Next, map the

Source Map parameter with a Bitmap, and load the

brushed-metal image (brushedMetalPlateTile.tif

from the Chapter 10/3ds Max folder on the CD).

Under the Bitmap parameters, set the projection

parameters for the surface to Texture ➔ Mapping ➔

Explicit Map Channel (texture projections are dis-

cussed in Chapter 11, “mental ray Textures and Pro-

jections”), and set the tilling to 2.0 for both U and V

(or as required by your geometry). Essentially, you

want to test the image on the surface to find the right

projection parameters so that the image appears

clearly and without distortion. Step back to the gra-

dient ramp shader, and remap the color values by

specifying different colors along the gradient ramp, as

shown in the figure (notice the reduced contrast). The

rightmost flag (Flag#2) corresponds to the brushed-

metal image texture map’s white value, and the left-

most flag corresponds to its black value (Flag#1).

B R U S H E D - M E T A L H I G H L I G H T S

Back in the anisotropic shaders parameters, map the Orientation parameter. When the

Material/Map Browser window pops up, select Browse From ➔ Scene, and find the (Source

Map) brushed-metal image you just loaded in the previous steps with the gradient ramp.

Select Copy from the pop-up window. If you test render the shader, you should now

see the anisotropic highlights orienting accordingly with the texture file, similar to the

effect shown in Figure 10.28 image B. The reason you made a copy is so you can control

brushed metals with the glossy and anisotropic shaders ■ 403

Figure 10.36

The Gradient Ramp
used to remap the
diffuse color

08547c10.qxd 10/24/07 4:34 PM Page 403

the numerical range that is used to rotate the highlight, independent from the bitmap

used for the diffuse color. Navigate to the bitmap image mapped to the Orientation

parameter. Under the Output rollout, shown in Figure 10.37, select Enable Color Map.

You can use the curve shown under Color Map to control the numerical range of color

that is outputted from the image, within (or beyond) the 0 to 1 range. If you decrease the

range for the rightmost marker labeled A, it remaps the brightest (white) colors in the

image from 1 to the specified value, indicated as 0.7 in the figure (the 1.0 and 0.7 numbers

shown below the graph on the left side). If you increase the range beyond 1, you will see

additional highlights appear on the surface; this has the effect of repeating the highlight,

creating duplicate highlights. You should test higher values such as 2 and 3 to see the

effect, but a value of 0.5–1 will provide the best result rendering a wider-spread highlight.

Consider that a range of 0–2 will “repeat” a 0 to 1 cycle across the brushed metal’s pat-

tern on each disk twice; if the image range is 0 to 1, then at 0 to 2, a 50 percent gray is

remapped to 1, and a 51 percent gray initiates a new cycle for orienting the highlights,

which is also a 0-to-1 cycle.

Note that the same curve can be used with the diffuse color map to reduce some of the

contrast in the image. You can now add reflections and tweak the color; however, as cited

earlier, the reflections will be isotropic rather than anisotropic.

U S I N G T H E A R C H I T E C T U R A L M A T E R I A L

Currently, in the absence of the glossy shaders, the only option to create proper anisotropic

reflections with mental ray is either with the architectural material (Figure 10.38) or with

external custom shaders such as with Horvátth Szabolc’s reflection utility shader men-

tioned earlier (available on the CD). The workflow is similar to the one described earlier,

with the exception that instead of using the gradient ramp shader, you will use the mix

shader. Note that the architectural material features are discussed in detail later in the

chapter, so I’ll focus only on the network connections.

Diffuse Color Mapping

In the Material Editor, load the Arch & Design (mi) material from the Material/Map

Browser window. You can select a brushed-metal template and further examine their set-

tings. For now, leave everything at the defaults. Figure 10.38 shows the architectural mate-

rial parameters used for this example. Follow these steps to prepare the shader:

1. Under the Main material parameters ➔ Diffuse section, map the Color parameter with

a Mix shader from the Material/Map Browser, shown in Figure 10.39. This shader will

define the diffuse characteristics for brushed metal.

The best way to understand how values beyond the 0–1 range orient highlights, creating

additional duplicate highlights, is to test and see the results.

404 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 404

2. Map the Mix Amount parameter with a Bitmap, and load the brushed-metal image

file. Set the bitmap’s projection parameters to explicit UVs, and set the U and V Tiling

parameter to a value of 2, just as in the first part of this tutorial.

3. Under the mix shader’s Mix Parameters, set the color values for metal with small con-

trast differences, just as in the first case with the gradient ramp shader, as shown in

Figure 10.39.

4. Enable Use Curve, which allows you to further specify the transition from one color

to the next, based on the brushed-metal image, which in this case defines the transi-

tion from Color#1 (black) to Color #2 (white), with the difference of using the new

remapped colors.

5. From the main parameters shown in Figure 10.38, decrease the Diffuse Level, and

increase the Roughness (Oren-Nayar shading) to further tweak the surface character-

istics. Note that this shader will automatically reduce the diffuse in favor of the reflec-

tion, because it is an energy-conserving shader (more on that later).

Figure 10.39

The 3ds Max Mix shader is used with
the mia_material to map the diffuse
color of the surface.

Figure 10.38

The architectural material in 3ds
Max used for the brushed-metal
effect

Figure 10.37

Controlling the color output from
the brushed-metal texture

A

B

brushed metals with the glossy and anisotropic shaders ■ 405

08547c10.qxd 10/24/07 4:34 PM Page 405

Anisotropic Reflections and Highlights

Follow these steps to set up the anisotropic highlights using the architectural material’s

parameters:

1. Under the Reflection section, Reflectivity should be set to 1.0 and Glossiness to 1.0

(for now).

2. Under the Anisotropy section, map the Rotation parameter (shown mapped in Fig-

ure 10.38) with a bitmap, and repeat the process of loading the brushed-metal file.

(The bitmap should have the same projection and tilling settings as with the diffuse

bitmap.)

3. Notice that the architectural material’s Rotation parameter uses a 0-to-1 range, unlike

the Orientation parameter in the previous example with the anisotropic shader.

Enable the bitmap’s Enable Color Map parameter (shown in Figure 10.37), and set

the bitmaps output range (labeled A) to 0.5, corresponding to 180° of rotation.

4. The Anisotropy parameter should be set between 0.01 and 0.2, providing anisotropic

highlights across the entire surface. Opposed to the previous section, in this case the

Anisotropy parameter affects anisotropy and not glossiness as with the 3ds Max cen-

tric anisotropic shader (Anisotropy parameter).

5. Load an environment image for reflections under the architectural material’s Special

Purpose Maps ➔ Environment parameter. Map it with a bitmap, and load the LAT-

LONG image provided on the CD in Chapter11/3ds Max folder (or any other envi-

ronmental image).

6. Under the environment bitmap Coordinates parameters, enable the Environ parame-

ter radio button, and set Mapping to Spherical Environment. This stage generates an

environment projection for reflections.

At this point, if you render an image, you should see brushed-metal highlights. To

make the reflection appear anisotropic, you need to set the Reflection ➔ Glossiness param-

eter to a lower value, effectively enabling glossy anisotropic reflections; when the Glossi-

ness parameter is set to 1, the reflections appear isotropic, and once you reduce the value,

they appear anisotropic following the brushed-metal pattern. Try values between 0.95

and 0.99, and increase the Glossy Samples to a value greater than 1 (enabling it); you can

try values between 16 and 32. With respect to the anisotropic reflections, consider the fol-

lowing points:

• For the architectural material, make sure that under Fast Glossy Interpolation the

Single Sample from Environment parameter is disabled, or else environment reflec-

tions will be isotropic.

• Metal reflections tint the specular contribution based on the surface’s diffuse charac-

teristics. Under the architectural material’s Reflection parameters, enable the Metal

material check box, as shown in Figure 10.38.

406 ■ chapter 10: mental ray Shaders and Shader Trees

08547c10.qxd 10/24/07 4:34 PM Page 406

• For the architectural material, under BRDF you can change the Fresnel characteristics

of the surface for metal. Try using a value of 0.6 as a starting point for the 0 deg. refl

parameter, as shown in Figure 10.39 in the lower portion of the figure.

• It may be hard to see the effect of anisotropic reflections with a normal environment

map (the LATLONG image will reflect a blue sky, so you don’t really see anything dis-

tinguishable). Try mapping a checker texture as a spherical environment, and test the

anisotropic characteristics using the Reflection ➔ Glossiness and Anisotropy parame-

ters. It will be easier to experiment with the effect when you can clearly identify the

effect on the environment.

The Architectural (mia) Material
Maya, XSI, and 3ds Max include the mental ray architectural library, which exposes the

mia (mental images architectural) material, as well as the round corners, tone mapping,

physical sun, and physical sky shaders. You’ll learn about the physical sun, sky, and tone

mapping shaders in Chapter 13, “Final Gather and Ambient Occlusion,” with Final

Gathering as they become more relevant.

The mia material is a monolithic (including shadow and photon shaders), physically

accurate shader that emphasizes BRDF functionality with respect to correct light reflection

and refraction, as well as energy conservation and light absorption. This shader has two

major implementation advantages: physical accuracy and render efficiency. The latter

means that several optimization options are built into the mia material. The mia material

can be found in each host application, as follows:

• With Maya, in the Hypershade window under Create mental ray Nodes ➔ Materials ➔

mia_material.

• With XSI, in the Render Tree window under Nodes ➔ Illumination ➔ Architectural.

• With 3ds Max, when mental ray is the specified renderer, from the Material Editor

window select Get Material, and in the Material/Map Browser window select the Arch

& Design (mi) material.

The architectural material offers several options for defining the characteristics of each

color component. These range from Oren-Nayar diffuse, glossy isotropic, and anisotropic

reflections and refractions, to manually defining BRDF curves and simulating translucency.

You can learn about the architectural material and round corners shader in the “The Archi-

tectural (mia) Material” PDF file on the companion CD.

Remove the brushed-metal image, and experiment with the characteristics of anisotropic

reflections using the architectural material to learn how they behave.

the architectural (mia) material ■ 407

08547c10.qxd 10/24/07 4:34 PM Page 407

08547c10.qxd 10/24/07 4:34 PM Page 408

mental ray Textures and

Projections

This chapter examines the basics of using image files and procedural textures

with mental ray, including image filtering, elliptical filtering, memory-mapped images, and

pyramid images. In the same context, it also covers the methods for defining (or deriving)

texture coordinates and applying texture placement using mental ray–specific texture

shaders. The purpose of this chapter is to show how to use mental ray texture nodes for

loading and mapping image files, not to provide an exhaustive review of UV texture map-

ping techniques with each host application using host-specific nodes. To get the most out

of this chapter, you should be familiar with the concepts of applying projections to sur-

faces and generating UV layouts, as well as the differences between them. In particular,

you should understand the concept of “unwrapped” UV layouts, in which each UV has

unique placement within the 0 to 1 texture space coordinates, in contrast to overlapping

UV layouts, where UVs share texture space coordinates. With mental ray, the process of

defining texture mapping coordinates is not as straightforward as within host applica-

tions. Fortunately, in most cases, host-centric shaders and mental ray shaders interact cor-

rectly, so you do not need to rely on mental ray–specific texture placement nodes. This

chapter covers the following topics:

■ Texture Space and Projections

■ mental ray Bump Mapping

■ mental ray Projection and Remapping Shaders

■ Host Application Settings

■ Memory Mapping, Pyramid Images, and Image Filtering

C H A P T E R 1 1

08547c11.qxd 10/24/07 4:36 PM Page 409

Texture Space and Projections
The term texture space refers to yet another coordinate system available with 3D applica-

tions. In this case, it’s a 2D grid with U and V coordinates that range from 0 to 1. Within

that grid, UV layouts are constructed to provide a means for mapping a 2D image file or

procedural texture onto 3D surface coordinates. The 2D texture space is used to define the

relationship between 3D surfaces and 2D images. Mapping is then the process of applying

a texture across a surface’s U and V (2D) coordinates, where the UV coordinates are

encoded with values that correspond to X and Y coordinates within a 2D grid, which is the

texture space. Thus, the tasks of rotating, scaling, and translating a texture across the sur-

face are relative to its 2D internal (UV) coordinates and not the 3D scene coordinates.

The UV surface coordinates are defined either through explicit projections or implicit

projections. Explicit projections create (built-in) UV coordinates, such as those you typi-

cally lay out within a UV texture editor for polygon surfaces or derive directly from NURBS

surfaces. Implicit projections refer to directly projecting images onto the surface during

rendering, regardless of the surface’s UV coordinates. The mental ray shaders used to apply

such projections are one of two primary topics for this chapter, along with image filtering

techniques. Even if you are not that well versed with the applications of explicit vs.

implicit projections and UV layouts, the chapter covers these topics in enough detail to

clarify some of their finer points. Host-specific workflows and tools for assigning and

editing UVs are reviewed only in the context of mental ray shaders.

Texture Projection Basics
Texture projection tools (and viewport manipulators) are found within all 3D host appli-

cations, using 2D planar or 3D (that is, spherical, cubical, cylindrical, and so on) projec-

tion shapes, as shown in Figure 11.1. These projections appear within host applications as

geometric wireframe objects that have no render properties and thus are merely geometric

manipulators that define a projector’s shape with UVW coordinates.

The additional W coordinate is always present with UV coordinates. It extends 2D coor-

dinates to 3D coordinates, creating a 3D texture vector. It can be compared to the Z

coordinate in 3D space, providing a means to project an image along any of the three

UVW coordinates. Thus, UVW coordinates are actually an additional set of vector coor-

dinates, comparable to XYZ coordinates. The difference is that they are used to define

texture coordinates along a 2D projection shape or surface. The topic of defining and

manipulating texture vectors is discussed in detail in the section “The Texture Vector and

Remap Shaders” later in this chapter.

With respect to explicit coordinates, the UV coordinates of a NURBS surface are derived

strictly from the NURBS surface’s UV profiles; by contrast, polygonal objects are more flexible

in the sense that they allow for customized UV layouts.

410 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 410

The projection shapes shown in Figure 11.1 are then used to set the position, orienta-

tion, and size for a given projection, as shown with the spherical (A), cylindrical (B), and

planar (C) projections. All these projections are in fact 2D image projections from a 2D or

3D projector shape. They are 2D projections because a 2D image file or procedural texture

is mapped across the projector’s coordinates and projected toward a given surface point.

Notice how a 2D planar projection stretches the texture across the surface faces that are

perpendicular to the projection direction, which is a typical planar projection characteristic.

In each case, the projection has its own U and V coordinates (directions) that define how a

2D image or procedural texture will be mapped along those U and V coordinates and then

projected onto a surface along the W coordinate. Essentially, these geometric projection

shapes are identical to NURBS surfaces in the sense that both define surface coordinates

that range from 0 to 1 along U and V profiles, as discussed for NURBS surfaces in the CD

excerpt, “Surface Approximation Methods.” Also, as cited earlier, polygonal surfaces

benefit from an ability to customize UV layouts that are independent of the geometry.

3D Textures

3D texture projections (which are always procedural textures) define color values within

a 3D volume area based on XYZ coordinates; they “live” in 3D space (that is, world, camera,

or object space) regardless of the surface UV texture coordinates. Therefore, the texture

In most cases, we refer to texture mapping along U and V coordinates, omitting any refer-

ence to the additional W coordinate; however, these coordinates are always defined using a

3D vector that has U, V, and W vectors.

A B C

w
w

u
u

v

v

u

w
v

Figure 11.1

Texture projection
shapes can be seen
as wireframe geo-
metric objects in
host applications;
they are used to
project images on
surfaces, acting as
3D projectors.

texture space and projections ■ 411

08547c11.qxd 10/24/07 4:36 PM Page 411

itself is a 3D procedural texture that can uniformly distribute color values along XYZ

coordinates. In Figure 11.2, you see one of the benefits of using 3D textures, which is the

correct flow of texture from one axis to the next. To clarify, the texture pattern shown

on the top of the table flows correctly over the front and side of the table. Thus, 3D tex-

tures make it possible to apply projections that are independent of the surface’s location

and orientation in the scene, acting as a volume effect that applies color at each surface

intersection.

To create a 3D texture in this case, I used mental ray’s turbulence shader, connected

with a texture vector shader. The texture vector shader is set to Select -1 (point in space)

and world space. Its output value connects to the turbulence coordinate input. The turbu-

lence output, a scalar (one-dimensional) value, is connected three times—once to each

RGB color input of a constant shader. The scene also used an ambient occlusion light to

define form. The texture vector shader, its options, and its connections are discussed in

detail later in this chapter.

Texture Mapping Basics
Along the projection’s UV coordinates, additional texture remapping shaders determine

how an image or procedural texture is placed within the projector’s UV coordinates. The

remapping shader utilizes the UVW coordinates to manipulate the texture placement

Figure 11.2

3D textures project
color values along
all XYZ axes, effec-

tively maintaining a
coherent flow of

values across the
surface.

412 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 412

within the projector’s surface area, and thus the UVW coordinates are calculated as dis-

cussed earlier, in two stages:

1. The first stage defines a projection area, which may take the form of a 2D or 3D pro-

jector, as shown in Figure 11.1. This stage also defines or extracts the UVW vectors

for texturing.

2. The second stage applies texture remapping within the projection’s texture space,

based on the UVW coordinates. This stage is used to further transform the vectors,

such as scaling or rotating the texture.

In Figure 11.3, a NURBS sphere is contained within a 3D spherical projection labeled

A. Within that spherical projection, the remapping process has further optimized the pro-

jection region to one quarter of the top hemisphere (the upper-half sphere) of the spheri-

cal projector using UV coordinates. Therefore, the projected area, labeled B, projects the

image onto the surface only from that region, as shown with the distorted image captured

on the NURBS sphere; the same shape as the projection area.

A

B

v

u

Figure 11.3

Texture remapping
controls the 2D tex-
ture placement
along the U and V
coordinates within
the projection shape
boundaries.

Remapping determines the region, orientation, and scale of the projection itself, within the

bounds of the projector object.

texture space and projections ■ 413

08547c11.qxd 10/24/07 4:36 PM Page 413

As you will see in the remainder of this chapter, you have a lot of options for projections

(projectors) and remapping shaders, such as picking the projector’s coordinate space and

choosing how to control the translation matrix with remapping shaders. The topics of

mental ray texture projections and remapping shaders, as well as host-specific options, are

discussed next to provide a better understanding of texture coordinates and texture space.

Explicit vs. Implicit Projections
Projections in all host applications are offered as either implicit or explicit. The difference

is that explicit projection manipulators act as tools that assist you in laying out a basic UV

scheme on a polygonal surface or derive coordinates from a NURBS surface. On the other

hand, implicit projections don’t require surface UV coordinates and thus can speed up

model preparation times, but at the price of render speed and flexibility.

Explicit Projections

With explicit projections, once the projection is applied, you can see the updated UV

information in the host application’s UV texture editor, where you can then further mod-

ify the UV coordinates. Explicit UVs are exported within .mi files as per-vertex UV coor-

dinates. Thus, during rendering, the UV coordinates are derived from the surface and not

from a projector as with implicit projection.

One advantage of explicit projections for defining UV layouts is that you can apply

these projections on a per-face basis, so you can troubleshoot problematic regions with

isolated projections, such as the conversion of faces on the top of a sphere or a character’s

head. The techniques for using multiple projections to define explicit UV layouts are beyond

the capabilities of mental ray’s shaders and are instead part of each host application’s tool

set for creating custom UV layouts. Thus working with explicit projections in mental ray

means selecting an existing predefined layout.

Implicit Projections

With implicit projections, as cited earlier, the projection manipulator has the final word on

how the image is applied onto the surface, and any manual UV editing in the UV texture

editor doesn’t affect the rendered result. Implicit projections don’t assist you in laying out

UVs and then further editing them. Therefore, the scale, placement, and orientation of the

projector’s shape, along with any additional texture remapping manipulations, provide

the only means for manipulating the texture placement during rendering. Thus, with

implicit projections, the coordinates are evaluated at render time only, which is a more

time-consuming process.

A common technique with all host applications is to use several different projections consec-

utively to unwrap the texture coordinates while modifying the UV coordinates in a UV tex-

ture editor.

414 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 414

Note the tremendous difference in the amount of flexibility you have as an artist

between implicit and explicit projections. With implicit projections, you can place a pro-

jector and edit its image placement. In contrast, creating custom-made (explicit) UV lay-

outs that solve complex mapping scenarios, such as with a high-resolution model that

has a significant degree of curvature (cars, boats, characters, and so on). In practice, low-

resolution polygonal surfaces can benefit from implicit projections when not enough ver-

tices exist to properly define explicit UV coordinates using the texture editor; for example,

it may be easier to use a cylindrical or spherical projection to project an image of a char-

acter’s face onto a low-resolution model opposed to attempting to lay out and map the

texture manually in the UV texture editor. As an example, you can look at Figure 11.34

later in this chapter; if both cubes A and B are low-resolution (one face per side), using a

spherical implicit projection would result with a good layout as seen under A, and with

explicit UV coordinates the texture could not properly wrap around the surface, resulting

with the distortion seen under B.

mental ray Bump Mapping
Bump mapping is a well-known technique for simulating geometry that rises or declines

from a surface without actually displacing the geometry; it offers a quick and cheap way

for simulating geometry using shaders rather than modeling in details. There are two tech-

niques for bump mapping; one is based on using standard textures, and the other uses

normal maps.

Chapter 9, “The Fundamentals of Light and Shading Models,” introduced Lambert’s

cosine law, and you learned that a dot product determines the intensity of light at a given

sampled point, based on the surface normal and direction to the light. Bump mapping is

based on changing the direction of the surface normal so that when the dot product evalu-

ates, it returns a result that is based on a modified normal (affected by the bump map) that

points in a different direction, not perpendicular to the surface face as with standard

shading. Therefore, the normals need to perturb (bend) before the illumination shader

evaluates the light influence using these new redirected normals. The topic of dot products

and vectors is discussed in detail throughout this chapter.

Standard Bump Mapping
With standard bump-mapping techniques, the grayscale color values of an image influ-

ence the surface normal direction; white refers to the highest point that is raised from the

surface, and black refers to the most declined point from the surface. It is common to use

Bump mapping is in-fact a method for producing normal maps by converting grayscale images

into normal maps for the purpose of shading effects; manipulating the effect of light across a

surface.

mental ray bump mapping ■ 415

08547c11.qxd 10/24/07 4:36 PM Page 415

resources such as noise textures or manually prepared grayscale images that correlate to a

given texture, such as a floor’s tiles or wood patterns.

The process to implement standard bump mapping with mental ray is not intuitive and

requires using custom shaders that perturb (bend) the surface normals. Thus, the illumi-

nation shader needs to use normals after they have been processed using bump map and

bump basis shaders.

With XSI and 3ds Max, the bump mapping is straightforward, and you don’t need to

use any complicated shader trees. XSI and 3ds Max both enable you to easily plug a color

texture into the mental ray material bump slot. See Chapter 9 for a review of the mental

ray materials in each host.

Bump Mapping in Maya

Maya shaders with Maya-centric bump-mapping shaders work well, so you don’t need to use

custom trees. With mental ray illumination models, you have little choice and must con-

struct a custom shader tree. The tree needs to utilize both texture projection and remap-

ping shaders, as discussed throughout this chapter, as well as custom bump-mapping shaders.

You will find a scene labeled bump.mb in the Chapter 11 directory on the companion

CD. In the file you’ll see three examples of bump map networks, one on each display layer:

• Under the Bump1 layer, I provide a simple example that uses a common workflow.

The key here is the mib_color_mix shader that takes the bump map as a base color and

an illumination model as the color 1 input and passes them to the mental ray material.

• Under the Bump3 layer, using a similar network, I added some mental ray shaders to

provide a more elaborate example of mixing several colors and shaders with bump

mapping. In this case, I passed the result to an illumination model that is connected

to the mental ray material.

• Under the layer Bump2, I used a completely different approach where the illumina-

tion shader itself passes through the bump shader and into the Maya shading engine,

under the mental ray Custom Shaders (the mental ray material) Material Shader input.

Chapter 10, “mental ray Shaders and Shader Trees,” discussed bump mapping using

the mia material with the round corners shader, takes another look at bump mapping

using the subsurface-scattering shaders.

Normal Map Bump Mapping
Normal maps (and a bump map’s output) use a custom color-coded scheme to represent

the direction of the normal relative to the surface. In the section “Putting It All Together”

later in this chapter, you will see how color can relate to 3D coordinates. In the same way,

I bookmarked the Hypershade views so you can quickly review these shader trees.

416 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 416

colors that indicate a given axis are used to redirect the normals on a surface into that

direction (of the color-coded axes). Thus, normal maps redistribute the normals across a

surface based on RGB color-coded images and not grayscale values as with the texture

maps used for standard bump mapping. They are more advanced than standard bump

mapping and are used extensively in 3D to define bump mapping, lighting influence, and

environment sampling.

Normal maps are typically rendered with one of two color-coded schemes: tangent space

normals are intended for object deformation, and world space (or object space) normals

are encoded based on the scene (or object) coordinate space X, Y, and Z axes. Tangent

space normals will stick to an object as it orients and deforms; normals are encoded based

on the geometry itself, meaning that a positive Y vector correlates to a normal that is per-

pendicular to its face and the X and Y axes correlate to the U and V directions along the

surface. In this way, tangent based normals allow modifying the surface shading (bump

effect) when deformations or transformations are applied such as with a character's rig

(bone-system) or while rotating a surface. Normal maps commonly used with programs

such as ZBrush and Mudbox that export maps for representing the fine detail across the

surface using tangent space normals without physically displacing the geometry.

World space normal maps are based on the scene XYZ axes and are not bound by any

object orientation. This method is better for static objects such as brick walls, fences, or

cables that run along a distant wall in a game. All these surfaces need to react to light in a

way that provides a visual cue that they have real depth; for example, when the light changes

direction, the light across the surface needs to change to reveal the form in the shadow

areas, or vice versa. However, the object itself is no more than a simple flat polygon surface

that now appears to have more detail.

Several resources on the Web provide tutorials and insight into using normal maps

with all host applications, such as in ZBrush forms. Each host application has built-in

bump shaders that offer normal bump mapping such as with XSI’s Normal Map shader,

Maya’s 2D Bump Map (tangent space normals option), and 3ds Max’s Normal Map bump

shader. As cited earlier, with XSI and 3ds Max you simply connect these shaders to the

bump map slots.

mental ray Projection and Remapping Shaders
The mental images base shader library, presented in Chapter 9, includes the mib_texture_

vector and mib_texture_remap component shaders, which are used for texture projections

and remapping. These are mental ray’s primary shaders for applying explicit or implicit

projections, as well as remapping the projection. The texture vector shader defines implicit

UV coordinates or selects explicit ones. The remapping shader provides a 4 × 4 translation

(transformation and translation) matrix, as well as some other common remapping features

such as tiling and alternating the texture, all discussed in the following sections.

mental ray projection and remapping shaders ■ 417

08547c11.qxd 10/24/07 4:36 PM Page 417

Also from the base library, the mib_texture_lookup and mib_texture_filter_lookup

shaders are used to load images and apply filtering. Both image lookup shaders are dis-

cussed throughout this chapter. The following sections focus on the texture mapping

shaders and texture coordinates while demonstrating basic shader trees that use the

image lookup shaders to load images and connect to a base illumination model.

mental ray Network Connections
Figure 11.4 demonstrates two simple mental ray shader graphs in Maya. Both graphs use a

base illumination shader (C), with texture and image lookup shaders to apply an image (D)

onto a surface. Note that only one network is connected to the material, and the other net-

work is present only for illustrative purposes. Each network uses a different image lookup

shader: the standard lookup shader (B) and the elliptical filtering lookup shader (A). You

can also see that the texture vector shader (E) and the texture remap shader (F) are used

with both lookup shaders, and therefore they can be shared with various shader trees. This

process is commonly found in complex shader trees where a given portion of the network

defines texture coordinates and placement, which are then shared by several other shaders

throughout the network or even across networks, as shown in Figure 11.4.

A

D

D

E F

C

B C

Figure 11.4

A standard mental
ray network for tex-
ture projection and

placement shown in
Maya using mental

ray–specific shaders

418 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 418

You can see a similar network with XSI in Figure 11.5, which shows an image lookup

shader connected to the Lambert shader’s diffuse color property. The image lookup shader

receives two inputs: a texture file and a texture projection. The texture projection shader

incorporates the mental ray texture vector and texture remap shaders discussed in the fol-

lowing sections, and the image file is a simple mental ray image loader shader with stan-

dard filtering options.

Let’s focus on the networks shown in Figure 11.4 using mental ray base shaders. As

cited earlier, both networks share the same texture coordinate shaders, labeled E and F.

Note that if remapping is not required, it would suffice to connect only the vector

shader (E) directly to the image lookup shaders (A and B), omitting the remap shader (F).

The following section describes the shader connections shown in Figure 11.4. Our pur-

pose is to further understand the relationship between these shaders and to demonstrate

how you can connect such shaders in any host while relying solely on mental ray–specific

shaders.

Basic Texture File and Coordinate Connections

The texture vector shader (E) outputs texture coordinates to the texture remapping shader

(F) with the following connections:

texture_vector.outValue→ texture_remap.input

The remapping shader (F) transfers the texture coordinates to the lookup shaders (A

and B) coordinate input with the following connection:

texture_remap.outValue→ texture_lookup.coord

Doing so provides the lookup shaders (A and B) with modified texture coordinates

based on any additional remapping settings such as translation or tiling. We will discuss

Image_lookup

coord

Lambert

Illumination
tex

checkerLarge_tif Material

Surface
Shadow
Photon

Texture_Projection_Lookup

Diffuse
Cg
mental ray

Figure 11.5

A basic mental ray
network in XSI. Ordi-
narily you would use
the Image shader,
which has more
features built into
its options.

In XSI, the commonly used image shader found in the Render Tree window under Nodes ➔

Texture ➔ Image (c) is a more user-friendly shader that has built-in options for specifying ellip-

tical filtering, selecting a texture projection, and getting texture support; these correspond to

equivalent options in the mental ray component shaders examined throughout this chapter.

mental ray projection and remapping shaders ■ 419

08547c11.qxd 10/24/07 4:36 PM Page 419

the differences between the two lookup shaders momentarily. The mental ray texture (D)

connects to the texture lookup shaders using the following connection:

mentalrayTexture.message→ texture_lookup.tex

The mental ray texture shader is merely an image loader shader providing the path

to the image file, as well as enabling standard (simple) filtering. If you look at the decla-

ration of such a shader in an .mi file (exporting the same shader graph), you’ll see the

following:

filter 20 color texture "mentalrayTexture" "C:/path/checker.tif"

Therefore, the shader provides a filter option and a file path. When the elliptical filter-

ing lookup shader (A) is used, it overrides the standard filtering option shown as filter

20 in the excerpt.

The lookup shaders (A and B) connect to the illumination shader’s (C) diffuse input, as

shown with the following connection:

texture_lookup.outValue→ mib_illum_lambert.diffuse

Filter Lookup vs. Standard Lookup Shader Connections

Notice that although the same remapping shader connects to both image lookup shaders,

both receiving the same texture coordinates, the elliptical filtering lookup shader (A)

requires an additional connection:
texture_remap.message→ texture_lookup.remap

This connection provides insight into the remapping features so that the elliptical filter-

ing process can recognize any transformations that have been applied to the texture, such

as resizing or rotating the texture. It is important for elliptical filtering to determine the

relationship between the camera’s perspective and the current texture point orientation (at

the sample location) for properly projecting (defining) the elliptical filter shape. The topic

of elliptical filtering is discussed in more detail in the section “Memory Mapping, Pyramid

Images, and Image Filtering” later in this chapter; however, these required shader con-

nections are covered only in this section.

To recognize the differences between both lookup shaders, let’s look inside an .mi file

at the different code entries for both shaders. The following block is used with the stan-

dard lookup shader (B):

shader "mib_texture_lookup"

"mib_texture_lookup" (

"tex" "mentalrayTexture",

"coord" = "texture_remap"

)

420 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 420

Notice how both connections described earlier are present. The "tex" option receives

the mental ray texture (D) input, using the same name shown in the previous excerpt. The

"coord" option receives the texture remap input, providing the texture coordinates. With

elliptical filtering, notice in the following excerpt the additional options in the filter

lookup declaration:

shader "elliptical_filter_tex"

"mib_texture_filter_lookup" (

"tex" "mentalrayTexture",

"coord" = "texture_remap",

"eccmax" 30., // A: elliptical filter options

"maxminor" 12.,

"disc_r" 0.1,

"bilinear" on,

"space" 0,

"remap" "texture_remap"

)

You can see the "coord" and "tex" options with both lookup shaders, providing the

texture file and texture coordinates. In addition, you can see all the elliptical filtering options

from the point labeled A and below. All these options are discussed in the section “Ellipti-

cal Filtering Options” later in this chapter. Notice that the additional "remap" option (the

last entry) is also connected with the texture remap shader. This additional connection

refers to the elliptical filtering requirements cited earlier on texture remapping options.

The Texture Vector and Remap Shaders
Now let’s examine the texture vector shader, labeled E, and the texture remap shader,

labeled F in Figure 11.4. This section focuses on the differences between explicit and implicit

coordinates, projection methods, and coordinate spaces (that is, world, object, camera,

and so on), which all affect texture mapping and are all controlled with the texture vector

shader. A texture vector shader is always required for texture mapping; however, the

optional remapping shader enables further mapping options, including transformation,

repetition and alternation options for procedural textures, or texture files. Some custom

shaders may have built-in texture vector options, such as the Binary Alchemy shaders (see

Table 10.1 in Chapter 10), as part of their shader interface. In all cases, texture vectors are

required for texture mapping. The following sections introduce the relevant mathematical

concepts and terminology before reviewing the mental ray shaders. The purpose is to help

visualize why things are the way they are in 3D. This introduction plays two roles:

• It presents mathematical terms and equations on a “need-to-know” basis; I’ll leave a

full, in-depth coverage to the math books.

• It helps you understand how mental ray texture mapping shaders deal with texture

coordinates, as well as how you can use them to your advantage.

mental ray projection and remapping shaders ■ 421

08547c11.qxd 10/24/07 4:36 PM Page 421

Introduction to Matrices, Vectors, and Coordinate Systems

With 3D applications, arrays and vector variables are used to express multidimensional

data. A typical 3D vector variable stores three scalar values, and each may be a fractional

or whole number (a float or integer variable). Note that vectors can also store characters

(strings), which are non-numeric values. A vector is then a collection of data contained

within a single row or column and with a dimension, such as 2D, 3D, and 4D vectors.

For example, a 2D vector stores X and Y scalars, and a 3D vector stores X, Y, and Z scalars.

In 3D we constantly (but not exclusively) utilize two primary types of 3D data sets: coor-

dinate vectors and color values. As a result, a vector variable can store data such as the

following:

• XYZ coordinates, where each scalar is a position vector

• RGB colors, where three scalar values define some color combination

Vector notation uses lowercase bold letters, and components (values) are encompassed

within square brackets using row vectors that look like n = [x y z] and column vectors that

look like this:

You can also think of a column vector as an array with one column and n rows. A

matrix is a form of array that has a given number of columns and rows and is used exten-

sively to solve problems such as the transformation of objects and textures within a given

coordinate system. Matrix notation is written using uppercase letters, and their compo-

nents are provided in square brackets, as shown here.

The letter r and its subscript number refer to the row number and column number so

that r22 means “row 2, column 2.” The topic of matrices is discussed in more detail in the

section “The Texture Remap Shader.” For now, consider that each row of a matrix can

represent a vector of any dimension, such as a position vector with three scalar values,

that is, a 3D vector.

V E C T O R D I R E C T I O N A N D M A G N I T U D E

Vectors have two primary attributes: magnitude and direction, as shown in Figure 11.6.

The direction of a vector is defined by the location of the vector’s head (the arrow) relative

r
11

r
12

r
13

r
21

r
22

r
23

r
31

r
32

r
33

M =

n = i
j

422 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 422

to its tail. The direction tells us whether a vector is pointing, for example, southeast (along

the X and negative Y axes) as with vector j, or is pointing northeast (between the positive

X and Y axes) as with vector k.

Both vectors are shown graphed on a 2D Cartesian coordinate system; however, their

locations on the graph are irrelevant as long as you can determine their direction (arrow)

and magnitude (length). As you can see, the delta (�x and �y) for the direction on each

axis is adjusted to represent the per-axis length of the vector along the X and Y axes,

regardless of the origin. It is achieved by subtracting the vector’s head coordinate from its

tail coordinate along both axes, as shown in the figure under “Direction for.” The result

represents the vector’s aim direction. If you redraw the vector from the origin of coordi-

nate system, where the tail is at the origin [0, 0], then you can say that the head is X and Y

units away from the origin.

Magnitude describes the distance of a vector from head to tail. The vector notation

for magnitude is typically written like this: |a|. It can represent several characteristics

such as physical forces, distances, amplitudes, and so forth. For example, the distance to

the camera is 20 units. Magnitude is calculated with the theorem of Pythagoras as shown

in Figure 11.6 under “Magnitude for.” To apply this theorem, you must first extract the

This form of representation, as you will see, is used to express position vectors relative to a

coordinate system’s origin.

2

2

1 30

1

3

4

3, 2

1, 0

1, 3

2, 2

4

X

Y

2D Vetors [x y]

j

Direction for j

Magnitude of j

Δx= (x
h
 - x

t
) = (2 - 1) = 1

Δy= (y
h
 - y

t
) = (2 - 3) = -1

k

j = [1 -1] Southeast

j = Δx2 + Δy2 = 12 + (-1)2 = 1.414

Direction for k

Magnitude of k

Δx= (x
h
 - x

t
) = (3 - 1) = 1

Δy= (y
h
 - y

t
) = (2 - 0) = 2

k = [1 2] Northeast

k = Δx2 + Δy2 = 12 + 22 = 2.236

Figure 11.6

The mathematical
equations for deriv-
ing vector direction
and magnitude of
the two vectors
graphed in a 2D
Cartesian coordinate
system

mental ray projection and remapping shaders ■ 423

08547c11.qxd 10/24/07 4:36 PM Page 423

vector’s directions as unit vectors for each axis, which is the delta distance. Magnitude is

essential for solving texture transformations with matrix multiplication.

B A S I S V E C T O R S A N D I D E N T I T Y M A T R I C E S

Coordinate spaces define Cartesian XYZ coordinates, where each axis is perpendicular to

the next, a 90° difference. The alignment of the coordinate system may differ based on the

selected space, as you will see. To use coordinate systems effectively with vector (and

matrix) math, such as for deriving texture coordinates, surface normals, and the direction

to the camera, we must first define the term basis vector. In mathematics, the basis vector

is used to solve equations by representing the coordinate system using three unit vectors.

Each unit vector is linearly aligned with a different axis (that is, the vectors are axially

aligned) on the coordinate system and has a magnitude of 1. Basis vectors are then the

basis for mathematically representing a coordinate system with three unit vectors that

align with the different axes of a given coordinate system. You can write p, q, and r basis

unit vectors using row (or column) vectors this way.

The term unit vector means that the vector’s magnitude is normalized to 1. In the con-

text of texturing, basis vectors are then a form of normalized vectors where each component

has a magnitude of 1 on its X, Y, or Z axis. Basis vectors allow you to easily relate a vector

to a coordinate system. For example, if you take the vector k [1 2] (Figure 11.6) and relate

it to the basis vectors p and q, you can express this relationship as follows:

k = [1p 2q]

This form of vector representation helps us visualize a unit-based relationship between

vectors and coordinate systems using basis unit vectors such as p and q. They allow us to

identify the per-axis displacement (distance) of a vector’s head relative to the coordinate

system’s origin (its tail). You will see the importance of unit vectors while rotating textures

with the texture remap shader.

Position Vectors

A 3D position vector (mentioned earlier) is then a vector that has X, Y, and Z components

that displace a vector a given distance from the coordinate space origin. Thus, unlike the

examples shown in Figure 11.6, position vector components already identify the delta

distance (per axis). The fact that each component can be viewed as an independent dis-

placement along an axis from the origin and relative to the coordinate space enables easy

transformations such as rotating or scaling textures. These transformations are demon-

strated in the following sections with the texture vector and remap shaders.

p = [1 0 0]
q = [0 1 0]
r = [0 0 1]

424 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 424

Transform Matrices and Identity Matrices

A 3 × 3 transform matrix that looks like this represents a coordinate system using three

basis vectors, one in each row:

Transform matrices are used to transform a texture’s UVW coordinates. A matrix like

the one shown here, with a diagonal line of ones and zeros everywhere else, is referred to

as an identity matrix—a matrix that when multiplied by a vector will result in an unchanged

vector, similar to multiplying a number by 1. Thus, multiplying a vector with an identity

matrix means that all the vector components are linearly aligned with the basis vectors;

the coordinate system and (UVW) position vectors are aligned.

Let’s examine Figure 11.7 to better understand identity and transform matrices. Under

label A, you can see the procedure for multiplying a vector r by the matrix M. The vector r

can represent a texture vector shader’s output vector. The matrix M can represent the

texture remap shader’s transform matrix. When multiplied, the result is a new texture

vector output s, which is a transformed vector. So, r × M = s is the process of transform-

ing vector r to vector s.

An important characteristic of matrix multiplication is that the transformed compo-

nents of s are each a dot product of the vector r components with the matrix M column

components. Therefore, you can consider vector s a result of three separate dot product

equations of vector r with each column of matrix M.

Under label B, you can see this process applied using scalar values for all the components,

where the matrix in this case is an identity matrix. If you multiply the texture vector r by

1 0 02 -2 3
0 1 0
0 0 1

x
= xr

11
 + yr

22
 + zr

33
 = 2 -2 3

Identity Matrix

output vector = input vector

r
11

r
12

r
13

r
21

r
22

r
23

r
31

r
32

r
33

x y z = xr
11

 + yr
21

 + zr
31

 xr
12

 + yr
22

 + zr
32

 xr
13

 + yr
23

 + zr
33

 x
Texture vector

output (r)

Transform Matrix (M)

Transformed vector / output (s)

dot product

A

B

Figure 11.7

Under A, an example
for matrix multipli-
cation of a vector by
a matrix. Under B,
the equation
demonstrates with
an identity matrix.

1

0

0

0

1

0

0

0

1

M =

mental ray projection and remapping shaders ■ 425

08547c11.qxd 10/24/07 4:36 PM Page 425

the transform matrix M, the output vector s remains unchanged, as in s = r. You will see

later that the texture remap shader’s default transform matrix is an identity matrix.

Thus, when connected to a texture vector shader, it merely passes the texture coordinates

unchanged, unless of course you specifically define a texture transformation by changing

the transform matrix components.

In this section, you have been exposed to a lot of the inner workings of coordinate sys-

tems with vectors and matrices. One of the more important realizations should be that

without defining basis vectors we could not operate simple transformations between vec-

tors and a transform matrix. Earlier, in Chapter 9, we used a dot product between two

3D vectors to determine light intensity. A basis vector is used to interpret the magnitude

and direction of each vector (light direction and surface normal) before determining the

light intensity based on Lambert’s cosine law. You can see a complete dot product example

in the section “Fresnel Reflections and Dot Products” later in this chapter.

The Texture Vector Shader

The texture vector shader is responsible for defining whether UV coordinates are explicit or

implicit, as well as what type of projection is applied to those coordinates. After evaluating

the implicit or explicit coordinates and projections for a surface, the shader outputs texture

vectors for each sample point during rendering. Those vectors’ coordinates are then used

with the remap shader to further adjust the placement of the texture across the surface.

T H E S E L E C T O P T I O N

Figure 11.8 shows the mental ray mib_texture_vector shader options. You can find similar

options in XSI and 3ds Max, which are discussed in the section “Host Application Settings”

later in this chapter.

The Select attribute (shown in Figure 11.8) defines whether the coordinates are derived

from the surface, as with explicit coordinates, or whether they are applied implicitly. If

implicit, it also determines a projection

method within a given coordinate sys-

tem (that is, world, camera, object, and

screen space). In this way, the Select

attribute defines how an intersection

point (point being sampled) locates its

respective UV coordinate within the 2D

texture space for deriving a color value.

Explicit Coordinates

When the Select attribute value is set to 0 or higher (positive numbers), the UV coordi-

nates are referred to as explicit and derived from the surface’s predefined UV layout and

426 ■ chapter 11: mental ray Textures and Projections

Figure 11.8

The mental ray tex-
ture vector shader

options in Maya

08547c11.qxd 10/24/07 4:36 PM Page 426

from a given UV set, as shown in Figure 11.9. In this figure, the same shader has been

applied to both surfaces. You can see that both surfaces utilize their own predefined UV

coordinates.

Commonly, with polygonal surfaces, you might specify more than one UV set of tex-

ture coordinates. For example, one set is used for the surface color (a texture map), and

the other UV set is used with a baked indirect illumination map. When the two textures

are layered together with a shader tree, each texture requires its own UV layout to define

texture placement. In such cases, the Select attribute determines which UV layout will be

selected (used) with each texture. Hence, positive numbers correlate to UV sets, where a

value of 0 refers to the default (first) UV set, and a value of 1 selects the next UV set. If

you specify a value for a UV set that doesn’t exist, the render will provide garbage values.

We look at using separate UV layouts in the following per-host sections. The article

“HDRI_3D_Issue7_Mental Ray” on the companion CD (HDRI 3D magazine) examines

using UV sets in detail with Maya. The concepts presented in the article are true to all host

applications.

Implicit Coordinates

Negative values implement implicit projections that are not dependent on any prede-

fined layout. In this case, the Select attribute determines the relationship between a sur-

face intersection point and the texture space, without any assistance from predefined

UV coordinates. The more commonly used functions of negative values are listed in

Table 11.1 and further demonstrated with their relationships to coordinate spaces and

projection methods in the following sections. For a complete list, refer to the mental ray

documentation.

Figure 11.9

Explicit UV mapping
using the predefined
UV layout

mental ray projection and remapping shaders ■ 427

08547c11.qxd 10/24/07 4:36 PM Page 427

V A L U E P U R P O S E

0 and higher This selects a predefined UV layout (UV set).

-1 This selects an intersection point directly in the 3D scene (at the sample point). This
method is commonly used with (implicit) projections such as spherical or planar projec-
tions and in object, camera, or world space.

-2 The texture vector coordinates are aligned with the surface normals and are based on
world space coordinates by default (see the section “The Selspace Option” next). In other
words, for a given implicit projection, the surface normal orientation defines how the shader
locates its texture space coordinates. You can use this method to extract normal maps.

-3 The intersection point is derived from motion vectors; thus, motion blur needs to be
enabled and set to motion vectors so that they are generated during the render. The vec-
tors are based on the Selspace option.

-4 The intersection point is derived based on the direction to the camera and thus depends
on the camera’s orientation in the scene. This is similar to Select -2, but it’s dependent
only on the camera’s orientation. The vectors are based on the Selspace option.

-10 This specifies a screen projection such as with a background image. The image is locked
down to the corners of the render screen regardless of any other options.

T H E S E L S P A C E O P T I O N

The Selspace attribute shown in Figure 11.8 defines the coordinate space used for the

projection, offering World, Camera, Object, Screen, and Unchanged (standard) options.

This attribute applies a coordinate space transformation; it takes the extracted coordinates

(a texture vector) and multiplies them by some basis vector that represents the selected coor-

dinate space. Doing so transforms the initial texture coordinates from one space to the next.

When set to Unchanged, these vector coordinates are typically extracted in world space.

Once transformed, the texture vector’s magnitude and direction are relative to the coor-

dinate system. In world space, the vectors are aligned in the same way as they appear in your

viewport for XYZ directions. In object space, the vectors are aligned relative to the object’s

pivot point. In camera space, the basis vectors are aligned with the camera. With mental ray,

the negative Z axis aims forward (outward) from the camera. Later in the section “Putting It

All Together,” you will see a shader technique to visualize transformations in color.

T H E P R O J E C T I O N O P T I O N S

The Project attribute offers a variety of projections that include Unchanged (none), UV

(based on the UV layout), Spherical, Cylindrical, Planar (XY, XZ, YZ), and Lollipop.

Let’s examine the relationship between the Select, Selspace, and Project attributes with

a few figures. A Select value of -1 is common with most implicit projections, using a given

projection method and with a given coordinate space. Both images in Figure 11.10 use a

Select value of -1, and the Project attribute is set to spherical projections. In image A, the

Selspace attribute is set to world space coordinates; notice how the spherical projection

appears to initiate from the center of the screen, which is in fact the 3D scene origin. With

world space coordinates, the texture is centered at the scene origin and projected from

there, using the given projection method. Thus, if the object moves, it will appear to swim

underneath the texture.

Table 11.1

The Select Option
Values and Purposes

428 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 428

In image B, Selspace is set to object space (also known as internal space), and as

expected, the spherical projection initiates from the center of each object—their object

space origin. Therefore, with object space, textures are mapped from the center of the

object and attached to the object regardless of its rotation, scale, and location within the

scene. As the object animates, the texture follows along with it. As a result, image B would

be more appropriate for animation purposes using implicit projections, whereas image A

is more appropriate for environmental projections such as with the mental ray environ-

ment shaders.

In Figure 11.11, you can see four images that have similar appearances. Images A and

B are both rendered with Select set to -4 (direction to camera), Selspace set to camera

space, and Project set to XY planar projection. The result is a camera-based XY projection

into the scene along the Z coordinate. When the camera changes, so does the projection.

In this case, the camera’s focal length changed between images A and B, and the texture

scaled down proportionally with the surfaces (actually with the camera). Therefore, with

camera projections, as the projection is subject to change based on camera transformations,

any additional transformations applied with the remap shader will also have an influence

on the texture appearance.

A

B

C

D

Figure 11.11

Camera space vs.
screen space implicit
projections

A B

Figure 11.10

World space vs.
object space
spherical implicit
projections

mental ray projection and remapping shaders ■ 429

08547c11.qxd 10/24/07 4:36 PM Page 429

In images C and D, the Selspace attribute is set to screen space. In this case, the remain-

ing settings (Select, Project) have no effect. The image will stretch to fit the screen regard-

less of the changes applied to the camera. You can see that in this case as the focal depth

changed between images C and D, the texture maintained its size and placement, so the

surfaces appear to swim under the texture. This method is ideal for projecting a background

plate in the scene. Note that in images A and B, the texture will also appear to swim if the

camera changes orientation or the surfaces move.

P U T T I N G I T A L L T O G E T H E R

You know that the Select attribute defines how coordinates are extracted and that Sel-

space defines how those coordinates are transformed to align with a given coordinate

system, which is a coordinate space transformation. To see the coordinates relative to the

coordinate systems as color, you can connect the texture vector output to the color input

of a constant shader. Doing so forces XYZ texture vector coordinates to interpret as colors.

Basic Connections

In Maya I connected the outValue of the texture vector to the Out Color attribute of a

Maya surface shader. With XSI I used the texture space generator shader (a texture vector

shader) and connected its output to a constant shader’s Color property, as shown in

Figure 11.12. Note that the texture generator shader must have a texture projection inter-

nally that is set to implicit projections. Also, the texture generator’s Space Transformation

property should be set to world or object space, depending on the desired result. The topic

of adding and controlling these shaders is further discussed in the XSI sections later in the

chapter. The section “Normalizing the Color Output” discusses adjusting the color value

to output a coherent range of color.

Color-Coded Normals

If you set the Select attribute to -2 (surface normals) and you set Selspace to object space,

you output color-coded coordinates based on object space. To clarify, consider the coor-

dinate output is [0 1 0] for a sampled point, which means that when converted to RGB

Constant

color

Vector2color

Scene_Material

Surface
Shadow
Photon

Texture_space_generator

Cg
mental ray

M
M

Figure 11.12

Connecting a 3D
coordinate vector as

a color output to a
constant shader,
enabling you to

see a normal map
render

For both Maya and XSI, you can find the scene files in the in the Chapter 11 host directories

on the companion CD with the scene file labeled “Normal Projection”.

430 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 430

values, that surface point renders as green. Regardless of the settings you use, the following

relationship exists between XYZ coordinates and RGB colors:

X=R, Y=G, Z=B

So, when the Select attribute is set to -2, the outputted coordinates will render normal

maps color-coded based on the current Selspace selection. With all spaces, the Y axis ren-

ders as green, the X axis renders as red, and the Z axis renders as blue. If you select camera

space, then normals are color-coded based on the camera’s coordinates, and if you select

world space, the result is a world space normal render.

Normalizing the Color Output

The first stage of directly connecting the texture vector to color will not suffice for a coher-

ent (readable) result. When you connect UVW texture coordinates to RGB colors, you

need to remap the vector values to positive numbers that range from 0 to 1. Essentially,

texture vector output coordinates can range from -1 to 1 correlating to positive and nega-

tive XYZ axes. Furthermore, the texture vector may actually output values that exceed that

range or, alternatively, are much smaller than that range.

If you consider that the primary RGB colors correlate to positive values with each color

component, as cited earlier, what happens to CMY (cyan, magenta, and yellow) subtractive

colors? You can assume that the subtractive colors correlate to the negative output values,

such as the negative Z axis.

Therefore, negative XYZ coordinates need to paint subtractive CMY colors, and if you

don’t remap the range correctly, those subtractive colors will appear as black instead of

color; negative values are clamped at 0. The solution is to remap the coordinate output

range to a 0 to 1 normalized range before connecting it to the shader’s color. This allows

vector coordinates to output a correct combination of color values that can redraw any

color from the color wheel, relative to their axes, which is a key element for generating

useful normal maps when baking textures.

Consider the following per-host points for normalizing values and remapping the

range, because the process differs between hosts:

Maya I connect the texture vector output to the set range shader. Doing so allows remap-

ping the input range, for example from -1 to 1, to an output range of 0 to 1. I found these

values work well with world space. However, with object space the vector output range is

You can visually assess that you’ve done a good job when you don’t see any black and white

colors appear across the surface.

Conduct several test renders while changing the coordinate space and the cameras angle;

notice how the color scheme across the surface changes with different coordinate spaces.

mental ray projection and remapping shaders ■ 431

08547c11.qxd 10/24/07 4:36 PM Page 431

much smaller, so I remapped the range from the -0.1 to 0.1 range to the 0 to 1 range. You

can examine the Maya scene cited earlier.

XSI With XSI I used a chain of three vector-vector (vector math vector) shaders. I con-

nected the texture generator to the first vector (input 1) and set the Operation property to

Normalize (Vector Input). This assures that the range remains between -1 and 1. To remap

the negative range to a positive range, I connect the vector output to another vector shader

input and set the Operation property to Vector Input 1 + Vector Input 2. For the Vector

Input 2 property, I manually specified a value of 1 to each of its numerical values. Doing

so adds a value of 1 to the range, pushing the range from -1 to 1 to the new range of 0 to 2.

I then use the last vector shader with a multiply operation. I set the Operation to Vector

Input 1 × Scalar Input 1, and I set Scalar Input 1 to 0.5, assuring that the values are all

multiplied by this scalar. This remaps the 0 to 2 range to a 0 to 1 range. I then connected

the output of this vector to the color property of the constant shader via a vector2color

shader. You can examine the XSI scene cited earlier.

F R E S N E L R E F L E C T I O N S A N D D O T P R O D U C T S

As an example of using texture vector implicit coordinates, you can look at one of the most

common practices in 3D: defining color based on the angle between the sample point’s

surface normal and its direction to the camera (a Fresnel reflection). This sort of effect is

already integrated in shaders within each host application using host-specific shaders (see

Chapter 10) and mental ray shaders such as the glossy shaders and the architectural material.

The Dot Product

The dot product equation, shown in Figure 11.13, is a form of vector multiplication

that results with the relationship of an angle between two vectors. The equations in Fig-

ures 11.13, 11.14, and 11.15 examine the dot product between two vectors; a is the direc-

tion to the camera, and b is the surface normal. To solve for the angle between both

vectors using the equation in Figure 11.13, we use the following four steps, as shown in

Figure 11.14:

1. The dot product of vectors a and b is calculated and results with the scalar value of 3.

2.–3. The Pythagorean theorem calculates the magnitude of each vector.

4. The angle is calculated with the following steps:

a. The cos(�) is equal to the dot product result, which is divided by the (multiplied)

magnitude of both vectors, resulting with the value 0.387.

b. The inverse of the cosine is then calculated and equal to an angle of 67.23°

between both vectors.

In 3D you can benefit from using vectors that are unit vectors (normalized). In such

cases, the magnitude is always known (equal to 1). It allows for easier interpretation of the

angle between the vectors, as shown next.

432 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 432

Normalized Vectors

Figure 11.15 shows two examples, one using parallel (labeled A) and one using perpendi-

cular (labeled B) unit vectors.

Notice that with normalized vectors, the dot product result gives a quick indication of

the angle between two vectors. Under image A, using the same steps cited earlier, a dot

product between the two unit vectors a and b is calculated resulting with a value of 1.

That indicates that the angle between both vectors is equal to 0°. You can see that after

calculating the inverse cosine, this results in a 0° angle between both vectors and thus

parallel vectors (with the same direction and magnitude).

A B

0 0 1

0 0 1

a =

b =

0 0 1

0 1 0

a =

b =

= 0 + 0 + 1 = 1

a = 0 + 0 + 1 = 1 b = 0 + 0 + 1 = 1

cos(θ) = = 1
1
1

θ = cos-1(1) = 0

a b = 0 + 0 + 0 = 0

a = 0 + 0 + 1 = 1 b = 0 + 1 + 0 = 1

cos(θ) = = 0
0
1

θ = cos-1(0) = 90

a b

Figure 11.15

Two examples of dot
products between
parallel and perpen-
dicular normalized
vectors

1 -2 5

0 1 1

a =

b =

 1
-2
 5

0
1
1

x = (a
x
 x b

i
) + (a

y
 x b

j
) + (a

z
 x b

k
) 0 + (-2) + 5 = 3

a= a
x

2+a
y

2+a
z

2 = 1 + 4 + 25 = 5.477

b= b
x

2+b
y

2+b
z

2 = 0 + 1 + 1 = 1.414

Step 1

Step 2

Step 3

Step 4 cos(θ) = θ = cos-1(0.387) = 67.23= 0.387
3

5.477 x 1.414

Figure 11.14

The steps for solving
the angle between
two vectors

Direction to camera a = x y z

Surface normal b = i j k

Vector Dot Product (a b)

a b cos(θ) = . ix + jy + kz = Angle between two vectors

Figure 11.13

The dot product
equation

mental ray projection and remapping shaders ■ 433

08547c11.qxd 10/24/07 4:36 PM Page 433

In image B, the dot product of two vectors results in a value of 0, which is a 90° differ-

ence between the vectors. You can see that with greater dot product values (the result)

vectors are more parallel (similar) and smaller values indicate more perpendicular vectors.

Consequently, the dot product returns the cosine for the angle between two vectors and is

very useful in solving several lighting and texturing problems, such as those presented in

Chapter 9.

The Shading Networks

To re-create this equation using the shading networks shown in Figure 11.16 (Maya) and

Figure 11.17 (XSI), I use two texture vector shaders. One shader has the Select attribute set

to -4, which is the vector to the camera. The other shader has the Select attribute set to -2,

which is the normal vector. With both shaders, the Selspace attribute is set to camera space.

Thus, these networks are used to define color based on the dot product between two vectors

in camera space.

A B C D E F

Figure 11.17

Two texture vector
shaders are used to

create a custom
Fresnel reflection

shader using a dot
product in XSI.

A

B

Figure 11.16

Two texture vector
shaders are used to

create a custom
Fresnel reflection

shader using a dot
product in Maya.

Two examples are presented; one re-creates the dot product using math shaders, and the

other utilizes a dot product shader option. You can find both examples in the Chapter 11

directory for each host on the companion CD. Each network is attached to a different sphere

in the scene files (labeled “Dot Product”).

434 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 434

In both cases, using a more mathematical approach, I connect the output from each

vector shader to a math shader that multiplies two vectors together. So, I first multiply

the vector components as follows:

ax × bp, ay × bq, az × br

I then add together the resulting vector components using another math shader with

an addition operation. Note that in both hosts I individually connect each X, Y, and Z out-

put from a multiply shader to three scalar inputs in an addition shader, adding the three

together. By adding them in this way, I finalize a dot product equation between two vectors,

as shown in step 1 in Figure 11.14. You can see this process in the shader tree labeled A in

Figure 11.16. With XSI, you can examine this approach in the scene file since the shader

tree is too large to display as a figure in this book.

After applying the dot product, I remap the range, similar to the process shown in

the section “Normalizing the Color Output” earlier in this chapter. In Maya I use the

setRange shader and in XSI I use the Change Range shader to specify a range of 0 to 1

instead of -1 to 0 (their output is typically negative), assuring that only positive values

convert to color.

I use the scalar output from the range changing shaders to define color along the V coor-

dinate of a gradient shader. By doing so, I remap the color output for a sampled point

based on a scalar value that represents the angle between both vectors. Thus, one color

appears at facing angles (the ramp’s position 1) and gradually transitions to the other

color (the ramp’s 0 position) at glancing angles. The gradient shader then connects to the

color of a constant shader, which is the resulting Fresnel shader.

For the second approach, shown in Figure 11.16 image B and in Figure 11.17, I use a

similar process, but this time I use a math shader that calculates the dot product between

two inputs, rather than using math shaders to compute it manually. If you compare the

shader previews or renders in both hosts for both methods, you will see that the results are

the same. With respect to the stages presented here, note the following comments for

Maya and XSI:

Maya For the first example, I connected the mental ray texture vector shaders to the Mul-

tiplyDivide shader. I then connected each of its outputs to a separate 1D input of a Maya

PlusMinusAverage shader. Using the Connection Editor window, I connect the output of

the PlusMinusAverage shader to the V coord input of a Maya ramp shader. The ramp

needs to be set as a V ramp.

For the second example, I used a Vector Product shader and enabled its Normalized Out-

put attribute that assures the values are within the 0 to 1 range, which are easier values to

work with, as discussed in the section “Normalized Vectors” earlier in this chapter.

XSI In both cases I connected the XSI Generator shader, labeled A in Figure 11.17, to a

vector-vector shader (labeled B) and normalized the output before proceeding to the

mental ray projection and remapping shaders ■ 435

08547c11.qxd 10/24/07 4:36 PM Page 435

m u l tiplication and addition shaders, providing easier values to work with, as discussed in

the section ÒNormalized VectorsÓ earlier in this chapter.

The two texture generator shaders labeled A have the Space Transformations property set

to Camera. Each shader has an implicit projection applied to its Texture Space property

using the following settings:

¥ The UV Generation property is set to implicit.

¥ The Coordinate property is set to surface orientation with one shader and is set

to direction to camera on the other shader.

¥ The Space Transformations property is set to None.

For the second example shown in Figure 11.17, I connected the two vector-vector shadersÕ

normalized output to the inputs of a vector-scalar math shader labeled C. The Operation

property is set to Dot product. For D, I use the change range shader to remap the range as

cited earlier.

Usi n g a 2D grad i e n t sh a d e r, fou n d un d e r No d e s ➔ T e x t u r e Gener a t o r s ➔ Gradie n t, I con-

nect the change range shader (D) output to the gradient shader (E) input. Under the gradient

shaderÕs Input tab, I set the Input Type property to Scalar input.

The Texture Remap Shader

T h e t e x t u r e r e m a p s h a d e r i s us e d f o r a p p l y i n g t e x t u r e transformations a n d translations

across a surface, as well as defining common tiling features. Figure 11.18 shows the mental

ray texture remap shader options in Maya. You can see the Input attribute is mapped with

a connection from a texture vector shader, and thus the coordinates (a 3D vector) from

the texture vector shader are passed to the remap shader for further processing. You can

see the same input within the following excerpt from an .mi file marked as A:

shader "mib_texture_remap3"

"mib_texture_remap" (

"input" = "mib_texture_vector", // A: texture vector input

"transform" 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1.,

"repeat" 50. 50. 1.,

"alt_x" off,

"alt_y" off,

"alt_z" off,

"torus_x" on,

"torus_y" on,

"torus_z" on,

"min" 0. 0. 0.,

"max" 1. 1. 1.,

"offset" 0. 0. 0.

)

436 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 436

Let’s begin reviewing the easier options shown in the excerpt and in Figure 11.18.

The Repeat attribute defines the number of times a texture is tiled along the different XYZ

coordinates. The Alt_x, Alt_y, and Alt_z attributes define whether the surface alternates

every time it repeats, meaning that each repeated tile is flipped vertically or horizontally

based on 3D coordinates.

The Torus_x, Torus_y, and Torus_z attributes define texture wrapping so that the tex-

ture will continue to repeat outside the projection boundaries. To clarify, every projection

(projector shape) can be specified to a given size, location, and orientation. In addition,

the remap shader can further orient, scale, and translate the texture within the projection’s

area, as shown earlier in Figure 11.3. The Torus attributes further enable it to tile (repeat)

outside the projection borders and across the entire surface (to infinity). Note that spheri-

cal projections that project 360° around a surface are not affected by the Torus attributes.

The Min and Max attributes are used for cropping the texture based on its 0 to 1 tex-

ture space, and the Offset attribute defines a placement offset for the texture in X, Y, and

Z directions. All of these attributes are common to all host applications and with some

hands-on experimentation can be fully understood.

Rotating or scaling textures is relatively simple with all host-centric 2D placement

shaders. However, with mental ray, no magic sliders enable you to easily rotate a projec-

tion, as you will see with the following practical examples. Maya users in particular are

Consider texture remapping as additional texture support that defines the projection region

within the projector’s UV boundaries. Each host application has options for manipulating

texture support within the boundaries of the projector.

A

B

Figure 11.18

The texture remap-
ping shader options
in Maya

mental ray projection and remapping shaders ■ 437

08547c11.qxd 10/24/07 4:36 PM Page 437

required to manually specify values that define the rotation, scale, and translation for a

texture using a translation matrix. In Figure 11.18, as well as in the earlier excerpt, the

translation matrix is referred to with a Transform attribute. This matrix is traditionally

referred to as a translation matrix, the term I will use here. The following sections provide

an easy approach to manually configuring this 4 × 4 matrix without using complex math

equations, as well as understanding its mathematical foundation with respect to our

previous discussions on vectors and matrices.

T H E T R A N S L A T I O N M A T R I X

The Translation matrix provides for three important functions, which are rotations, scaling,

and translations. The values encompassed within the box labeled A (Figure 11.18) control

a transform matrix (rotation and scaling), and the values within the box labeled B control

the translation vectors. Both transformations and translations are applied along X, Y, and

Z coordinates relative to a coordinate system. Each row of the matrix corresponds to a spe-

cific axis on the coordinate system. The first three rows of the matrix are X, Y, and Z trans-

formation vectors, and the last row is an XYZ translation vector. Technically (in linear

algebra terms), factoring in the translation vector with the transform matrix is described

as appending a notation to a 3 × 3 matrix, resulting in a 4 × 4 matrix, or a 4D vector.

If you consider that the transform matrix and translation vector (four vectors) both

utilize three components, why do we have a fourth column? The fourth column is the

result of combining four vectors together that mathematically enable expressing rotations,

scaling, and translations using one matrix. There are two primary reasons for this 4 × 4

matrix representation. When conducting matrix multiplication by vectors or matrices,

linear algebra rules require that when multiplying a vector v by the matrix M (v × M), the

number of columns for v must align with the number of rows in M. Therefore, a 1 × 4

vector can be multiplied only with a 4 × n matrix when written as v × M. Note that if you

switch the order, the same rule applies so that an n × 4 matrix can be multiplied only with

a 4 × 1 vector and, thus in this case, a column vector (4 rows). In both cases, you can see

that as a condition of matrix math, a 4 × 4 matrix is required.

The fourth component also has a more technical implication, besides enabling matrix

multiplication. This additional fourth component in the vector and matrix (r44) is referred

to as a homogeneous coordinate that is typically set to a value of 1 (but not always). So, typi-

cally a 4D vector is expressed as v = [x y z 1]. The fourth homogeneous coordinate enables

texture translations and transformations without distorting the image; this topic is further

discussed soon.

H O M O G E N E O U S C O O R D I N A T E S A N D T R A N S L A T I O N S

Transformations are always applied relative to the coordinate system’s origin point with

position vectors, so if we factor in translations, theoretically it requires moving an entire

coordinate system along with the origin point. So, you can think of it as repositioning

the basis vectors themselves relative to the coordinate system and then executing the

438 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 438

transformation there, relative to the new origin point. Consequently, mathematically

translating a 3D vector as a whole (with its unit vectors) presents an additional variable into

the equation. To remedy this, we extend the 3D vector with the additional homogeneous

coordinate notation using the 4D vector [x, y, z, 1].

In a nutshell, the homogeneous coordinate is typically set to 1. It defines a virtual plane

on which each XYZ component of a 4D vector has a coordinate relative to the plane. The

idea is that for every XYZ coordinate in Cartesian space, there is a new X ÷ W, Y ÷ W, and

Z ÷ W on that plane. This enables transforming XYZ coordinates along the coordinate

system while uniformly scaling the projection using the homogeneous coordinate, as you

will soon see.

If you divide the vector components by W, you will see that the result maintains their

physical integrity (relationship to each other) but projects them at a new scale (coordi-

nate) relative to the homogeneous coordinates size. You now have a way of preserving

proportions relative to this virtual plane that enables transformations at a different coor-

dinate from the coordinate system’s origin.

In the following sections, we examine the translation matrix with the remap shader, as

well as see how matrix math characteristics control texture placement.

C O N T R O L L I N G T H E T R A N S L A T I O N M A T R I X

Let’s look at controlling texture placement with the transform matrix using a simple poly-

gon plane and gray background. A black-and-white checker texture file is being used.

The texture is applied based on explicit surface UVs, which is why the Select attribute is

set to 0. Selspace is set to standard and Project to none. Therefore, this example is aimed at

showing you how to rotate, scale, and translate a texture for a given explicit UV layout.

Repeats are set at 2, and the Torus and Alt attributes are disabled so that the texture does

not repeat outside the projection borders. Areas that appear black (outside of the texture

border) are surface areas that don’t receive any color.

Translation and Scaling

Figure 11.19 shows four examples using different values for the Transform attribute.

Image A is set with the default matrix options. For image B, the translation values of the

matrix (row B in Figure 11.18) have changed to 0.1, 0.2, and 0. Notice that the texture

The topic of 4 × 4 matrices and 4D vectors is mostly a matter of linear algebra alongside 3D

practices for manipulating surfaces and textures coordinates within a given space. To learn

more about the topic of 3D math, you can look at books that teach math fundamentals such

as 3D Math Primer for Graphics and Game Development by Fletcher Dunn and Ian Parberry

(Wordware Publishing, 2002) or Essential Mathematics for Computer Graphics by John Vince

(Springer, 2001).

mental ray projection and remapping shaders ■ 439

08547c11.qxd 10/24/07 4:36 PM Page 439

shifted 10 percent along the X axis and 20 percent along the Y axis. Also notice that

translations are applied as a relative percentage of the current texture size. A full transla-

tion (one full cycle) is equal to a transform value of 1.

Notice that in this case (and most cases), we require only U and V coordinates since

we are dealing with a 2D coordinate system, which is the surface texture space. The W

axis is pointing upward from the surface, similar to the normal direction illustrated in

Figure 11.1. These coordinates are prone to change based on the coordinate space and

texture vectors, so in some cases, such as with environment projections, you may need to

experiment with the values to determine which coordinates you want to adjust.

Image C demonstrates a scale transformation. The upper rotation matrix labeled A

received the following values (note that the translation values have been reset to 0):

As you can see, only the two relevant axes are changed from a value of 1 to 2. Notice

that we don’t use (change) the Z coordinate (r33) because it is irrelevant to UV (2D) coor-

dinates unless it is part of the projection plane (projections may utilize XY, XZ, or YZ

2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

A

C D

B

Figure 11.19

The rotation matrix
is used to scale and

orient the texture,
and the transform

vector is used for
translating the

texture along the
surface.

440 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 440

axes). The texture appears to scale down 50 percent, aligned along the bottom-left corner

of the plane (the coordinate system’s origin point). In image D, the translation values

changed to negative 0.5 for X and Y like this:

As you can see, the texture shifted 50 percent along both coordinates, aligned in the

center of the plane. Remember that the translation value ranges from 0 to 1, representing

a percentage of the actual size of the texture. Thus, a value of 0.5 shifted the texture to the

center, which is a 50 percent translation along each axis based on the new scaled-down tex-

ture size, however, that’s only 25 percent of the overall surface area (on the polygon plane).

Homogeneous Scaling

I’ve mentioned that the homogeneous coordinate can be used for uniformly scaling the

matrix. Set the translation matrix back to its default settings (diagonal line of 1s), and

change the homogeneous coordinate (r44) to 0.5 and 2, each time testing the result. You

will see that a value of 0.5 scales the texture down by 50 percent, and a value of 2 doubles

its size. This character is exactly the opposite of what we saw with the previous examples

where we changed the transform coordinates to 2 and the texture scaled down. When the

homogeneous coordinate is set to 2, the texture scales up. Furthermore, if you set the

transforms (X and Y) to 0.5, you will restore the texture size relative to the surface plane.

Here are the settings I used for the matrix to demonstrate the homogeneous coordinate

scaling the texture down and the transform coordinates scaling it back up:

Nonuniform Scaling

Figure 11.20 shows a nonuniform scale where the following values were used:

1 0 0 0
0 3 0 0
0 0 1 0
0 -1 0 1

0.5 0 0 0
 0 0.5 0 0
 0 0 1 0
 0 0 0 0.5

 2 0 0 0
 0 2 0 0
 0 0 1 0
-0.5 -0.5 0 1

mental ray projection and remapping shaders ■ 441

08547c11.qxd 10/24/07 4:36 PM Page 441

As you can see, the X axis (U coordinate) is set at its normal scale of 1 (first row), and

the Y axis (V coordinate) is set to 3, scaling it to one-third its size (second row). So, the

transform value along the Y axis is set to -1, translating the texture to the center of the sur-

face based on the texture’s current size; a 100 percent translation along the V coordinate

using the scaled down texture.

Understanding Scale Transformations

The mental ray texture 4D vector X, Y, Z, and 1 (the W homogeneous coordinate) output

components are multiplied with the 4D transformation matrix labeled A in Figure 11.18,

using matrix multiplication (shown earlier in Figure 11.7 A).

The transform matrix can be considered a basis for vector transformations (rotation

and scale) using the three unit vectors X, Y, and Z that are relative to a coordinate system.

In Figure 11.21 a 2D coordinate system is drawn with a texture placed one unit away from

the origin on the X and Y axes. The position vector is v = [1 1]. It defines the distance

from the origin to the texture boundaries on both X and Y axes using unit vectors.

When the transform matrix is set at the default, which is a square matrix with a diagonal line

of 1s and 0s everywhere else, the matrix acts as an identity matrix that does not transform the

incoming texture vector, as discussed earlier in this chapter.

Figure 11.20

Nonuniform scaling
with the rotation

matrix

442 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 442

If the matrix is set as an identity matrix (as shown in Figure 11.21), each component of

the matrix represents a unit vector that is linearly aligned with an axis on the coordinate

system. When the vector v = [x y] (equal to [1 1]) is multiplied by the matrix M (v × M),

like this:

the result is a one-to-one mapping between the vector’s X and Y components and the

coordinate system unit vectors. In this case, when v transforms to v´, it maintains its size.

In all cases, a position vector (v) defines a relative displacement from the origin using

component vectors for each axis. These components are transformed using a matrix, or

they remain unchanged. If we transform the vector v with a value of 2, we scale the tex-

ture relative to the coordinate system so that the vector v = [1 1] is multiplied by the

transform matrix M like this:

v’ = (1 2)+ (1 0) = [2 2]x x (1 0)+ (1 2) x x

2 0
0 2

1 1 xv’ =

1 0
0 1

= (x 1)+ (y 0) = [1 1]1 1 x x x (x 0)+ (y 1) x xv’ =

1

1

0.50

0.5

2

1,1

2

X

Y

2D Transform Matrix (M)

M = =
1 0
0 1

x y
x y

Figure 11.21

The position vector
[1, 1] relative to the
2D coordinate sys-
tem defines the dis-
tance from the
coordinate system’s
origin to the texture
boundaries using
two unit vectors.

mental ray projection and remapping shaders ■ 443

08547c11.qxd 10/24/07 4:36 PM Page 443

This results in the transformed vector v´ that has doubled its magnitude while uniformly

scaling the texture, as shown in Figure 11.22. Thus, if the magnitude of |v| = 1.414 (based

on the Pythagorean theorem), after matrix multiplication it proportionally increased to

|v|´ = 2.828.

Rotating the Texture

To rotate the texture, you need to apply certain mathematical equations (discussed next)

to derive the correct values for the transformation matrix. We will examine the rotation

along the Z axis (pointing up from the plane) so that the texture rotates 45°. Remember

that the axis you may require for rotating might differ with surfaces.

Note that the examples presented here doubled the texture size. With mental ray, a value of

2 scaled the texture by half. This is a matter of implementation that should not concern you;

as long as you understand that the relationship is reversed, you can control texture placement.

M =
2 0
0 2

1

1

0.50

0.5

2

2, 22

X

Y

= 1 1 v

Figure 11.22

Transforming a posi-
tion vector scales

the vector compo-
nents relative to the
coordinate system’s
origin while propor-

tionally increasing
their magnitudes.

444 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 444

For rotations, you need to apply cosine and sine values for the desired angle of rotation

as part of the translation matrix (Figure 11.18 image A). To rotate along the X, Y, and Z

axes, use the following equations, where � is the angle you require:

Figure 11.23 uses the following settings for a 45° Z rotation. As a result, the values used

are the cosine and sine of 45°, which is 0.707 in both cases. Based on the equation shown

above for Z rotations, I placed the values in the translation matrix as follows:

As you can see, the texture has rotated 45°; however, we still need to fix the size and place-

ment since the rotation pivoted around the bottom-left corner (the 0, 0 UV coordinate).

Figure 11.23

Rotating a texture
using purely numeri-
cal input values

 0.707 0.707 0 0
-0.707 0.707 0 0
 0 0 1 0
 0 0 0 1

1 0 0 0
0 cos(θ) sin(θ) 0
0 -sin(θ) cos(θ) 0
0 0 0 1

X rotation:

 cos(θ) 0 -sin(θ) 0
 0 1 0 0
 sin(θ) 0 cos(θ) 0
 0 0 0 1

Y rotation: Z rotation:

 cos(θ) sin(θ) 0 0
-sin(θ) cos(θ) 0 0
 0 0 1 0
 0 0 0 1

mental ray projection and remapping shaders ■ 445

08547c11.qxd 10/24/07 4:36 PM Page 445

Understanding Matrix Rotations

If you consider magnitude as a shape of a curve on a coordinate system, then in the previ-

ous examples the curve increased its size proportionally relative to the origin while main-

taining its form. The proportion of a vector’s magnitude is the key element of rotations.

Let’s examine basic vector rotations in Figure 11.24.

Consider the vectors v and v´ (labeled A), where the components of v are linearly aligned

with the coordinate system. If we transform v to v´ with a 25° rotation, the component

vectors (vx and vy) labeled B and C change position, each graphed with new X and Y coor-

dinates shown in Figure 11.24 (labeled B and C) with the transformed vectors vx´ and vy´.

For v to maintain its form after the transformation, its magnitude should remain the same

while transforming from v to v´; thus, the magnitude of v and v´ needs to stay the same so

that you have this:

|v| = |v´|

1

1

0

[0, 1]

[1, 0]

2

X

Y

v
x

|v|

|v|’

v
y

v
x
’

v
y
’

q

q
[0.906, 0.422]

[-0.422, 0.906]

A

B

C

Figure 11.24

2D rotational trans-
formations of unit

position vectors on
both X and Y coordi-

nates while main-
taining their
magnitudes

The transform matrix can rotate and scale a texture only relative to the coordinate origin and

not from the center of the texture.

446 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 446

To clarify, consider that the component vectors of v are in-fact unit vectors on the coor-

dinate system, as shown in Figure 11.24, where each component vector has a magnitude of 1

on its relative axis; |vx| = 1 on the X axis, and |vy| =1 on the Y axis. After the transformation

you see that the new component vectors of v´ (vx´ and vy´) have varying units on both X

and Y coordinates (not linearly aligned with the coordinate system). In order for the newly

transformed vector v´ to maintain its shape after the transformation (rotation), the mag-

nitudes of both component vectors also need to maintain the same value, in this case equal

to 1; the transformed component vectors vx´ and vy´ magnitudes should also equal 1. As

you can see in Figure 11.24, the new X and Y coordinates for v´ component vectors are not

equal to 1 on either axes, however, these values are not just erroneous values. In fact, by

using basic trigonometry rules, the relationship between the rotation angle (25°) and the

two component unit vectors magnitudes |vx´| and |vy´| are provided with the cosine rule

that dictates the following:

sin(�)2 + cos(�)2 = 1

Based on the cosine rule you can see that the component vectors vx´ and vy´ are both equal

to 1; the magnitude of 1 is preserved after the transformation and thus the texture will main-

tain its form, without distortion. Breaking these rules—when values (component vectors)

don't maintain the same magnitude—will lead to distortion in the newly transformed shape.

Thus selecting the correct values for component vector rotations becomes a matter of using

cosine and sine values that when examined with the cosine rule add up to a value of 1. If we

apply this rule to each unit vector’s components (vx´ and vy´), we can preserve the magni-

tude of the unit vector v´ while rotating the vector using correct XY coordinates for its

components. So, the following equation is used to rotate (transform) v to v´:

You can see that after transforming a vector with the matrix of v´ are actually dot prod-

uct equations (see Figure 11.7). Thus, each component vector (vx’ and vy’) has its own X

and Y coordinates as subcomponents of the vector v´. You can see these in the dot product

of each component, and for clarity they are referred to in the equations using two lines

cos(θ) sin(θ)

-sin(θ) cos(θ)
x y x = v’

 v’
x1, x2

 v’
y1, y2

 v’ = [x cos(θ) + y (-sin(θ)) x sin(θ) + y cos(θ)]

v M = v’x

x x x x

mental ray projection and remapping shaders ■ 447

08547c11.qxd 10/24/07 4:36 PM Page 447

from v´x1, x2 and v´y1, y2. While examining them as separate components, their numerical

values, based on the cosine and sine of 25°, result in the following:

If you refer to Figure 11.24, you can see that these coordinates are used for both the unit

vectors vx’ and vx’, placing them correctly while maintaining a magnitude of 1 for the vec-

tor v´ and thus maintaining the texture size. We can see that the magnitude is preserved when

we solve the magnitude of each component vector and then the magnitude of v´ like this:

Notice that each component vector is a unit vector based on the cosine rule. If we per-

form the dot product equation for the two unit vectors of v´, the result reflects on the

angle between them, and based on the Pythagorean theorem, it should prove to be 90°

since they should be perpendicular axes that define the bounding box of a square texture,

as shown here:

A key character of matrix math based on the cosine rule is as follows: if you square all

the values along any of the rows or columns of a matrix, you always end up with a value

equal to 1. Therefore, you have r11
2 × r12

2 × r13
2 = 1 and r12

2 × r22
2 × r32

2 = 1. If we check it

with our example, we can see that it is true:

0.9062 0.4222

-0.4222 0.9062

+ +

+

+

= 1

= 1

 1

=

 1

=

v’
x

 v’
y

=(0.906 (-0.422)) + (0.422 0.906) = (-0.382) + 0.382 = 0

θ = cos-1(0) = 90

cos(θ) = = = 0
x |v’

x
|

 |v’

y
|

v’
x

 v’
y

1 x 1

0

x x

|v’
x
| = 0.9062 + 0.4222 = 1 |v’

y
| = 0.4222 + 0.9062 = 1

|v’| = |v’
x
|2 + |v’

x
|2 = 12 + 12 = 1.414

v
x
’ = [x y] = [cos(θ) sin(θ)] = [0.906 0.422]

v
y
’ = [x y] = [-sin(θ) cos(θ)] = [-0.422 0.906]

sin(25) = 0.422
cos(25) = 0.906

448 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 448

This matrix characteristic is important in selecting correct values for the transform

matrix rotations. If your values don’t add up correctly, they are inaccurate, and you will

get the wrong results. These values may exceed 1 when we factor in scaling and transla-

tions, as discussed soon. In the earlier examples, the cosine and sine values are not

displayed at full numerical precision so that the equation adds up to less than 1; however,

at full precision (for cosine and sine values), they do add up to 1.

Rotation and Scaling

To change the size of the texture (after rotations) shown in the previous examples (Figure

11.23), you need to apply matrix multiplication. I will show you two approaches, one

based on evaluating the numbers yourself and the other based on piping additional tex-

ture remap shaders consecutively for a more simplistic approach. Let’s make the texture

50 percent smaller, as when specifying a value of 2 for the X and Y axes, as in the previous

examples, using the following equation. Note that s is the new scale multiplied by the

cosine or sine of a given angle (a uniform scale and rotation), and the example shown here

skips many stages to present a simplistic approach that works:

Since the cosine and sine for 45 is 0.707, the same number has been used in all cases,

based on the Z rotation equation presented earlier. When multiplied by 2, the result is

1.414, as used in the following matrix:

Notice that the third row’s scale value can remain at one, because it doesn’t affect ori-

entation and scaling in this case (the Z axis). Figure 11.25 shows a 45° rotation and a 50

percent scale after applying the new matrix. Also, notice the transform values added in the

bottom row are used to push the texture to the center of the surface. Because combining

different matrices (translation and rotation) with matrix multiplication is not commuta-

tive (a × b � b × a), you will always need to find the correct translation values after apply-

ing the rotation and scaling, as discussed next.

1.414 1.414 0 0
1.414 1.414 0 0
0 0 1 0
0.45 0.85 0 1-

-

 s

 cos(θ) s

 sin(θ) 0 0

s

 (-sin(θ)) s

 cos(θ) 0 0

 0 0 1 0
 0 0 0 1

x x

x x

mental ray projection and remapping shaders ■ 449

08547c11.qxd 10/24/07 4:36 PM Page 449

Translation After Rotation and Scaling

Consider that the translation evaluates after the matrix rotates and scales the texture. As

a result, if the X, Y component vectors for the texture transform with the texture, just as

with local space axes of an object in 3D, then the textures translation axes actually change

direction after rotations. So, the component X and Y vectors that push the texture along

U and V coordinates, as shown in the previous examples, will now (after a 45° rotation)

translate the texture in diagonal lines across the surface.

Combining Rotations and Scaling with Individual Shaders

As cited earlier, you don’t have to apply matrix multiplication manually to rotate, scale,

and translate the texture; instead, you can connect individual texture remap shaders, as

shown in the shader graph in Figure 11.26. Each shader provides some form of transfor-

mation or translation. The outValue from one texture remap shader connects to the

Look at Figure 11.30 (an XSI screenshot) in the section “The Translation Matrix in XSI” later in

this chapter to see a 3D visual representation of the texture projection and remap shaders.

Notice that the translation arrows labeled C and D have rotated with the texture placement

labeled B.

Figure 11.25

Rotating, scaling,
and translating a
texture using the

translation matrix

450 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 450

coordinate input of the following one. In this way, they form a chain of matrix operations

that initiate with a texture vector shader (labeled A), extracting the initial coordinates, and

then gradually transform the coordinates as they are passed through four texture remap

shaders consecutively, labeled B, C, D, and E. To make the example a bit more advanced,

we also consider that we want to rotate the texture from the center of the image, offsetting

the origin point for the transforms. This enables us to rotate the image as if it is locked in

place (from its center), rather than estimating a translation value (or doing the math) as

we did in the previous example.

If you look at Figure 11.27, you can see the result of each step using labels that corre-

spond to the same labels (steps) in Figure 11.26. The values used for the translation matrix

are shown in Figure 11.27 for each step. The first texture vector shader, labeled A, derives

the explicit UVW texture vectors, providing a one-to-one mapping between the texture

and the polygon surface. The following remap shader, labeled B, applies a translation

moving the texture 50 percent on both the X and Y coordinates so that the origin is cen-

tered in the plane. Areas that appear black on the polygon surface are outside the projection

region. The remap shader labeled C applies a 50 percent scale using a value of 2 for the

X and Y coordinates. Currently, you can see the texture in the upper-right corner and

its origin point located at the center of the polygon plane. The step labeled D applies a

Z rotation of 45°. The cosine and sine are equally set to 0.707. We can see that the texture

rotated from the center of the polygon 45° to the left. The final texture remap shader,

labeled E, applies the inverse translation of the first translation (B), which pushes the tex-

ture back so that it is centered.

You can see that if you want to rotate a texture with the translation matrix around a

given point, you first need to place the origin (for the transformations) at that point, the

new center of rotation. You then apply the transformations, and when you are done, you

backtrack and push the texture to its place using the inverse of the first translation. If you

test this with different rotational values, saving an image each time, you will see the tex-

ture rotate around the center point.

A B C D E

Figure 11.26

Applying consecu-
tive texture remap
shaders in a shader
network, letting
mental ray handle
the matrix multipli-
cation for you

mental ray projection and remapping shaders ■ 451

08547c11.qxd 10/24/07 4:36 PM Page 451

As you can see, you may apply several shaders consecutively so that they apply the matrix

math internally. In such cases, you need to make sure that only the last shader (that con-

nects to the image lookup shader) applies repeats, alternating, and torus wrapping. There-

fore, the remap shaders B, C, and D all have their repeats set to 1, and the Alt and Torus

attributes are disabled.

Host Application Settings
The following sections cover each host’s relevant texture vector and remapping options, as

well as their methods for defining UV sets. The goal is to outline the relationship between

mental ray texturing and host applications. Note that the sections devoted to UV sets are

a critical prerequisite for texture / light baking, a topic discussed in the “HDRI_3D_Issue7_

Mental Ray” article on the CD.

Maya
With Maya, a problem arises when you want to use mental ray–specific textures. For

example, there are image loaders, procedural textures, or custom shaders that all require

texture coordinates and remapping (2D placement). These textures don’t always cooper-

ate with Maya-specific shaders (the Maya 2D and 3D placement nodes and projections),

so you are forced to use the mental ray texture vector and remap shaders, such as with the

brushed metal tutorial in Chapter 10.

The earlier examples demonstrated the process of using mental ray textures.

 0.707 0.707 0 0
- 0.707 0.707 0 0
 0 0 1 0
 0 0 0 1

 1 0 0 0
 0 1 0 0
 0 0 1 0
-0.5 -0.5 0 1

 1 0 0 0
 0 1 0 0
 0 0 1 0
 0.5 0.5 0 1

 2 0 0 0
 0 2 0 0
 0 0 1 0
 0 0 0 1

Figure 11.27

Viewing the ren-
dered result of each

texture remap
shader’s transform

with the values used
for the translation

matrix

452 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 452

Note that you can use Maya textures (and an image loader) to connect to any mental

ray shader, such as mib_illum_lambert, Phong, and so forth, using Maya-specific 2D and

3D texture placement shaders. The differences discussed here refer to using mental ray

textures as opposed to Maya textures. For example, a mental ray mib_texture_polkadot

shader requires you to connect the mib_texture_vector to a mib_texture_remap and then

the remap to the Coord input of the mib_texture_polkadot, as demonstrated earlier in

this chapter in the section “mental ray Network Connections.”

In most cases, you can avoid using the mental ray image loader with mental texture

coordinates by using Maya’s File shader. However, if you want to use elliptical filtering,

which is discussed in the following section, you would have to create the same network

shown earlier in Figure 11.4.

Maya UV Sets

When you create UV coordinates in Maya in the Polygons menu set under the Create UVs

menu, you can select various types of explicit projection methods (that is, planar, spheri-

cal, automatic, and other projections). If you open the options window for any projection

method, you will see the Create New

UV Set checkbox and text input, as

shown in Figure 11.28.

When this option is disabled, the projections always override the default layout; how-

ever, if you specify a unique name, then an additional projection is created. You can see

the projections by selecting Window ➔ Relationship Editors ➔ UV Linking ➔ UV-Centric or

Texture-Centric for a selected polygon surface. You can also see them, and their layouts,

in the UV Texture Editor window when selecting a specific set from the UV Sets menu.

Their order of appearance under the UV Sets menu is based on the order of creation and

directly corresponds to the mib_texture_vector Select attribute number. Therefore, the

first default set is specified with the default value of 0 (first explicit UV set), the next set

uses a Select value of 1, and so forth.

XSI
As you can see, the mental ray shaders are not very intuitive, so XSI has wrapped around

them more user-friendly options that make them more readable. In the following sections,

XSI shaders are covered with references to their properties, and the equivalent mental ray

options are discussed throughout the chapter.

XSI integrates the texture vector and remapping shaders by means of projection

shaders into most texture shaders and the image shader (image loader). The Texture_space_

generator shader found in the Render Tree window under Nodes ➔ Texture Space Genera-

tors ➔ Generator (v) offers the same properties as the texture vector shader but is not

host application settings ■ 453

Figure 11.28

Creating new UV
sets in Maya with
projections

08547c11.qxd 10/24/07 4:36 PM Page 453

commonly used. You already saw an example for using this shader in the section “The

Texture Vector and Remap Shaders” earlier in this chapter. Under the same menu you can

find the Projection (v) shader, shown in Figure 11.29, which is a far better implementation

for applying texture vectors and remapping in XSI.

As a matter of convenience, the projection shader is

already implemented into most XSI texture shaders.

However, if you want to access texture coordinates for

other purposes, such as those shown in the brushed

metal tutorial in Chapter 11, you can use this projection

shader to define texture coordinates and then manually

connect it to other shaders, as shown in the shader

graph in Figure 11.5. In Figure 11.12 and Figure 11.17

(labeled A), the generator shader is used in a similar

fashion to extract implicit coordinates.

Texture Coordinates

A surface material may have several textures that require independent texture coordinates,

as cited earlier. The projection properties enable you to specify, on a per-texture basis,

independent texture coordinates.

In Figure 11.29 you can see that the projection shader offers most of the properties

found with the mental ray texture remap shader, including texture repeats, alternating,

and cropping. The torus (wrapping), offset, and rotation matrix that are missing can be

accessed after you define texture coordinates using the Texture Projection property

(labeled Texture Space with other shaders).

The mental ray Select option is controlled with the Texture Projection drop-down list.

When you click the New button, a texture projection (with texture support) is created and

added to the list. This list represents the different UV layouts (UV sets) that are available

for a given shader. By default, projections are explicit UV coordinates that can be further

edited in the projection’s properties window after clicking the Edit button (see Figure 11.31

in the next section). With explicit projections, the UV placement can also be manually

edited in the Texture Editor window.

Essentially, every new texture projection acts as a separate UV set that can either be

explicit or implicit. The Texture Projection property allows you to select which UV set

should be used for a given texture, as does the mental ray Select option. The only differ-

ence is that you then further control the explicit or implicit properties (equivalent to the

Select option’s negative values) internally, within the projection’s properties, as you will

soon see.

454 � chapter 11: mental ray Textures and Projections

Figure 11.29

The XSI texture pro-
jection shader is

equivalent to the
mental ray texture

remap shader.

08547c11.qxd 10/24/07 4:36 PM Page 454

The Translation Matrix in XSI

When you create a new projection (by clicking the New button), a geometric projection is

created within the 3D viewport, as shown in Figure 11.30 label A. The projection also

includes a texture support, labeled B. To see the texture support, select the projection, and

press the J shortcut key. The texture support controls the translation matrix, enabling you

to adjust the texture placement within the projection boundaries. While you’re manipu-

lating the texture support (B), the texture coordinates (shown in the Texture Editor) main-

tain their same UV layout. Thus, the image itself scales, rotates, and translates. However,

when you move the texture projection (A), the UVs update in the Texture Editor window,

redefining their explicit layout.

Notice how a checkered image file is scaled down, oriented, and centered (as with the

examples in the section “The Texture Remap Shader” earlier in this chapter) using the XSI

texture support, which is the translation matrix.

As a follow-up to the discussion of translation after orientation in the section “The

Texture Remap Shader” earlier in the chapter, notice how the texture support translation

arrows labeled C and D indicate diagonal translation directions for the X and Y axes,

which is a result of rotating the texture support 45°. So, the texture support now translates

diagonally. The gray color shown outside the texture support borders in the render region

is derived from a mix shader that is masked to affect areas outside the texture region.

A

B

C

D

Figure 11.30

A planar projection
with its projection
support displayed in
the XSI viewport

host application settings � 455

08547c11.qxd 10/24/07 4:36 PM Page 455

In Figure 11.31 you can see the texture projection options used in this case.

One method for viewing these settings is to click the Edit button under the pro-

jection shader’s Texture Projection property. Notice the UVW Transformation

properties section. This section is equivalent to the translation matrix discussed

earlier. The values you see for the Scaling, Rotation, and Translation properties

are derived based on the manipulations you apply visually in the viewport, and

they update automatically. Thus, you can adjust the translation matrix either

using these properties or manually in the viewport (only with explicit projec-

tions). The values you enter here for rotation are easier to interpret then those

discussed in previous sections with matrix math. For example, you can see that

the Rotation ➔ W property is set with a value of 45 providing a 45° rotation—

which is much easier than using sine or cosine values with the mental ray remap

shader. Notice that you can also see the Wrapping property in this window

(torus XYZ).

Explicit vs. Implicit Properties

You can find most of the mental ray texture vector shader’s options for explicit

and implicit projections in the Implicit Texturing section and in the Texture

Support rollout shown in Figure 11.31.

The Implicit Texturing ➔ UV Generation property defines whether the projec-

tion is implicit or explicit. By default, all projections are set to Explicit. If you

create a new projection from the projection shader’s Texture Projection ➔ New

property, you can then set the UV Generation property to Implicit. You are not

required to create a new projection in order to select Implicit; however, if you

manually edit a texture support in the viewport or Texture Editor window, those

coordinates must remain explicit, and hence a new projection is required.

I M P L I C I T P R O P E R T I E S

Implicit projections don’t have the texture support that explicit projections

have. You can change the projector’s shape by transforming it in the viewport

(Figure 11.30 image A) and manually entering values for the UVW Transforma-

tion properties; however, you will not have a texture support manipulator in

the viewport as you do with explicit projections.

When the UV Generation property is set to Implicit, you can see that additional

properties appear, as shown in Figure 11.32, that correlate to our previous dis-

cussions of the mental ray texture vector shader. These properties include the

Coordinate property equivalent to the Select option’s negative values. If you look

in the drop-down list, you can see the same options as listed in Table 11.1 earlier in

this chapter. The Space Transformation property corresponds to the Selspace

option discussed earlier, offering the same options for defining the coordinate

space (world, object, and so on) for a projection.

456 ■ chapter 11: mental ray Textures and Projections

Figure 11.32

Implicit texture pro-
jections properties
for a given projec-
tion shown in XSI

Figure 11.31

The XSI projection
properties used to

define explicit vs.
implicit properties

and the translation
matrix

08547c11.qxd 10/24/07 4:36 PM Page 456

The mental ray Project option is implemented as the Texture Support ➔ Projection tab ➔

Projection Method property that defines the type of projection. The Projection Plane

property is used to define the projection plane (axis). This option is mostly used for defin-

ing XY, XZ, and YZ planar projections.

XSI Textures

XSI textures, such as the Checkerboard and Image textures, allow you to define explicit or

implicit texture projections from their Texture tabs using the Texture Space ➔ New button

(the Texture Projection property discussed earlier). When you create a projection, you can

see the same properties shown in Figure 11.31 that encompass the options for both mental

ray texture vector and remap shaders. Essentially, this enables creating projections internally

within a texture rather than with an external projection shader; delete, they are the same.

3ds Max
In 3ds Max you apply and use textures solely via native 3ds Max shaders. In fact, 3ds Max

texture coordinates are built into the image loader (bitmap shader) and texture shaders,

including most of the options found with both mental ray texture vector and remap shaders.

Thus, you are not required to use mental ray–specific shaders while defining texture coor-

dinates and placement. When you export a 3ds Max scene for rendering, or as a .mi file,

the 3ds Max UV generator shader provides all the same functionalities as those discussed

throughout the chapter, supporting all the mental ray textures that ship with 3ds Max, as

well as custom shaders for 3ds Max (from online resources).

Essentially you are not required to specifically use the UV generator (3ds Max) shader,

which can be found in the Material/Map Browser window. This shader, however, is always

exported as a custom shader that provides mental ray texture coordinates and remapping

options.

Built-in Explicit and Implicit Coordinates

Let’s first examine the straightforward approach, using the parameters found in the Mate-

rial Editor window for a given texture (bitmap or procedural texture) under the Coordi-

nates rollout parameters, as shown in Figure 11.33.

With 3ds Max, the choice of explicit or implicit

projections respectively correlates to using a tex-

ture map or environment map. The Texture radio

button shown selected in Figure 11.33 defines

explicit coordinates, such as with the mental ray

texture vector Select option. If you select the Envi-

ron radio button instead, then the projections are implicit. Once you select a projection

method, the Mapping drop-down list offers additional parameters for selecting the

host application settings ■ 457

Figure 11.33

3ds Max projection
options for a given
texture in the Mater-
ial Editor. These
parameters are simi-
lar to the texture
vector and remap
shaders; they pro-
vide a straightfor-
ward approach for
selecting UV coordi-
nates and mapping
textures.

08547c11.qxd 10/24/07 4:36 PM Page 457

projection type. When Environ is selected, the Mapping list includes some common

implicit projection methods such as spherical or cylindrical.

With respect to the texture remap shader, notice how all its options are found under

the Coordinate rollout. These include the Offset, Tiling (repeats), Mirror (alternating),

and Tile (torus) parameters. You can also easily rotate the texture using the Angle UVW

parameters, which correlates to the translation matrix discussed earlier.

Explicit UVW Mapping and UV Sets

When you select a polygon object (Editable Mesh), you can add explicit UV coordinates

using a variety of modifiers from the modifier stack. The same modifiers are also available

from the menu by choosing Modifier ➔ UV Coordinates. All these modifiers use the same

parameter to select a UV set, labeled Map Channel or just Channel. This parameter defines

the UV sets in numbered sequences, corresponding to the texture vector Select option.

Conveniently, the sequence is numbered from 1 and up, similar to the Select option that

uses values from 0 and up.

Under the Coordinates rollout, when the Texture parameter is selected, you can

specify the Explicit Map Channel option from the Mapping drop-down list, as shown in

Figure 11.33. This allows you to select a UV set number with the Map Channel parameter.

Therefore, every UV modifier that is added to the modifier’s stack can be set with a unique

UV channel that provides a given UV layout (texture coordinates), for a texture map or

image file. These options become more relevant when you want to combine textures using

separate UV layouts.

The two modifiers I want to discuss are UVW Map and Unwrap UVW. Both modifiers

allow you to select a map channel, so you may create several modifiers and assign each with

a different map channel. Also, both modifiers create explicit UV coordinates; however, one

has a more implicit approach, and the other has a more explicit approach.

T H E U V W M A P M O D I F I E R

With the UVW Map modifier, under the Parameters rollout, you can select a type of

implicit projection (planar, spherical, box, and so on). A projection gizmo that identifies

the selected projection shape appears in the viewport, similar to the shapes shown in

Figure 11.1 earlier in this chapter.

These projections, their scale, their orientation, and their placement define the UV

coordinates that will be exported as explicit UV coordinates. To clarify, where a solely

implicit projection can project an image without distortion across a surface with few

polygon triangles, as shown in Figure 11.34 image A, an explicit projection will try fitting

the projection onto the available polygon faces. And, when not enough are available, the

image is distorted as shown in image B. Thus, both images A and B used the same UVW

Map modifier, with the difference that the cube labeled A has a high-resolution mesh, and

458 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 458

the cube labeled B has a single face for each side. You can see that the UVW Map modifier

exports explicit coordinates. If it were solely implicit, the result for a low vs. high resolu-

tion model would appear the same; as with label A.

T H E U N W R A P U V W M O D I F I E R

The Unwrap UVW modifier provides a more common approach to specifying UV coordi-

nates, where you can select a base projection technique and then further modify its UVW

coordinates in the Edit UVWs window. To open this window, click the Edit button in the

Parameters rollout. You can use the Map Channel parameter to define the UV set num-

ber, as discussed earlier. When the Face mode is enabled, under the Unwrap UVW modi-

fier in the modifier list, you can then specify a base projection method for the selected face

(you must select the faces in the viewport) under the Map Parameters rollout. The result

is automatically updated in the Edit UVWs window, where you can see the selected faces,

and their respective UVW coordinates unwrap.

So, the Unwrap UVW modifier provides a means for creating and editing UVW layouts

within a UV texture editor, opposed to the UVW Map modifier that is aimed at using a

more implicit approach to define explicit UVW coordinates.

The UV Generator

When you export an .mi file from 3ds Max, you can then examine the different custom

shaders that export for a given surface. In this case, I will compare the two explicit modi-

fiers discussed earlier (UVW Map and Unwrap UVW) and an implicit environment pro-

jection, selected under the Coordinates rollout shown in Figure 11.33. As cited earlier,

every time a file is exported (or rendered), the 3ds Max UV generator shader is used to

A B

Figure 11.34

Projecting with the
UVW Map modifier
on a high-resolution
cube (A) and low-
resolution cube (B)

host application settings ■ 459

08547c11.qxd 10/24/07 4:36 PM Page 459

define the texture coordinates. As you can see in the following excerpt, the "max_base_

UVGenerator" shader is created and labeled "UVGen_Shader". I have included only a few lines

that demonstrate explicit or implicit options.

shader "UVGen_Shader" "max_base_UVGenerator" (

"MapSlotType" 0,

"EnvType" 1,

"MapChannel" 1,

"UVWSource" 0,

"UOffset" 0,

"UScale" 10,

"UWrap" on,

"UMirror" off,

"UAngle" 0,

The MapSlotType parameter defines whether the coordinates are explicit or implicit. A

value of 0 refers to the Texture parameter (explicit), and a value of 1 selects the Environ

parameter (implicit), both shown in Figure 11.33. The EnvType parameter simply selects

the type of projection when using implicit projections, as with the Mapping parameter, so

in this case (explicit), it has no effect. MapChannel selects the explicit UV set, with the Map

Channel parameter. If you look at some of the following parameters in the excerpt, you

can see how they relate to remapping options, such as tiling, alternating, rotating, and so

forth. Thus, this shader encompasses texture vector and remap options, geared for 3ds

Max shaders.

In the following excerpt, you can see how the UV generator shader connects to the

coordinate input ("Coords") of a texture file, just as with the shader trees demonstrated

earlier in the chapter. The following excerpt excludes the other options for simplicity. Of

course, you can export .mi files and see the full range of options and how they export.

shader "Map #3|Texmap" "max_Bitmap" (

"Parameters" {

"Coords" "|UVGen|Shader",

Let’s take a brief look at the following excerpt, another UV generator used for implicit

projections:

shader "|UVGen|Shader" "max_base_UVGenerator" (

"MapSlotType" 1,

"EnvType" 1,

"MapChannel" 1,

Notice that in this case the MapSlotType parameter is set to 1 and selects the Environ

parameter, and the EnvType selects a spherical projection using a value of 1. In this case, it

has an effect because the projection is implicit.

Examining these shaders should give you a clearer picture of how 3ds Max and mental

ray interact with respect to texturing; fortunately, their compatibility allows you to easily

define coordinates within the host.

460 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 460

Memory Mapping, Pyramid Images, and Image Filtering
The following sections look at image filtering techniques, pyramid images, and memory-

mapped images. The mental ray image loader and lookup shaders allow you to load and

filter images. Pyramid images are precalculated multiresolution images that are used for

improving image filtering processing. Memory-mapped images simply improve memory

handling during rendering, particularly when loading pyramid image data into memory.

In some cases, these techniques are intended to improve on the default point sampling

approach for acquiring surface shading values; in others, the purpose is to improve the

general workflow with respect to image processing and memory optimization. Typically

you would use a memory-mapped pyramid image with standard or elliptical filtering for

the purpose of texture mapping.

Point Sampling
During rendering, when textures or image files are used to provide color values for a sur-

face, those value are evaluated using point sampling. This term refers to how each sample

block (discussed in Chapter 5, “Quality Control”) looks up color values for a given shaded

point within a texture file and at specific texture space coordinates. Each sample point

interpolates color values using four nearby pixels at the sample location in texture space,

determining a color value.

Figure 11.35 illustrates the process of point sampling values from texture files and pass-

ing them to the frame buffer pixels. Under the “Camera view” label, you can see the res-

olution for this shot (exaggerated for the purpose of discussion). Each illustrated square

is equal to one pixel in size, and each square in the checkered texture on the floor repre-

sents a pixel in the texture file, so theoretically you are looking at this scene at a micro-

scopic level. The point samples (white circles) illustrated in the four rows (numbered

1 through 4) can be seen under the scene layout, in the camera view, and at their 2D

(UV) texture space coordinates in the texture file, under the “Texture space/sample

spread” label.

Render and Texture Pixel (Texel) Ratios

Point sampling provides an efficient approach to interpreting color values from a texture

file, but only if the texture pixels, known as texels, occupy roughly the same amount of

pixels in the rendered image. When there is roughly a one-to-one mapping between tex-

ture pixels and render pixels, then point sampling, combined with a render filtering tech-

nique (reviewed in Chapter 5), can provide fairly decent consistent color results. The

relationship between render pixels and texture pixels directly influences the sample accu-

racy and color consistency in animations. When a single render pixel corresponds to sev-

eral pixels within an image file, as illustrated in Figure 11.35 along the third and fourth

rows, certain problems arise.

memory mapping, pyramid images, and image filtering ■ 461

08547c11.qxd 10/24/07 4:36 PM Page 461

Notice how the texels (checker squares) shown in the camera view for the first and sec-

ond rows have a relatively close mapping. To clarify, there are roughly four pixels for each

render pixel, and because point samples interpolate values using four adjacent pixels, the

results are fairly accurate, meaning they are derived using all the texels found within that

pixel’s line of sight. However, in the third and fourth rows, the point samples don’t account

for several other texels that are seen within a given render pixel’s perspective. Poor mapping

between texels and render pixels has two primary results:

• The sample point locations cover a limited amount of texels per render pixel, as cited

earlier.

• The sample locations are spaced too far apart to provide accurate results on the

values between them, as indicated with the distance labeled A. The distance labeled

B demonstrates an even larger gap between the samples along the third and fourth

rows. Since point sampling samples the color only directly at sample coordinates,

when the next closest (neighboring) sample location is several pixels away, accuracy

is significantly compromised, not accounting for entire regions (between samples)

of the texture. Essentially, important color information will not be interpolated, and

the image is prone to all sorts of motion and visual artifacts (moiré patterns).

When surfaces appear at glancing angles, as shown in the figure, transitioning in depth

away from the camera increases the ratio between texels and render pixels. As a result, at a

given distance, a render pixel may encompass more than 100 texels but contributes only

four texels for the sample’s color interpolation. The result of poor sample coverage leads

to inconsistent color artifacts, such as sampling a checker texture’s white checkers along a

Camera view

Texture space/sample spread

Scene layout

1

2

3

3

4

4

4 3 2 1

1

2

A B

X

Y

Render resolution

Camera

Floor

Point samples
C = 1 square pixel
in texture space

C

B

A

Figure 11.35

Point samples are
taken at increasingly
farther distances on

a texture.

462 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 462

given row and constantly missing the black checkers. Clearly, the result is not an accurate

representation for the appearance of a checker texture converging in depth.

Motion Artifacts

When we factor in motion, we consider that during the next animation frame, a new set of

samples may look up different texture coordinates, because something is in motion (sur-

faces or the camera) and the sample location aligns with new UV texture coordinates, such

as along the distances labeled A and B in Figure 11.35. Therefore, the next set of samples

will most likely interpolate completely different texture values, providing a color that does

not follow up on the previous sample values (from the previous frame). The result of poor

sample consistency between frames is typically shown as texture shimmering during the

animation. Thus, because point sampling looks up only a very small pixel region in the

texture file, the point sampling process becomes “unstable” for animation, returning

erroneous inconstant values for each frame.

Because resolving image artifacts with motion or still images is not entirely dependent

on antialiasing and filtering techniques (discussed in Chapter 5), increasing the sampling

quality may provide for better results, but it typically will not suffice for eliminating arti-

facts such as moiré patterns or motion artifacts (flickering and jittering of the texture pixels).

By now you should have a clearer picture of antialiasing sampling and its relationship to

point sampling.

Image Filtering
Filtering is a means for averaging (interpolating) color value within the texture file across

several pixels. Note the difference between image filtering (discussed here) and the render

filtering process discussed in Chapter 5. With image filtering, point samples are given a

radius (filters are round) that interpolates color across several texels. Because more texels

are used, the result is a more accurate color value that decreases the chances of shimmer-

ing in animation.

As surfaces in the scene get farther away from the camera, they require larger filter sizes

to interpolate the result. Fortunately, filter sizes tend to scale up with distance, as shown in

Figure 11.36. By doing so, the filtering process ideally tries to maintain the relationship

between texels and render pixel sizes by filtering a number of texels that correlate to a

given render pixel size.

When you increase the antialiasing sampling (oversampling), you improve render quality, but

that still leaves room for several missed texture pixels. The answer is a combination of good

sampling settings, as well as using image filtering to interpolate larger texture pixel regions

on a per-sample basis.

memory mapping, pyramid images, and image filtering ■ 463

08547c11.qxd 10/24/07 4:36 PM Page 463

In the camera view, you can see that for each row, the filter size increases to try to

encompass all the texels within that row (along the U coordinate). Therefore, if you look

at the same samples in the texture space image, you see that the round filters are significantly

larger with distance, containing more texels. If you look at both images, you can tell that

the filter radius scale better represents the increased ratio between texels and render pixels,

leaving fewer gaps between samples in a given row (U coordinate), as shown with the

label A. However, these round filters still have significant gaps between the rows along

the V coordinate, as illustrated with the distance labeled B.

Since the floor in the image is at a steep glancing angle, these larger filters cope effec-

tively with pixels only along the U coordinate. However, they can’t effectively deal with

the gaps along the V coordinate, because the distances are nonuniform. Round filters can

cope effectively only with uniform distances. Thus, filtering, as with point sampling, copes

well with images that have some proportional uniform relationship between texels and

render pixels. At glancing angles, with nonuniform relationships between texels and ren-

der pixels, round filtering fails. For coping with nonuniform ratios along U and V coordi-

nates, mental ray provides an alternative filtering technique known as elliptical filtering.

mental ray Filter Options

With mental ray, standard filtering is applied through the mental ray texture shader, which

simply loads images from files. A filter option determines the size of the filter, where a

Camera view Texture space

A

B

Figure 11.36

Image filtering
offers an alternative

to point sampling,
utilizing round fil-

ters of varying scales
and interpolating
color from several

texture pixels

464 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 464

value of 1 determines a best-guess size automatically. If the filter option is disabled, then

only point sampling is used. The filter size value is meant to provide mental ray with addi-

tional insight into the relationship between texels and render pixels, where the filter size

ideally represents the relationship between one render pixel and the number of texels

contained within it (in the render pixel).

Essentially, you may use a texture image that has been tiled several times using the

remapping shader. So, as the ratio between the texture and render pixels increases, so

should the filter size. In such cases you would want to specify a filter size that represents

the new resized texture. For example, if the checker texture has a one-to-one mapping with

render pixels (not tiled), then after tiling it 50 times, effectively scaling it down by 1 ÷ 50

of its size, you should specify a filter radius of 50 correlating to the new proportions.

By default mental ray assumes that one texel corresponds to one render pixel; it has no

knowledge of tilling. As a surface gets farther away, a larger filter size is used. By manu-

ally specifying larger filter sizes, you provide information about the relationship between

texels and render pixels, such as after tilling an image several times.

You can find the filter attribute for each host as follows:

Maya With Maya, in the Hypershade window, select the mental ray texture shader (shown

in Figure 11.4 labeled D) from under the Textures rollout. The Filter checkbox attribute

enables filtering, and the Filter Size attribute specifies the filter radius as discussed earlier.

XSI With XSI, when you load a new image, under the Image Clip ➔ Texturing tab ➔ Mental

Ray Multi-Resolution Texture section, you can use the Blurring property to define the fil-

ter size. The Enable Multi-Resolution Texture checkbox property also needs to be enabled,

turning on pyramid filtering.

Elliptical Filtering
Elliptical filtering is an alternative to standard filtering that is more effective at reducing

texture shimmering and moiré pattern artifacts in highly detailed (or tilable) textures, par-

ticularly with surfaces seen at glancing angles. In Figure 11.37, notice how the filter shapes

When filtering is enabled, mental ray automatically generates pyramid (multiresolution)

images.

Although 3ds Max provides an option to enable or disable filtering (via a bitmap shader’s

Bitmap Parameters ➔ Filtering), it does not offer mental ray’s elliptical filtering with the

options discussed in the following sections.

memory mapping, pyramid images, and image filtering ■ 465

08547c11.qxd 10/24/07 4:36 PM Page 465

seen in the scene layout appear as ellipses at increasing scales. Also, notice that the filter

shape shown in the camera view appears relatively round, opposed to the shapes shown in

Figure 11.36 where the filter shape looks like an ellipse. Essentially, round filters projected

on surfaces that are at glancing angles, appear as horizontal ellipses in the camera view; they

are aligned with the surface orientation. If we force round filters to encompass a render

pixel, while projecting on a surface that is at a glancing angle, the round filter projects an

elliptical shape as shown in Figure 11.37, maximizing its coverage in the render pixel; the

filter maintains a round shape in the camera views and projects as an ellipse on the surface,

as shown in Figure 11.37.

Elliptical filtering extends your abilities to control filtering by using additional options

that cope with nonuniform relationships between texels and render pixels. These options

provide you with a means to define the size of the minor axis (see “Ellipse” in Figure 11.37),

as well as the maximum ratio between the minor and major axes, defining the elliptical

shape extent. The latter limits the shape from forming too narrow and long ellipses. Note

that the ellipse shapes are camera-projected ellipses; thus, the directionality of the ellipse

may change from horizontal to vertical ellipses, based on the circumstances.

Elliptical Filtering Options

You can find the options that control elliptical filtering in the mental ray mib_texture_

filter_lookup shader. You can see the filter lookup shader (Figure 11.4 labeled A) and its

shader tree connections using mental ray–specific shaders in the section “mental ray Net-

work Connections” earlier in this chapter.

Camera view

Scene layoutEllipse

M
in

o
r

ax
is

Major axis

Figure 11.37

Elliptical filtering is
used to cope with a

nonuniform rela-
tionship between
texels and render

pixels.

466 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 466

Figure 11.38 shows the filter lookup shader

options in Maya. You can find the equivalent

XSI options after loading a new image (using

the Texture ➔ Image shader) under the

Image ➔ Image Filtering tab. We’ll review

the mental ray options here, as well as refer

to their host-specific settings:

• The Space option (Maya only) needs to

be set using a positive value (selecting

explicit UVs) and should be set equally

with the mib_texture_vector shader ➔

Select option (discussed earlier).

• The Disc_r attribute is used to resolve aliasing artifacts that are caused during the

conversion from screen space to texture space with surfaces that exhibit a lot of cur-

vature. The valid range is from 0 to 0.3. A value of 0 uses the default 0.3 value. Higher

values (within that range) are better for highly curved surfaces, whereas lower values

are intended for flat surfaces. If you see aliasing artifacts, use a trial-and-error process

to identify the right values.

• The Eccmax attribute defines the maximum ratio between the minor and major axes.

Setting a limit can prevent extremely long ellipses, referred to as runaway projections

that are less efficient, and may even slow down the render progress. In XSI, this

option is the Maximum Eccentricity property.

• The Maxminor attribute defines the maximum length for the minor axes. This option

is similar to the filter size option with standard filtering, defining a relationship

between texels and render pixels. In XSI, use the Maximum pixels for Min Radius

property.

• The bilinear interpolation option, found in both applications, defines how values in

texture space are interpolated. Basically, bilinear interpolation means that two values

interpolate in both directions. Each direction is a linear interpolation, and the final

result, a product of both linear interpolations, is a nonlinear result. Bilinear interpola-

tion then refers to X and Y coordinates in texture space that are interpolated in both

directions.

When enabling elliptical filtering with XSI, you can select whether the filtering is applied to

RGBA color channels, bump mapping, or both, using the RGBA and Bump Mapping property

checkboxes.

memory mapping, pyramid images, and image filtering ■ 467

Figure 11.38

The mib_texture_
filter_lookup shader
options for elliptical
filtering shown
in Maya

08547c11.qxd 10/24/07 4:36 PM Page 467

Memory Mapping and Pyramid Images
Whenever filtering is enabled, mental ray automatically creates a prefiltered multiresolution

image, known as a pyramid image, also known as mip-map textures in various host applica-

tions. Pyramid image files store a single image at multiple levels of resolution as a means for

accelerating filtering and rendering. The benefit is that the renderer can use lower-resolution

images to acquire color values for a sample block that correlates to several texels.

Essentially, a pyramid image makes it easier for the renderer to acquire the correct

interpolated (filtered) color value, because it’s provided with a “road map” for color val-

ues from several different resolution steps. Consider that for a given sample point, with

filtering enabled, mental ray interpolates values that occupy a 512×512 texture pixel

region. In such a case, a pyramid image that has already prefiltered those pixels into lower

resolution images can provide the renderer with fewer pixels for the filtering process, such

as a 2×2 pixel region. Therefore, lower-resolution levels (images) represent already inter-

polated values for the same higher-resolution images. Doing so allows mental ray to inter-

polate four color values rather than 512—a much larger region and clearly more render

expensive as well as more prone to artifacts.

Let’s look at Figure 11.39 to learn more about pyramid images. Here I use a collection

of checker images to create a multiresolution pyramid image starting at 1024×1024 pixels

and decreasing to 1×1 (32×32 in the figure) pixels. Each image (resolution) is color-coded

and cropped rather than scaled down. By cropping, I assure that in the following Figure 11.40

you can easily identify the different resolutions. In Figure 11.39, I placed each resolution

with a small offset so you can easily distinguish between the different levels. Pyramid images

scale the larger resolution image into smaller resolutions, creating a collection of “pre-

filtered” images using fewer texture pixels (lower resolution), which can be thought of as

the higher-resolution filtered pixels.

1024x1024

512x512

256x256

128x128

64x64
32x32

R G

B

Figure 11.39

A pyramid image’s
layout, where each

half resolution is
stored in an empty

quadrant

468 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 468

As you can see in Figure 11.39, the pyramid image stores the RGB color channels in

separate quadrants of the image, leaving one quadrant empty. Each quadrant is effectively

half the resolution of the previous (higher-resolution) quadrant. Thus, the pyramid

image stores successive half-resolution images starting at the highest resolution, and

down to 1-square pixel, as shown in Figure 11.39, from 1024-to-32-square pixels.

If you look at Figure 11.40, you can see this pyramid image being used with elliptical

filtering. Because the images are cropped, you can clearly see when lower resolutions are

used. Remember, the concept of pyramid images is to use fewer pixels (lower resolutions)

for filtering areas that occupy more pixels (larger resolutions). The section labeled A is

closest to the camera, where the smallest relationship between texels and render pixels

exists. In this case, the highest resolution (1024) is being used. As the plane recedes away

from the camera, the filter occupies larger texel regions; thus, B utilizes the next level, a

512×512 resolution. From C to E the following resolutions are used in this order: 256, 128,

and 64. As you can see, as the surface recedes in depth, lower resolutions are used to provide

prefiltered interpolated colors. You can see the pyramid.map image used with this example

and the color version of Figure 11.40 labeled “ellipse_pyramid” in the the Chapter 11 folder

on the companion CD.

Memory-Mapped Pyramid Images

Memory-mapped images improve memory handling with texture files. What they do is

enable mental ray to read the texture data, as required, from the file directly, without load-

ing the entire image into memory. If you render scenes with large texture files, you will see

A

B

C

E

D

Figure 11.40

Elliptical filtering
using a pyramid
image, where you
can identify when
the different resolu-
tions are used

memory mapping, pyramid images, and image filtering ■ 469

08547c11.qxd 10/24/07 4:36 PM Page 469

how the memory usage significantly increases every time an image is loaded, shown in the

verbosity output and the RAM reader, as discussed in Chapter 1, “Introduction to mental

ray.” Therefore, using memory-mapped images can significantly reduce memory usage, as

well as improve render times.

One of the more advantageous aspects of memory-mapped images relates to filtered

images. When rendering with filtering (elliptical or standard), mental ray automatically

generates a pyramid image. Effectively, the pyramid image is a larger image file with sev-

eral resolutions, as discussed earlier. By using memory-mapped pyramid images, mental

ray can simply access the relevant resolution, rather than precomputing the pyramid image

and storing it in the immediate memory. Some applications allow you to define whether

memory-mapped images are generated for textures and how they are stored. However, some

preparation is always desirable when you attempt to render highly detailed high-resolution

images, particularly in texture-intensive scenes.

We can conclude that memory-mapped pyramid images have three main benefits: they

allow a faster render as a result of using fewer pixels for interpolation, they improve mem-

ory handling, and they ensure that there is less chance for flickering or shimmering over

animation. Regardless of memory mapping, pyramid images still improve render per-

formance; however, when memory mapped, it’s a more significant improvement.

Creating Memory-Mapped Pyramid Images

To create memory-mapped images and pyramid images, you can use the mental ray

imf_copy utility. Let’s create the memory-mapped pyramid image used in the previous

examples. In all cases, you should run the terminal, shell, or command prompt on Win-

dows (select the Start menu ➔ Run, type cmd, and press Enter), and then run imf_copy -h.

If you see the help flags, then the system knows where to find the utility. If you don’t see

the help flags, you need to locate the utility in your host application’s directories (see

Chapter 1) and then enter the full path before specifying the command.

C R E A T I N G M E M O R Y - M A P P E D I M A G E S

To convert a texture to a memory-mapped image, simply enter the following:

imf_copy path\textureName.tif path\newName.map

You can force the new image to maintain the same format and extension. Doing so

allows your host to recognize the texture file without requiring you to reload it under the

Memory-mapped images are byte order dependent, based on the system on which they are

created. They cannot utilize their memory-mapping abilities on systems that don’t have the

same byte order (little or big endian); thus, memory mapping is disregarded. Most Windows

machines use the same byte order, so you can move a file freely from one system to the next.

However, you can’t transfer it to a Mac OS X system.

470 ■ chapter 11: mental ray Textures and Projections

08547c11.qxd 10/24/07 4:36 PM Page 470

texture shader (within the host). This makes it easier to replace all the textures in a given

directory with memory-mapped images, without relinking (renaming) all the textures

within the host. Thus, mental ray will identify the image as memory mapped regardless of

the extension. So, you can specify a new path for the resulting images so that they are stored

under another directory using the original texture name and extension. Make a backup

copy of your original images before overwriting them with the new memory-mapped

images. Type the following to maintain the format extension and apply memory mapping:

imf_copy "path\texName.tif" "newpath\ texName.tif" map

Note that the quotes are optional; however, they are required when paths contain

spaces. If you open the resulting image using the imf_display utility (run imf_disp in the

prompt), select the Image ➔ Info option. In the Image Info window, you will see that the

Image Format reads map, confirming the image as a memory-mapped format.

C R E A T I N G M E M O R Y - M A P P E D P Y R A M I D I M A G E S

To create pyramid images, you simply add the pyramid flag, as shown next:

imf_copy -p path\textureName.tif path\newName.tif

If you want the result to be a memory-mapped image, simply follow the previous

examples, adding the map flag as shown next:

imf_copy -p path\textureName.tif path\newName.map

You can extract any given resolution for viewing the result in an image viewer, as follows:

imf_copy -x resolution path\textureName.map path\extracted.tif

The -x flag defines the resolution level you want to extract. If you specify 0, the high-

est resolution is extracted, and as you specify higher values, you extract lower (filtered)

resolutions.

You can manually load individual images at the different resolution levels using the

collate flag (-c) like this (several stages are skipped between 256 and 1):

imf_copy -c 1024.tif 512.tif 256.tif 1.tif output.map

Start at the highest resolution, and then add decreasing half-resolution images until

you eventually reach a 1×1-pixel resolution. You can use the images provided in the

Chapter 11 directory “pyramid resolutions” folder on the companion CD.

I’ve omitted some of the lower resolutions, which means that running the example will return

an error; however, you can ignore this message, and the example will still work.

You can simply drag a texture file into the command prompt that then applies its path and

name within quotes, which is a nice alternative to typing a full path.

memory mapping, pyramid images, and image filtering ■ 471

08547c11.qxd 10/24/07 4:36 PM Page 471

08547c11.qxd 10/24/07 4:36 PM Page 472

Indirect Illumination

Indirect illumination significantly impacts our ability to draw more

realistic images using 3D software. Essentially, it adds the ability to calculate light paths

that occur after the direct light scatters in the scene. By doing so, indirect illumination

focuses on reflected radiation between different surfaces in the scene. In addition, there

are also volumetric indirect illumination effects, which tackle illumination of particles sus-

pended in air; these particles absorb, transmit, and reflect light.

This chapter builds on the previous discussions of light characteristics in Chapter 9,

“The Fundamentals of Light and Shading Models.” Be sure to complete that chapter prior

to reading this chapter, which demonstrates how indirect illumination handles the simu-

lation of indirect diffuse, specular, and glossy (DGS) light paths while considering energy

conservation, using simulated photon energy packets.

All host applications offer identical options for controlling indirect illumination. This

chapter first covers mental ray’s indirect illumination options and the host application set-

tings and then examines their effect on controlling indirect light paths. This chapter cov-

ers the following topics:

■ mental ray Indirect Illumination

■ Photon Shaders and Photon-Casting Lights

■ Indirect Illumination Options and Fine-Tuning

■ Participating Media (PM) Effects

C H A P T E R 1 2

08547c12.qxd 10/24/07 4:39 PM Page 473

mental ray Indirect Illumination
mental ray indirect illumination simulates the distribution of light in a scene using theo-

retical photons as a means for measuring and scattering light. Light energy is then quanti-

fied using photons—small energy packets that are emitted from light sources and absorbed,

transmitted, or reflected from surfaces in the scene. At each instance they transfer proper-

ties like real light, as discussed in Chapter 9, “The Fundamentals of Light and Shading

Models.” The transferable properties of light between surfaces are stored in a data tree

known as a photon map. To understand what a photon map is and how it is used by men-

tal ray for global illumination, see the sidebar “3D Photon Maps and Kd-Trees.”

3 D P H O T O N M A P S A N D K D - T R E E S

This sidebar presents an overview of photon mapping. The topics introduced here are dis-

cussed in detail and demonstrated using mental ray throughout this chapter and Chapter 13,

“Final Gather and Ambient Occlusion.”

A photon map stores photons in a three-dimensional data structure known as a Kd-tree,

which is a space-partitioning storage technique that, in this case, records the distribution of

photons in a three-dimensional space. Once these trees have been generated, you can

search inside them for values of nearby points at a given location.

Global illumination is a two-step process. The first stage handles the distribution of pho-

tons in the scene, recording RGB (per wavelength) energy values for a given photon in a pho-

ton map Kd-tree. It records energy only when a surface that interacts with a photon (a

photon hits it) has some diffuse light reflection applied through a photon shading model.

(Photon shaders were introduced in Chapter 9, “The Fundamentals of Light and Shading

Models,” and are further discussed in this chapter.) Global illumination simulates diffuse light

reflection, so to be recorded in a photon map, a surface must have some diffuse character; it

must reflect diffuse light. If it is either purely specular or black (absorbing all the light), the

location doesn’t contribute any data to the Kd-tree since there is no diffuse light reflection.

The photon is then reflected, refracted, or absorbed.

The advantage of a Kd-tree photon map is its ability to search over a certain radius at a

given location in the tree, which is essential to the second stage of global illumination—

rendering. That is, the first stage of global illumination handles the distribution and storage

of photons in a Kd-tree data structure, and the second stage deals with averaging the energy

values over a given radius in the Kd-tree, interpolating the color (energy) effect in the scene

using whatever photons fall within a given radius. The photons’ energy values are extracted

from stored data at each point within the photon map Kd data tree.

474 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 474

When you reuse a photon map, essentially you choose to skip the first stage of generating

photons, saving time by avoiding the precomputation and storage stage of points within the

photon map. During rendering (the second stage), you can still change how photons, from

within the photon map, are interpolated for color. Specifically, you can control how many

photons are to be considered for each interpolation and in what n radius nearby photons can

be “seen” for interpolation. To further clarify, interpolation is initiated during rendering with

each render sample that is taken in the scene (sampling is discussed in Chapter 5, “Quality

Control”); each render sample requires an interpolated color value derived from the RGB

energy values stored within the photon map, and by doing so (interpolating color from sev-

eral photons), it defines the indirect illumination effect in the scene. The interpolation process

is handled by global illumination, and that data is then passed to mental ray for use with the

render equation to add direct illumination with indirect illumination.

When Final Gather (FG) is also enabled and specifically set to precomputed irradiance

during the photon map generation, the Kd-tree also stores irradiance values (from photons)

across surfaces in addition to global illumination photon energy values. The irradiance data

used for FG reflects the total irradiance from various photons at a given point (see Chapter 13,

“Final Gather and Ambient Occlusion,”). Essentially it enables FG to extract irradiance at a

given point with a single sample (lookup for an RGB irradiance value at a given point in the

Kd-tree) without requiring it to sample several photons to determine their contribution to

irradiance (using several samples/lookups in the tree).

mental ray carries color as RGB energy values from one surface to another. At each

point of incidence (irradiance), the energy carried by a photon to the surface partially

affects that surface color, based on the surface’s photon shader settings (that is, whether

it’s a specular or diffuse surface). At the same time, photons may acquire color informa-

tion from that surface’s photon shader, representing its reflected color, carrying that

reflected light color to the next point of incidence. The process of transferring reflected

color properties (light) from one surface to the next is referred to as color bleeding in

mental ray and other global illumination simulations. Color bleeding resolves the trans-

ferable color properties between surfaces in the scene using photon shaders. For example,

a green sphere on a white floor will bleed some of its green color onto the floor. You can

see samples of color bleeding in the color gallery images labeled “Photon Shaders and

Color Bleeding,” as well as in several other images in the gallery.

In addition, the loss of energy over distance (the inverse square law) is accounted for at

each point of incidence. Therefore, indirect illumination simulates the transfer of color

and energy, until either all the energy has been absorbed (stored in a surface) or a photon

is cast into “empty space,” theoretically traveling infinitely. Recall that light spreads over

mental ray indirect illumination ■ 475

08547c12.qxd 10/24/07 4:39 PM Page 475

distance based on the inverse square law, in which relative light intensity is a factor of the

light spread over a given distance. Photons in mental ray also simulate energy decay char-

acteristics, as you will see throughout this chapter. Essentially photons are conveniently

used with indirect illumination simulations to transfer intensity (radiance flux/energy) as

RGB per-wavelength color properties in small photon packets, mimicking the light’s real-

world behavior.

Each photon acts as a temporary data container that carries RGB energy values corre-

sponding to long, medium, and short wavelengths of light that are stored within the pho-

ton map file. Obviously, some physical light characteristics, such as an actual pair of

oscillating waves, are not really simulated in 3D; however, the geometric optics mathemat-

ical equations that are based on the particle accretion of light are used to calculate the

emission, absorption, transmission, and reflection of indirect light contribution in a scene.

Ultimately, by considering direct and indirect light, as well as surface shading characteris-

tics, mental ray can determine the equilibrium of light in the scene using a rendering

equation. Rendering is then the process of using a wide range of geometric optics equa-

tions that describe light within a synthetic environment. Each component (direct vs. indi-

rect and diffuse vs. specular) is evaluated independently of the other, and at the end they

are all balanced together using the rendering equation.

The only real caveat with respect to photons is that in real life an infinite number of

photons exist, whereas in 3D, the number of photons represents a very small percentage

of real-world conditions. So, photons in mental ray are used to average the result over a

given area, as discussed in the earlier sidebar “3D Photon Maps and Kd-Trees.”

Indirect Illumination Features
mental ray photon mapping differs from radiosity (discussed briefly in Chapter 13, “Final

Gather and Ambient Occlusion”) in that it is independent of the scene geometry. It does,

however, deal with the same topic of resolving diffuse indirect light paths in the scene. The

photon mapping technique used with mental ray also adds the ability to calculate the con-

tribution of specular and volume indirect light reflection. Thus, there are two types of indi-

rect illumination techniques used to resolve indirect light: global illumination and caustics.

Both can be used to illuminate geometry or participating media (particles) in the scene.

Global illumination deals with the diffuse properties of indirect light, as they reflect,

absorb, and transmit photons from surfaces. Caustic light deals with the additional inter-

action of specular reflection and transmission, which have an ability to amplify the light

intensity and thus possess very different visual characteristics. Participating media volume

effects are a subset of global illumination that is used to illuminate diffuse substances that

are not considered solid surfaces. The term typically refers to smoke, dust, mist, and light

rays that enter a room; see “Participating Media (PM) Effects” later in this chapter. Note

that participating media can be applied as direct or indirect light.

476 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 476

Photon Mapping and Light Paths
Photon mapping is a two-step process, introduced in the sidebar “3D Photons Maps and

Kd-Trees,” that first involves emitting photons from a source light and then rendering the

scene while weighing in both direct and indirect light. Global illumination (GI) and caus-

tics are raytrace features that are somewhat different from the raytrace algorithms dis-

cussed in Chapter 2, “Rendering Algorithms.” Typically, primary rays (direct lighting)

initiate at the camera, traveling to a surface and then to the light source. With indirect

lighting, the first stage of emitting photons is reversed, a process known as forward

raytracing. Therefore, rays carry photons from the source light into the scene and then

from one point of incidence to the next, where photons are used to transfer energy and

rays are used to reflect or refract the photon’s path.

Figure 12.1 illustrates some of the different paths light may take as it travels in the

scene. As a user you can define the number of times each ray type (photon) may bounce

or transmit in the scene, as discussed in this chapter. The arrow labeled A shows the process

of global illumination where diffuse light reflects from the floor to the wall and then back

to the ceiling, adding light in areas where the direct light has no effect. At each point of

contact it stores radiance (energy) using photons, as described in the sidebar earlier.

A

C

B

Figure 12.1

Some photon light
paths for global
illumination and
caustics

mental ray indirect illumination ■ 477

08547c12.qxd 10/24/07 4:39 PM Page 477

The arrow labeled B carries diffuse light from the wall to the floor and then to a sphere

illuminating the sphere using the floor’s diffuse reflected light. The sphere has a mix of

diffuse and glossy surface properties, so it is affected by indirect light because it has diffuse

values. The arrow labeled C is shown refracting through a dielectric sphere that does not

possess any diffuse characteristics. Thus, in this case, the photons will not store any infor-

mation as they transmit through the sphere; they are merely redirected by rays that carry

them through the sphere. When caustics are used, the arrow labeled C will magnify the

intensity of light after refracting through the sphere and form the caustic region shown at

the tip of the arrow labeled C.

You’ll learn more about all of these characteristics throughout this chapter.

Balancing Light

If direct illumination is independent of indirect illumination, how do they interact during

rendering? Here are a few points to consider:

• If both photons and direct light influence the same surface points within a direct line

of sight (from the light), then the light influence at those points would be mathemati-

cally added (combined). To remedy this, photons for a given light source are not

stored within its direct line of sight, where the direct light illuminates the surface.

However, when using multiple lights, areas within a direct line of sight for one light

may be in an indirect line of sight for another.

• Indirect light is intended to omit the process of creating fill or back lights in the scene.

Its main purpose is to provide the same effect as those solutions (fill light from

reflected radiation), simulating realism.

• Since both direct and indirect light are evaluated independently, the direct light char-

acteristics should be set to match the indirect light characteristics, with respect to

energy and falloff (light decay). Failing to do so can produce incoherent results in the

final rendered image. This assumption is primarily based on your approach to indi-

rect lighting. You may decide to use physical shaders that simulate light transport

realistically according to the laws of energy conservation, such as for architectural

rendering. Or, for a more creative approach, you may use nonphysical shaders and

lights that provide a visually pleasing end result with indirect illumination.

We also need to consider that photons that are cast from a source light may end up

reflecting back to the direct light’s area of influence, as shown in Figure 12.2 image A. The

result is overexposure, because the direct lighting is not balanced with the indirect lighting

and the two together create very bright regions of light around the source light. The rea-

son for the overexposure is a result of using energy values that are too high. If you use cor-

rect values, then this sort of artifact should not appear; however, creatively speaking, the

room may appear too dark for your purposes. So, you increase the energy and get more

478 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 478

light but also overexposure. To remedy this, I use a second spot light that is placed farther

away from the source light and doesn’t affect direct lighting but does emit photons. Fig-

ure 12.2 image B shows the result.

Rendering Indirect Illumination

Once the photon map is evaluated, the scene is then rendered using the standard back-

ward raytracing approach for primary eye rays. So, the photon map provides additional

color that is weighed in during rendering and additively combined with direct lighting.

Photons can store color values only on diffuse surfaces; they may leave some energy or

be fully absorbed only on surfaces that possess some diffuse color (regardless of global

illumination or caustics). Thus, with specular surfaces, photons are reflected or refracted

but not stored; they are stored only when they eventually hit a surface that has some dif-

fuse characteristics.

Figure 12.3 demonstrates a global illumination solution where the direct light is negli-

gible so that you can clearly see the photons in the scene. Each photon that appears on a

surface (the walls) is there because the surface stored some of the energy from a photon,

and thus the color you see represents the reflected energy cast onto that surface from the

surroundings, using photons. If the surface completely absorbs the photon, there is no

color, so you do not see a photon. A plane is placed through the center of the room and is

fully specular, meaning it has no diffuse characteristics. In this case, I used DGS illumina-

tion and photon shaders (see “Photon Shaders and Photon-Casting Lights” later in this

chapter) where the diffuse color is set to black and the specular color is set to white. The

result is that the photons are reflected from the surface and never penetrate the plane, and

they don’t deposit any energy on the plane surface. On the right, you can see the photon

map illustrated in a host application. The dots represent the stored photons (from the

photon map Kd-tree) shown in the rendering, and as you can see, there are no photons

placed on the center plane.

A B

Figure 12.2

Photons can reflect
back on the light
emission area (direct
light) leading to
overexposure in the
direct light area.

mental ray indirect illumination ■ 479

08547c12.qxd 10/24/07 4:39 PM Page 479

Figure 12.4 demonstrates the same room with a surface that is purely refractive (100

percent transparent). In this case, you can see in both the rendered version and the screen

grab that photons transmit through the surface without depositing any energy on that

refractive surface.

In both cases, it’s important to note that in the rendered image all the photons that are

stored on the walls are seen on the reflective surface (Figure 12.3) or through the refractive

surface (Figure 12.4). This emphasizes the point that once the indirect contribution is

Figure 12.4

Photon paths are
reflective from

a purely specular
surface that has no
diffuse characteris-

tics and are then
stored on a diffused

surface only.

Figure 12.3

Photon paths are
reflected from

pure specular sur-
faces that have no

diffuse color and are
stored on diffused

surfaces only.

480 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 480

distributed in the scene, it is rendered as visible light on surfaces that may appear in reflec-

tive surfaces or through refractions. However, there are no stored photons on the mirror

or glass surface, because it reflected or refracted all the photons that interacted with it.

As mentioned earlier, caustics handle the specular nature of light, whether it is reflec-

tion or refraction. However, the global illumination solution shown in these two figures

reflects and transmits from the center plane. Thus, the difference between global illumi-

nation and caustics is that caustics actually account for the effect specular surfaces have

on light, magnifying their intensity, as I will discuss in the “Caustics” section later in this

chapter. And with global illumination, the light paths interact correctly in the scene, reflect-

ing and refracting through surfaces, but the energy they transfer is not influenced by the

specular surface, only their color. In a similar way, direct lighting also inherits color from

specular surfaces; however, neither direct light nor global illumination simulate the effect

these surfaces have on the photon’s energy (intensity).

Photon Shaders and Photon-Casting Lights
The following sections cover lights and photon shaders that are used for indirect illumina-

tion and their host-specific settings. They are for the most part named and distributed in

the same way with each host application.

Photon Shaders and Settings
As noted previously, direct light and indirect light are calculated separately during the

render, and their combined contributions are added up mathematically using a render

equation. The photon map is evaluated based on a separate set of shaders so that direct

light uses the illumination shaders to evaluate light, and photon maps use the photon

shaders. Effectively, each surface has two types of illumination shaders that are used inde-

pendently of each other to calculate direct and indirect light. Thus, a blue illumination

shader will reflect blue light (direct lighting), and a red photon shader will reflect red indi-

rect light, as shown in the color gallery labeled “Photon Shaders and Color Bleeding.”

To fully understand how everything (direct light, indirect lighting, and photon shaders)

comes together, let’s examine the “Photon Shaders and Color Bleeding” image in the color

gallery. It shows a red sphere and red wall that share the same green photon shader as the

green sphere. This green photon shader is responsible for reflecting green indirect light in

the scene, shown with the green color bleeding from the green and red surfaces in the

image. The blue wall and sphere have a blue photon shader that reflects blue light. The

reason for this strange setup is to demonstrate that illumination shaders are completely

You can see the effect of bleeding in some amateur green-screen visual effects. If the object is

too close to the green screen, a green glow appears on it.

photon shaders and photon-casting lights ■ 481

08547c12.qxd 10/24/07 4:39 PM Page 481

detached from photon shaders and global illumination. The only interaction between illu-

mination shaders and global illumination is when the global illumination light contribu-

tion is added with the direct light illumination while solving the rendering equation. From

this you can draw two important conclusions:

• Global illumination extracts the light energy values (color) from photon shaders.

• It then uses those values to illuminate a surface’s illumination shader.

Thus, values from global illumination represent the indirect light contribution applied

to illumination shaders, acquired by the process of reflecting and transmitting indirect

light using global illumination with photon shaders. This means that for proper results

you will need to match the two shaders so the overall lighting makes sense, avoiding errors

such as the one demonstrated in the color gallery where the red sphere and wall reflect

green light.

mental ray Photon Shaders

A photon shader’s diffuse color is used with global illumination, and the glossy and

specular colors are used with caustics. From the physics shader library the DGS and

dielectric illumination shaders have corresponding photon shaders that have identical

color options so that it is easy to match their settings. The base shader library has one

default photon shader (mib_photon_basic) that is used

with the different illumination models (Phong, Blinn,

Cook-Torrance, and so on). The basic shader offers the

important components used with indirect illumination,

including Diffuse, Specular, Transparency, and Index

of Refraction options, as shown in Figure 12.5, which

shows a base photon shader in XSI. Effectively, in this

way it covers the different types of light paths that may

be used to absorb, transmit, or reflect photons.

I discussed the topic of applying mental ray shaders to surface materials in Chapter 9,

“The Fundamentals of Light and Shading Models.” In that chapter, you saw that each

host has a material connection for a photon shader in addition to all the other connections

(illumination, volume, displacement, and so on). There is really nothing more to say

about photon shaders (as a shader type) beyond that they are identical to standard shaders

and are used during indirect illumination only, which is why they don’t need to be as

complex as standard shading models. The photon shader dictates only the appearance of

If a surface does not have a photon shader, it will not participate in the photon emission

stage and thus will not affect indirect illumination.

482 ■ chapter 12: Indirect Illumination

Figure 12.5

The mental images
base (mib) shader

library photon basic
shader options seen

in XSI

08547c12.qxd 10/24/07 4:39 PM Page 482

reflected indirect light from a surface and does not handle rendering the highlights or

reflection colors, so all the information it really needs about a surface is whether it is

diffuse or specular and its color.

Selecting Diffuse Colors

In real life a surface’s color is based on two main components: the incident light’s spec-

trum of color and the wavelengths that the surface predominately reflects, filtering light

between absorption and reflection or transmittance. Typically, red surfaces reflect a “red-

der” spectrum of light while absorbing other wavelengths so that the red portion of the

visible spectrum is more predominant to the observer. With CG you can use pure colors

such as red, green, and blue. In such cases a surface will reflect only the pure color it is

assigned. Thus, if it’s red, it will absorb the green and blue colors completely, since those

color components are set to zero and reflect only red color. In real life the red would still

be partially affected by the other wavelengths in a number of ways (different wavelength

combinations can form similar red tints) and not a pure color; however, in CG you can

break the rules and use pure colors, but that is not recommended.

The use of pure colors has influence on the appearance of overexposure and color

bleeding:

Overexposure When a surface has a color defined using one predominant color, such as

red, and some blue and green, then as you increase the intensity of light, the reflected light

increases for each wavelength. Eventually all three components will reach a value greater

than one, and you will see white, which is overexposure. However, with pure colors, two

components are set to black (zero), so as they multiply by an increasing light, they always

cancel it out and never increase in their intensity. This characteristic actually simulates full

absorption for a given color channel that is set to zero. Thus, with pure colors, overexpo-

sure will always appear as a strong pure color and never transition to white.

Color bleeding A pure color surface that absorbs the two other color components makes it

impossible to affect that surface with color bleeding, which typically is undesirable; you do

want to see the effect of color bleeding on surfaces. Thus, with pure colors, you will not see

color bleeding because they always render only the pure color.

Color and Absorption

Color defines how much absorption occurs on a surface. Thus, a white color will reflect all

the incoming indirect light, and black will absorb all the indirect light. The result is that

photons will not store (deposit energy) where a shader has black diffuse color. Essentially,

the diffuse RGB color channels act as multipliers against the incident photon RGB energy

values so that a black color cancels out any indirect illumination, as shown in Figure 12.6.

Here the rendered image A utilizes a checker pattern on the back wall, and the screen-grab

photon shaders and photon-casting lights ■ 483

08547c12.qxd 10/24/07 4:39 PM Page 483

image B shows the photon distribution in the scene (in Maya you can load the photon

map into the scene for viewing) where you clearly see that the black checkers don’t have

any photons stored at their locations. Thus, if you want to avoid this sort of effect, you

may want to leave some value so that it is dark but not completely black. In that way, you

guarantee that the photons will not disappear as they transition to black colors. In real-

world conditions even very “black” objects have some diffuse light effect. A theoretical

purely black surface was already discussed in Chapter 9, “The Fundamentals of Light and

Shading Models,” with respect to black body radiation experiments used to derive color

temperatures.

When you choose colors for a surface, you need to keep in mind that different combi-

nations of wavelength frequencies, at different amplitudes (brightness), depict color. The

objective is to use some variation with RGB colors and value so that you can better simu-

late light transport without completely omitting a light wavelength such as red, green, or

blue, if one of them is set to zero.

Host Application and mental ray Photon Shaders

In Figure 12.7 you can see two shader trees in XSI. In image A you can see that I connected

the mib photon base shader to a material’s photon input directly. In image B you can see

that the Cook-Torrance shader connects to the photon input. Chapter 9, “The Funda-

mentals of Light and Shading Models,” discussed the difference between host-specific

A B

Figure 12.6

Black diffuse color
will completely

absorb photons as
shown in the ren-

dered image (A) and
in the screen grab

(B), thus there is no
indirect light influ-

ence on the black
checkers shown in

the figure.

484 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 484

monolithic shaders and mental ray base shaders. All host-specific shaders have been

compiled in a way that they have a built in photon shader. Thus, all the color information

is directly taken from the surface’s illumination shader and used with the photon shader,

referring to the diffuse, specular, transparency, and index of refraction options.

An important consideration is that you can map the diffuse or specular components of

a photon shader with the same texture you use for the illumination shader. Essentially

they both share the same color information as shown in A, where a checker texture is

attached to the diffuse component of both the Cook-Torrance and photon shaders. How-

ever, some complex textures may cause artifacts in the render with indirect illumination if

they are too detailed, so you may want to just map it with a simplified version of the sur-

face texture that has approximately the same colors. In this way you guarantee that the

indirect illumination colors will appear to inherit the correct color from the surface.

C O N T R O L L I N G S U R F A C E I R R A D I A N C E

Maya and XSI monolithic shaders also have an irradiance option that

acts as a multiplier against the irradiance on the surface, as shown for

Maya in Figure 12.8 image A and XSI in image B. These options enable

you to fine-tune the amount of irradiance cast on a surface point. In

Maya you can find it in a Maya-centric shader under the mental ray

rollout. In XSI-centric shaders, it appears on the Indirect Illumination

tab, as shown in the figure.

The following considerations apply:

• If the surface receives too much color bleeding or energy (if it appears too bright),

you can reduce the Irradiance Color attribute in Maya or the Radiance property in

XSI to decrease the indirect illumination effect.

A

B

A

B

Figure 12.7

A photon shader
tree in XSI in A and a
monolithic shader
shown in B

photon shaders and photon-casting lights ■ 485

Figure 12.8

Irradiance options
on host-specific
monolithic shaders

08547c12.qxd 10/24/07 4:39 PM Page 485

• Reducing the irradiance can solve problems such as the blown-out regions shown in

Figure 12.2 earlier. Doing so may also cause an imbalance between surfaces. For

example, if you try to reduce the irradiance on the wall to resolve the blown-out

regions shown in Figure 12.2, the entire wall would appear darker than the remaining

walls, so it is not always an ideal solution.

• When changing the irradiance for a surface, you typically need to change the irradi-

ance across that entire object, regardless of how many independent surfaces the object

comprises. For example, reduce the irradiance for an entire room (all the walls if they

have the same color), all the surfaces that build a cabinet, or the entire car. In this way

you are more likely to have coherent results.

Let’s briefly look at host-specific shaders and the process of assigning photon shaders in

host applications.

M A Y A

In Maya, when using Maya-centric shaders, you don’t need to apply a photon shader as

cited previously. You can break the connection between the illumination shader and pho-

ton shader with the attributes found under a Maya-centric shader’s mental ray ➔ Photon

Attributes rollout. The Derive from Maya Attribute check box breaks the dependency;

when it’s disabled, you control the photon shader using the settings in the Photon Attrib-

utes rollout.

When using mental ray shaders, you can find the photon shaders in the Hypershade

window under the Create mental ray Nodes ➔ Photonic Materials rollout, as shown in

Figure 12.9. Notice that you have DGS, dielectric, mib_photon_basic, and transmat

(discussed in the “Participating Media (PM) Effects” section later in this chapter) shaders.

When using shaders other than the DGS or dielectric shaders, which have their own

photon shader, you should use the mib_photon_basic shader. To apply these connections,

follow these steps:

1. Apply a mental ray illumination shader to a surface from the Create mental ray

Nodes ➔ Materials rollout.

2. Graph the network in the Hypershade window so you can see the shading engine

node, for example, mib_illum_blinn1SG.

3. Select a photon shader from the Photonic Materials rollout.

4. Under the shading engine, expand the mental ray rollout (the mental ray material

discussed in Chapter 9, “The Fundamentals of Light and Shading Models”).

5. Drag and drop the photon shader over the mental ray material’s Photon Shader

input.

6. Set the diffuse and specular colors for the illumination and photon shaders to the

same values.

486 ■ chapter 12: Indirect Illumination

Figure 12.9

mental ray photon
shaders in Maya

08547c12.qxd 10/24/07 4:39 PM Page 486

Your material is now ready to participate in indirect illumination. Note that as cited

previously and illustrated in Figure 12.7 image A, you can apply the same texture map to

both the illumination shader and the photon shader.

You can also see the participating media photon shader (parti_volume_photon) in the

Photon Volumetric Materials rollout, as shown in Figure 12.9. You’ll use it later in the

“Participating Media (PM) Effects” section for volumetric effects. In that section you will

also use the transmat_photon shader shown in Figure 12.9.

X S I

I’ve already reviewed the differences between XSI-centric shaders and mental ray shaders

with the shader tree graphs shown earlier in Figure 12.7. You can also see the photon

shader properties for an XSI monolithic shader in Figure 12.8 image B. You can find the

mental ray base photon shader in the Render Tree window under Nodes ➔ Raytracing ➔

Photon. Once a connection is created, applying it is as simple as dragging the shader to the

material’s Photon input, as shown in Figure 12.7 image A.

I discussed adding custom shaders to XSI in Chapter 10, “mental ray Shaders and

Shader Trees,” where you saw the Tek2Shoot and XPhysics shader library add-ons. You’ll

need to have one of these libraries installed for the “Participating Media (PM) Effects”

section later in this chapter, where you’ll use the transmat and parti_media photon

shaders for volumetric effects; both shaders and their photon equivalents are included

with both libraries.

If you added the Tek2Shoot Unexposed mental ray shaders (from their home page)

library, you will find a Photon directory with DGS, dielectric, and transmat photon shaders.

You will also find a volume directory with the parti_volume participating media shader

and photon shader. With the Xphysics library all thee shaders are constructed as monolithic

shaders that can be attached to the material’s Surface and Photon inputs. The Xphysics_

volume (participating media) shader is also a monolithic shader that is attached to the

Volume and Photon Volume inputs.

Note that XSI already incorporates the participating media shader using the volume

effects shader found in the Render Tree window under Nodes ➔ Volume ➔ Volume Effects.

3 D S M A X

In 3ds Max when using 3ds Max–centric shaders, you don’t need to apply a photon shader,

as cited earlier. You can break the connection between the illumination shader and photon

shader with the parameters found in the Material Editor under the shader’s mental ray

When using the architectural library (labeled as mia material under the mental ray illumina-

tion shaders) material, you should drag and drop the mia material onto three inputs: Material

Shader, Shadow Shader, and Photon Shader. Sometimes these connections may already

be present.

photon shaders and photon-casting lights ■ 487

08547c12.qxd 10/24/07 4:39 PM Page 487

Connection rollout in the Caustic and GI section, as shown in Figure 12.10. When you

disable the lock for the Photon connection, you can then map it with a photon basic

(base) shader from the Material/Map Browser window.

You will find a collection of photon shaders that include

the DGS, dielectric, photon basic (base), and transmat

photon (physics), as well as some photon shaders for the

lume shader library.

Once the Photon parameter is mapped, as shown in Figure 12.10, you then control the

photon shader using the settings found under the photon shader’s parameters rather than

having them automatically update from the 3ds Max shader. The color or texture used for

the 3ds Max shader’s diffuse parameters should also be mapped to the photon shader’s

diffuse parameter unless, as discussed earlier, you specifically want to use a simplified ver-

sion of the settings such as a simple color for the photon shader diffuse color, opposed to a

texture map.

When you select to use mental ray material (see Chapter 10, “mental ray Shaders and

Shader Trees”) instead of 3ds Max’s standard material, then under the Material Shader

rollout there is no automation that drives the Photon shader. Instead, in such cases you

must connect the Photon parameter with a photon shader in addition to the surface

shader input if you want that surface to participate in both direct and indirect lighting

simulations, as cited earlier.

You can also see in Figure 12.10 and under the mental ray material’s Material Shader

rollout the photon Volume and Volume parameters. You’ll use these connections later, in

the “Participating Media (PM) Effects” section, for volumetric effects. In that section, you

will use the parti volume (physics) and transmat (physics) shaders and their correlating

photon shaders; you can find all of these in the Material/Map Browser window when you

select to map any of these inputs.

Photon-Emitting Lights
Just as with surfaces that have an independent photon shader for indirect illumination,

light sources also have a separate statement block that deals with emitting photons, as

shown in the following excerpt from a photon-emitting light shader:

light “pointLightShape”

= “physical_light”

origin 0. 0. 0.

rectangle 0. 2. 0. 2. 0. 0.

3 3 0

visible

energy 5000. 5000. 5000. # photon energy

exponent 2. # photon decay

caustic photons 10000 # caustic photons (stored)

globillum photons 10000 # GI photons (stored)

end light

488 ■ chapter 12: Indirect Illumination

Figure 12.10

3ds Max–centric
shaders can have

independent pho-
ton shaders applied.

08547c12.qxd 10/24/07 4:39 PM Page 488

This light declaration statement has four parts, three of which were discussed in detail

in Chapter 6, “Lights and Soft Shadows”:

• The light shader, in this case a physical light that is used to define direct light

characteristics.

• The light type; in this case the origin option defines the light as a point light.

• The area light options; in this case creating a rectangular emitting area light.

• The remaining options (labeled with respect to their purpose) are all photon-related

options that add a photon-casting ability to the light.

The energy and exponent Options

One of the most important options with indirect illumination is the energy option. It

defines the light’s energy using three RGB values. These are the RGB values (wavelengths)

that are stored within a photon as it travels in the scene, as discussed at the beginning of

this chapter. Here lies the difference between standard direct lighting and physically cor-

rect simulations of light. Direct lighting doesn’t deal with real energy values; you simply

use a 0 to 1 range to define the light’s brightness for visually pleasing results. Here the

energy corresponds to physically correct energy values for the purpose of simulating real

light characteristics. Topics such as gamma correction and overexposure, as discussed in

Chapter 9, “The Fundamentals of Light and Shading Models ,” become more important

with physical simulations of light; see the “Indirect Illumination and Gamma Correction”

sidebar later in this chapter.

In addition to the energy values, light falloff should also mimic realism, following the

inverse square rule of light decay. The exponent option defines the falloff rate, and when

set at the default (a value of 2), the falloff is physically correct; an inverse square falloff

(1 ÷ radius2). If you change the value to 1, the falloff is linear (1 ÷ radius). In 3D, an inverse

square falloff may appear too rapid because it does not deal with real-life scales. Thus, for

visually pleasing results, without overthinking correct energy values and distances, you

can occasionally use linear falloff rates and still render compelling images that appear to

have realistic lighting. For example, if you are simulating sunlight entering a room, it is

clear that you will not see a rapid falloff of light energy. In such cases you may prefer using

a linear falloff rate for a source light that simulates the sun.

D I R E C T A N D I N D I R E C T L I G H T E N E R G Y A N D F A L L O F F

When preparing indirect illumination scenes, photon-casting lights should have the same

energy for direct light as with the photon’s energy. Thus, with light simulations, it is better

to use the mental ray physical light shader, which accepts energy values as light color and

enforces an inverse square falloff rate. In this way, you assure that the photon’s energy and

the light energy are coherent. For example, you would set both RGB color values and the

photon energy RGB values to 1000.

photon shaders and photon-casting lights ■ 489

08547c12.qxd 10/24/07 4:39 PM Page 489

Besides using mental ray’s physical light shader for specifying real energy values and

inverse square falloff, you can use host-specific lights. Host application lights have a color

option as well as an intensity multiplier to specify direct light intensity and color. You

should set either the multiplier or the color to the same energy value used with the pho-

tons. If you set energy using the light’s color, the intensity multiplier should be set to 1 so

it doesn’t reduce or amplify that energy.

The falloff rate of both direct light and photons should also match, as cited earlier.

Thus, you also need to set their falloff to quadratic (or inverse square) if the exponent

option is set to 2. See the following sections for host-specific settings.

The globillum and caustic Options

The globillum and caustic options define how many photons are cast for global illumi-

nation and caustics, respectively. Each simulation is independent of the other, as cited

earlier, and thus so are their photons. That is, photons used for global illumination are

not shared or used with caustics, and vice versa. So, if you intend to use both simula-

tions, you need to set both options with values that are efficient for each purpose. The

following section discusses the differences and decision-making process of how many

photons you should use.

Regardless of their purpose, these two options behave in the same way, dictating the

number of photons that are stored for each solution (global illumination and caustics) in

the photon map. Essentially they control how many photons are stored rather than how

many photons are emitted in the scene.

The globillum and caustic options accept two values:

globillum [store n] [emit n]

caustic [store n] [emit n]

The first number (store n) defines the number of photons that are eventually stored in

the photon map. The following number (emit n) is optional and specifies the maximum

number of photons that can be emitted. If the store option is set to zero, then the photon

map will store as many photons as possible until the emit limit is reached and the photon

emission terminates.

It is the store option that you commonly specify in host applications, which is commonly mis-

interpreted as the number of emitted photons in the scene rather than the number of stored

photons in the photon map.

In some cases you will want to set the photon energy to a higher value than the light shader’s

energy, such as when a room appears too dark and you want to try increasing the indirect

lighting. Another approach is to use Final Gather to add irradiance, as discussed in Chapter 13,

“Final Gather and Ambient Occlusion.”

490 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 490

Not all emitted photons are stored. Some photons may be absorbed, and others may

escape the scene (travel to infinity), never reaching a target surface. Thus, the store value

indicates that at minimum a given number of photons will be stored and used for indirect

illumination regardless of how many are emitted. Doing so guarantees that the energy

specified with the energy option is properly distributed within the scene, and none is lost

in empty space. Thus, the purpose of the photon emission is to distribute a given amount

of light in the scene, utilizing all its energy. By specifying the number of photons to store,

mental ray can determine the correct energy value for each photon that it emits. To clarify,

the energy is divided by the number of stored photons (flux ÷ stored photons) so that

when all the photons are stored, they equally distribute the total energy in the scene. Any

lost photons are then irrelevant because they didn’t reduce the energy.

Although you typically want to match the light shader’s energy with the photon energy,

you can also use higher photon energy values to add more light. Keep in mind that the

number of photons stored reflects the total energy value, possibly including photons in

distant areas of the scene or runaway photons that store externally outside the scene. For

example, suppose you are using a source light to emit photons into a room, such as with

the sun, where a given percentage of the photons will store outside the room, externally

on the room’s walls. In this case, a lower amount of energy is distributed in the scene, and

you would need to increase the photons’ energy to add more light internally.

Host applications only provide an option to define the stored amount of photons and

don’t provide the additional (optional) emit number.

T R O U B L E S H O O T I N G P H O T O N E M I S S I O N S

Since photons are initially cast into the scene, you can follow the photon emission stage

within each host application. If this stage takes excessive time, or even aborts, it is likely

that photons are being cast but few are actually interacting with surfaces that store photons.

Thus, the photon map has a hard time reaching its target number of stored photons effi-

ciently, and the next stage cannot commence. Two primary reasons can lead to an

unnecessarily long photon emission stage: light framing and photon shaders.

For light framing, examine the scene from the light’s perspective. Make sure the light

doesn’t emit photons into large empty areas, where the scene represents a small percent-

age of the light’s perspective.

With photon shaders, if you cast photons and don’t see any indirect light influence

on some or any of the surfaces, it is likely they are not assigned with photon shaders.

Remember, surfaces that don’t have a photon shader are invisible to photons and will

not store photons at their locations.

Relatively speaking, photon casting should not take too long. Even with 1 to 2 million (several

photon-emitting lights) photons, the process should take a few minutes at most, not hours.

photon shaders and photon-casting lights ■ 491

08547c12.qxd 10/24/07 4:39 PM Page 491

Host Application Photon-Emitting Lights

Host application source lights have the same settings discussed earlier in this section. Here

I briefly point them out with some additional relevant comments. There are two common-

alties to all hosts worth mentioning before I cover each host independently.

With respect to the energy option discussed previously, all hosts offer an RGB color

option that defines the initial color for photons and uses an additional multiplier to define

the photon’s intensity for higher values (realistically simulating light energy).

Hosts do not offer one energy option with three values, rather a multiplier and color

option that together define the photon’s initial color and intensity as with chromaticity

and brightness. In the same way, direct light settings in host applications specify the

light’s color with a color option and the light’s intensity with a scalar (single float value)

multiplier. When setting these values, the photon color option should be set to the same

color used for the direct light so the light emits direct and indirect light using the same

tint. Effectively it means all the photons that are cast into the scene will apply that tint to

surfaces they interact with, because they transfer color properties. That initial color is sub-

ject to change, because photons also inherit color from surfaces, as discussed previously

with respect to color bleeding.

In addition, with Maya and XSI note that specifying the number of stored photons (the

globillum and caustic options) requires you to first enable that particular feature under

the render settings, as discussed next with the options block options. Thus, you first enable

global illumination or caustics under the render settings, and only then you can specify a

photon count under the light’s options.

M A Y A

For a selected light (point, spot, or directional), you can find the photon emission

attributes under the mental ray rollout ➔ Caustics and Global Illumination rollout

shown in Figure 12.11. To enable photon emission, simply check the Emit Photon

attribute box. You then use the remaining settings to control the light’s contribution

to indirect illumination.

As cited earlier, use the Photon Color attribute to define an initial color for photons

and the Photon Intensity attribute to define the energy intensity. Both these attributes

correlate to the energy option discussed earlier. The Exponent attribute is the same as the

You should typically use area lights when possible with indirect lighting, which is always bet-

ter because photons are emitted over a given area (radiant exitance) rather than from an infi-

nitely small point. The result will provide for better illumination.

492 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 492

exponent option; it is set to 2 by default, providing an inverse square falloff. Both Caustic

Photons and Global Illum Photons clearly define the number of photons that are stored

with each simulation, and they are editable only after the corresponding attributes have

been enabled in the Render Settings window, as cited earlier.

Notice that a physical light shader is also attached to the same source light. The physi-

cal light Color attribute should have RGB values that correspond to the Photon Intensity

attribute so that as a starting point they emit the same light intensity into the scene. You

then can increase or decrease either one, as discussed earlier for improving photon illumi-

nation. The light is also set as an area light, so overall this is the sort of light you typically

set up for indirect illumination.

X S I

Under the light properties you can find the photon emission properties on the Photon tab

shown in Figure 12.12. To enable photon emission, check the Caustics or Global Illumina-

tion property boxes. When both are enabled, you will emit both global illumination and

caustic photons into the scene if those features are also enabled globally in the Render

Options property window. You then use the remaining settings to control the light’s con-

tribution to indirect illumination.

The Energy color property defines an initial color for photons, and the Intensity

property defines the energy intensity. Both properties correspond to the energy option

discussed earlier. The Exponent property is actually located on the General tab so that it is

shared with direct lighting; essentially both will have the same falloff rate. Just note that

with direct lighting you need to check the Light Falloff property box and set Mode to Use

Light Exponent in order to enable direct light decay. A value of 2 provides inverse square

falloff, as cited earlier.

Figure 12.12

XSI light options for indirect illumination

Figure 12.11

Maya light options for indirect illumination

photon shaders and photon-casting lights ■ 493

08547c12.qxd 10/24/07 4:39 PM Page 493

Both Caustic and Global Illumination properties under Number of Emitted Photons

control photon emission. In spite of their names, they actually control the number of

stored photons, as discussed earlier. Both properties become editable only after the equiva-

lent properties have been enabled in the mental ray Render Options property window, as

cited earlier. The light can (recommended) also be set as an area light on the Area tab, so

overall this is the sort of light you typically set up for indirect illumination.

3 D S M A X

For a given light in the Modify panel, you can find the photon emission parameters under

the mental ray Indirect Illumination rollout, as shown in Figure 12.13. To enable photon

emission, simply check the Automatically Calculate Energy and Photons parameter box,

or alternatively, you can check the On parameter box under Manual Settings. Both enable

indirect illumination, but the parameters under Manual Settings include all the options

discussed earlier, and the former provides fewer settings by automating some of the process.

The automation technique is based on parameters that are defined globally in the

mental ray Renderer parameters window. I’ll cover them later in this chapter with indirect

illumination. The Energy, Caustic, and GI Photons parameters act as multipliers for the

global parameters. Ideally it is aimed at setting all the lights with the same parameters for

indirect light, and then you can fine-tune these settings on a per-light basis using these

multipliers.

Under the Manual Settings parameters, the Color parameter defines an initial color for

photons, and the Energy parameter defines the energy intensity. Both parameters correlate

to the energy option discussed earlier. The Decay parameter is the same as the exponent

option cited earlier; it is set to 2 by default, providing an inverse square falloff. Both Caus-

tic Photons and GI Photons define the number of photons that are stored with each simu-

lation. Typically it is better to use area lights unless you are using photometric lights, as

discussed in Chapter 6, “Lights and Soft Shadows,” so overall this is the sort of light you

set up for indirect illumination.

Indirect Illumination Options and Fine-Tuning
To use indirect illumination, you need to define two sets of options, as cited earlier. The

light options define the photon-scattering characteristics on a per-light basis, and the

option block options are used to enable and tweak global illumination, caustics, and par-

ticipating media effects on a global level. The option block options for global illumination

and caustics are shown here:

Global illumination options

globillum [on | off]

globillum accuracy [photons] [radius]

globillum scale [RGBA color]

494 ■ chapter 12: Indirect Illumination

Figure 12.13

3ds Max light
options for indirect

illumination

08547c12.qxd 10/24/07 4:39 PM Page 494

“globillum merge” [distance]

Caustic options

caustic [on | off]

caustic filter [type] [size]

caustic accuracy [photons] [radius]

caustic scale [RGBA color]

“caustic merge” [distance]

General options

photon trace depth [reflections][refractions] [max trace]

photonmap rebuild [on | off]

photonmap file “filename”

All these options are global to the scene and are used to enable and fine-tune global

illumination (GI) and caustics, based on which set of options are included in the options

block. These options define how mental ray will use GI and caustic photons during the

second phase of indirect illumination, which is rendering. They define how photons are

averaged and scaled when added with direct illumination. By looking at the previous

excerpt, you can tell that the options divide into three categories: GI, caustics, and general

settings. Some of these features are quality control features, and others are optimization

features that improve render times.

Note that some of these options can also be specified on a per-object level, overriding

global settings; but they are functional only when GI or caustics are enabled. You’ll learn

about per-object options in the host sections later in this chapter.

General Options
The general options shown in the previous excerpt are used to define how photons are

traced in the scene and whether mental ray should generate a photon map or reuse an

existing map. In addition to these options, mental ray also has two photon diagnostic

techniques that help troubleshoot photonic emission counts and energy levels. Let’s

review the general options and then examine the diagnostic modes.

Controlling Photon Reflections and Refractions

The photon trace depth option limits the number of times photons can bounce in the

scene, similar to the raytrace limits discussed in Chapter 2. Since real-world photons are

not limited to a given number reflections or refractions, when you increase the photon

trace depth values, you enable mental ray to conduct a more realistic simulation of light.

Earlier in this chapter I mentioned that photons bounce in the scene until they are fully

absorbed or cast into empty space. That statement is only partially true, because they are

also limited by the number of bounces permitted with this option.

indirect illumination options and fine-tuning ■ 495

08547c12.qxd 10/24/07 4:39 PM Page 495

As you see in the excerpt, you can specify reflections, refractions, and a max trace depth,

just as with raytrace limits. The max trace depth defines the total reflections and refractions

combined that a given photon can occur. If you consider reflections, which is the primary

type of trace a photon undergoes as it bounces in the scene, too low a value can significantly

reduce the amount of light and color bleeding in the scene. Thus, increasing the reflection

trace value helps better illuminate the scene by allowing more photons to interact with

surfaces. An increase in value also provides for more color bleeding between surfaces. In

the color gallery, “Photon Trace Limits” shows two images side by side. Image A has a

reflection limit of 3, and image B has a reflection limit of 6. As you can see, image B appears

brighter and also demonstrates more color bleeding across the surfaces.

Photon Maps

The photonmap file “filename” option defines a file name on disk that is used to store a

photon map. Typically each host defaults to a mental ray photon maps directory (see the

“host application” section later in the chapter). Once the file is stored you don’t need to

generate photons again, unless of course objects in the scene are in motion, or you change

(or animate) the settings of the photon light options or photon shader options. Specifi-

cally, if you change the light photon energy or photon count, you need to generate a new

photon map.

The photonmap rebuild [on | off] option defines whether a new photon map is gener-

ated (when set to on) or a preexisting one is used (when set to off). Thus, when you render

a scene for the first time, photons are generated. For subsequent renders, you can choose to

set this option to off and continue tweaking the camera, direct lighting intensity and color,

and some of the indirect illumination global options without regenerating a new photon

map every time you render, reducing the render time particularly with large photon counts.

Photon maps are based on the light’s location in the scene; because they are not dependent

on the camera, you can generate a light solution (photon map) and render it from any

angle or even with an animated camera while reusing the same photon map without taking

the time to generate a new one unless you move the photon source light itself.

Also, the indirect illumination options shown in the previous excerpt for caustics and

global illumination define how photons are rendered; thus they too can change without

If for some reason the photon map is set to off and you render, either you will see the result

from an old photon map or you won’t see anything at all. Make sure to keep track of this

option while using GI or caustics, as discussed in detail throughout the remainder of the

chapter.

496 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 496

requiring you to rebuild a photon map. It is a common practice to generate a photon

map and then set photonmap rebuild to off while adjusting the GI or caustic accuracy,

radius, and scale. However, if you change the trace depth, you need to rebuild a new pho-

ton map, because the trace option influences the spread of photons in the scene, not just

how they appear when rendered. At some point you may decide to change the photon

count, exponent, photon color, or energy (under the source light’s options), which also

requires generating a new photon map as their first phase (emission) properties have

changed.

In other words, every time you change options that influence the first phase of indirect

lighting, you need to regenerate a new photon map file. Obviously, if you change direct

light settings or illumination shader settings, you don’t need to create a new photon map

because those settings are not used with indirect illumination photons.

Photon maps are especially beneficial for animated scenes that have static objects where

only the camera changes, as with fly-through animations. If you have a large scene that is

static but a character interacts within it, consider rendering first the background and then

the character as separate passes to avoid rebuilding photon maps. You could also just

reuse the same photon map while the character interacts in the scene; the character will

not influence the indirect light in any way, similar to using passes. Remember that direct

and indirect lighting are rendered as separate components and then added with a render

equation so you can achieve the same results when adding the two lighting solutions

together in compositing, See the sidebar “Compositing Light Passes.” An advantage with

photon maps is that you can create a few different solutions and then just enter the name

for your favorite one as well as disable the rebuilding option.

Photon Diagnostics

There are two modes for diagnosing the distribution of photons in the scene. One is

based on density, and the other is irradiance intensity. Both options enable you to see a

color transition from blue (minimum), cyan, green, and yellow to red (maximum). The

command-line option used to enable photon diagnostics is as follows:

-diagnostic photon [off|density|irradiance] [max]

The image “Photon Density” in the color gallery shows the photon density diagnostic

mode and then the result after applying photon merging (discussed next). As you can see,

the location of the light is between the upper column and the ceiling, projecting light

upward. The result is a higher photon density, shown in red in that area of the ceiling,

while other areas of the scene appear blue. In the same way you can visualize the irradi-

ance across surfaces.

indirect illumination options and fine-tuning ■ 497

08547c12.qxd 10/24/07 4:39 PM Page 497

C O M P O S I T I N G L I G H T P A S S E S

With compositing passes, you need to add the direct light and indirect light passes together

and then multiply them against a color pass. Alternatively, you can multiply each one by the

color pass and then add them together, since light is multiplied by color, as discussed in

Chapter 9, “The Fundamentals of Light and Shading Models.” Thus, areas that do not

receive light will appear black and areas with a light value of 1, for example, will show the

surface’s full color.

A color pass needs to be a full ambient pass without any shading, only texture color, since

the light passes add the diffuse character of light. You can set the ambient color on shaders to

white or alternatively use an ambient light (if your host provides one) without any shading

to generate a color pass. In all cases, you should delete or disable any light sources, including

the default light from the scene. Here are some host-application specifics:

• In Maya the simplest approach is to create an ambient light and set the Ambient Shade

attribute to 0 so that it’s pure ambient light. In this way you don’t need to set ambient

color on a per-shader level. Disable the default light in the Render Settings window on

the Common tab.

• In XSI and 3ds Max you need to replace the shades with a constant shaders (no shading;

simple color output) or use custom passes.

These are basic guidelines, and as discussed in Chapter 3, “mental ray Output,” each

host has various options for outputting custom passes more effectively. Consider that

such a color pass doesn’t include diffuse characteristics, such as bump mapping (and the

Diffuse attribute in Maya). The diffuse effect of bump mapping needs to be present in

the light passes that define the intensity of light based on the surface normal, which

may be perturbed by a bump map. Thus, light passes also include per-surface diffuse

characteristics.

Furthermore, you then need to add additional passes such as specular, reflection, and

shadow color passes, to mention a few. In a nutshell, the math behind the composite tree, at

the most basic level, is as follows:

Indirect light pass × color pass = indirect color and light (A)

Direct light pass × color pass = direct color and light (B)

((A + B) × shadow pass) + Specular highlights pass + Reflection color pass

This topic warrants a book on its own; the information presented here is only enough to

get you started and to help you understand the internal workings of adding light passes.

Chapter 13, “Final Gather and Ambient Occlusion,” covers some additional passes with ambi-

ent occlusion.

498 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 498

The max value used with both options defines how the maximum limit is set, defining

what density level or irradiance intensity appears as red. With density it defines a number

of photons per-surface area, and with irradiance it defines the irradiance intensity. Higher

values tend to reduce the visible transition from red to blue, as you permit more photons

(density) per-surface area or accept higher irradiance values. The following section shows

one example of using diagnostics to fine-tune photon merging. You should experiment

with these modes to learn more about them.

Global Illumination (GI)
This section examines the global illumination options and defines each option’s purpose

so you can better understand how they relate to the light options discussed earlier, partic-

ularly photon counts. After reviewing these options, you will look at fine-tuning them

with a few simple examples that are easy to visually interpret.

Global Illumination Options

The globillum [on | off] option enables or disables GI. When the option is disabled, a

source light will not emit photons, even if it is set to do so. Thus, you don’t need to con-

cern yourself with disabling photon emission on a per-light basis when GI is disabled at

the global scene level.

The globillum scale [RGBA color] option acts as a global color multiplier for global

illumination. Decreasing the value reduces the total irradiance across surfaces in the scene.

Note that you can also render a 32-bit global illumination light pass and then have more

control over the irradiance (overexposure) in compositing without the overhead of render-

ing times; however, that affects the entire image, whereas this option influences only GI.

The “globillum merge” [distance] option merges photons in near proximity, within

the given distance in scene units. As discussed in the sidebar “3D Photon Maps and Kd-

Trees,” one of the advantages of a Kd-tree, such as a photon map, is that you can conduct

searches within a given area or radius. In this case, that radius is used to define a distance

where points in the tree will be combined into an individual point, reducing the density of

points in the Kd-Tree. Thus, it reduces the number of photons stored in the photon map,

decreasing its file size. It also has an effect on the rendered appearance of photons; as you

increase the merge distance, you can eliminate artifacts that occur when too many pho-

tons with different colors are interpolated over a small distance. The image “Photon Den-

sity” in the color gallery shows photon density in a diagnostic mode and the result after

applying a small distance value for photon merging.

Consider the case that you have a very dense distribution of photons in a small por-

tion of the scene, whereas the remainder of the scene doesn’t receive enough photons.

Naturally you increase the light’s photon count to force more photons into sparse areas

of the scene; however, at the same time you also increase the density of the photons in

the denser areas. In such extreme cases you may want to use the merge option to reduce

indirect illumination options and fine-tuning ■ 499

08547c12.qxd 10/24/07 4:39 PM Page 499

the density of photons in a given area, improving render performance. In the “General

Options” section earlier in the chapter, you looked at the options for diagnosing photon

distributions.

The globillum accuracy [photons] [radius] option is the most significant option for

quality control. This option determines how photons are interpolated to produce a final

color and look for the image. Most of the work with GI is based on balancing this option

along with the light’s photon count and energy. With all host applications, the globillum

accuracy option is divided into two separate options: accuracy and radius (labeled simi-

larly in each host). The radius option does not have to be specified; if it’s not, mental ray

will derive a best guess value based on 0.01 percent of the scene size. With hosts, specifying

a radius of 0 has the effect of forcing the default settings.

The accuracy (photons) setting defines how many photons are used to extract color

within a given radius from the sample point. With higher accuracy values, more photons

are considered during sampling and the render time increases. Larger radius values enable

more photons to overlap based on their distribution in the scene. You can see how these

options fall in line with Kd-trees and conducting searches in a given area.

Note that here is one of the major differences between real-life photons and simulation

of indirect light in CG. In real-world conditions, photons exist in infinite numbers, not

limited to 100,000 or a million. Thus, the accuracy and radius options allow for simulating

photons within a region, where each mental ray photon is equivalent to an area of photon

spread. The more photons you use, the finer the color and light detail distributed in the

scene. Let’s discuss balancing photon counts with the accuracy and radius options.

Fine-Tuning Accuracy, Radius, and Photon Counts

The first step is recognizing the effects of the radius and accuracy options. You can then

examine how to balance them effectively. In the following examples, GI is enabled in the

host’s global render settings, and a top-down area light emits photons into the scene.

The workflow for fine-tuning indirect illumination is to create an initial photon map

and then disable the Rebuild Photon Map option (set it to off). You then reuse that map

while tweaking the accuracy and radius values. At some point you may decide to cast

more photons into the scene, so you need to change the light’s photon count and rebuild a

new photon map and then again test different accuracy and radius values until you are

satisfied with the result.

The scene in this example, shown in Figure 12.14, is based on a Cornell box scheme. A

Cornell box is typically a square room with one red wall and one blue wall, and the center

wall, floor, and ceiling are white. A Cornell box room can be used to examine how indirect

illumination color bleeding affects objects in the room and examine light distribution

using different accuracy, radius, and photon counts. In this case, the scene is populated

500 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 500

with a kitchen and a wooden floor. Some of the objects in the scene have color textures,

and the right wall is red and the left wall is blue, as with a Cornell box. Let’s look at some

different settings and their effect on the rendered image and then derive some conclusions

on how to fine-tune global illumination.

In Figure 12.14 you can see the spread of 5,000 photons in the scene. Direct lighting is

set to a negligible value so that it does not affect the scene and you see only the effects of

indirect light and photon shaders. Note that you can see specular reflections of photons,

as demonstrated earlier with Figures 12.3 and 12.4; for example, the reflection of the door

appears on the floor. You can see the color version for this image on the companion CD

in the Chapter 12 folder. In color you will notice the effect on the white ceiling, which

acquires a multitude of color photons from various objects in the scene.

In this case, the photon accuracy is set to 10, and radius is set to 2. The radius defines

the search area for photons when sampling a point in the scene. Any photons found in

that area are averaged based on the accuracy value. In other words, the accuracy deter-

mines how many photons will be used to define the color within that radius. The result is

a circle of colors that blend to provide the final color seen within that radius. In this case,

you can see that there are too few photons in the scene, and several areas in the scene

are not covered with photons. Thus, a radius of 2 with 5,000 photons leaves several areas

Figure 12.14

Casting 5,000 pho-
tons into the scene
with a small radius
value of 2 and accu-
racy set to 10

indirect illumination options and fine-tuning ■ 501

08547c12.qxd 10/24/07 4:39 PM Page 501

unaffected by indirect light. If you increase the radius, you can then blend more photons

over a larger region, affecting more areas in the scene such as in the corners of the room.

In Figure 12.15 (also available on the CD), the radius has been increased to 4, and you

see more indirect light coverage in the scene. Note that there are still areas in the scene

that don’t receive any contribution from indirect lighting and are marked with the arrows

shown in the figure. One of your goals with indirect light is to balance the photon distri-

bution in a way that affects the entire scene.

I also increased the accuracy to 200 in Figure 12.15. However, you can clearly see

splotches of color (in grayscale), so clearly the photons are not blending in a way that

provides aesthetic results. Thus, even though I increased the radius, there are still far too

few photons in the scene to blend properly, and therefore increasing the accuracy has no

effect. I could increase the accuracy to 1,000 and still the render will appear the same; it is

already using all the photons found within the provided radius. That point is one of the

most important indications for determining when you need to increase the photon count

or increase the radius. If you increase the photon count, you will provide more photons in

the scene, and thus a higher accuracy setting will have more of an effect in smoothing

out the result. If you increase the radius, you force mental ray to use larger regions in the

scene while smoothing the effect. So, what’s the difference?

Figure 12.15

Increasing the radius
to 4 blends more

photons over a
larger region

502 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 502

I N C R E A S I N G R A D I U S

Suppose you have a fine detailed scene, where using a larger radius forces photons from

distant locations to be considered over a larger area. The result is a more uniform distri-

The “Photon Counts” images in the color gallery provide a more detailed scene using

higher photon counts to demonstrate the differences of low vs. high photon counts. Image

A corresponds to this example, providing flatter lighting with less detail. The radius was

set to 15, and the accuracy was set to 300. The photon count was set to 100,000 photons

specified for each of the two source lights in the living room area.

I N C R E A S I N G P H O T O N C O U N T S

If you increase the photon count significantly, you can get away with using much smaller

radius values, which will ensure that you will see more local color bleeding effects and thus

more detail. Look at the color gallery “Photon Counts” image B. Image B compares with

image A only using a photon count of 2 million cast from the two living room lights and

the two lights above the stove (combined 2 million). The radius was decreased to 4. There

is a nicer feel to the lighting around objects displaying a more natural feel opposed to the

synthetic feel shown in image A.

With this example (large photon count), I was able to use accuracy settings of up

to 2400 and still see a change in the lighting; therefore, the renderer has a significant

amount of photons to blend within a smaller radius value (value of 4). The higher accu-

racy values essentially leveraged several color samples (photons) from the scene to inter-

polate color, providing better detail, particularly around corners such as on the walls in

the kitchen area.

On the companion CD in the Chapter 12 folder you will find the image shown in

Figure 12.16 labeled “Photon Spread Low” and the same image using a higher photon

count and lower radius labeled “Photon Spread High.” In that image, you can see some

of the splotchy artifacts on the ceiling as well as more local color bleeding; the red tints

from the red wall don’t stretch as far as with the low photon count image.

There are a few more points of consideration with respect to fine-tuning GI. With

lower radius values, even with higher photon counts and accuracy settings, you will

see splotchy artifacts as seen on the CD with the image “Photon Spread High”. To

remedy such artifacts, I can increase the radius using a lower photon count, as I did

for the example in Figure 12.16; however, I start to lose the detail around the smaller

objects. You should consider that a large object, such as the wall, may require a differ-

ent radius than the furniture in the kitchen. To avoid ruining the effect of GI on the

smaller objects, I can use per-object radius and accuracy options, increasing the radius

only on the ceiling. You’ll look at these options later in this chapter. At this point, a

better solution would be to use Final Gather to remove splotchy artifacts from GI, as

discussed next.

504 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 504

F I N A L C O N S I D E R A T I O N S

The ideal with indirect illumination is to blend enough photons within a given radius so

that they appear to form a visually pleasing light simulation. You may take the approach

of few photons using a larger radius setting to blend photons. One problem with this

approach is that areas in the scene will not receive any light, so when you increase the

photon radius, they receive the same amount of light as other areas of the scene, which

are more exposed to light. This approach flattens out the lighting across the wall into the

corners of the scene, so you don’t see any natural transition in light intensity.

On the other hand, you can use a large number of photons, where a million or more

photons are reasonable with highly detailed scenes. In such cases you will see more detail

because photons are likely to spread everywhere in the scene so that you are not required

to increase the radius to force color into the corners, such as around the furniture or

between walls. As a result, you use smaller radius settings and have more color bleeding

and variation in the irradiance across surfaces.

High photon counts really only take time during the first render when you generate a

photon map. You then reuse that map while rendering an animated sequence. Essentially,

you should not regenerate photon maps with animation, because the true benefit of pho-

ton mapping is reusability. Having said that, a larger photon count usually will use higher

accuracy values and provide for slower render times, aside from generating photons dur-

ing the first phase, which is photon emission.

GI, Final Gather, and Ambient Occlusion

Using Final Gather (discussed in Chapter 13, “Final Gather and Ambient Occlusion”)

provides a means for removing splotchy artifacts in the scene. On that topic, both Final

Gather (an indirect lighting technique) and ambient occlusion (a shader) provide a

means to add detail in nooks and crannies so that ideally GI can be used with smaller pho-

ton counts to provide the overall indirect lighting. This approach means that GI tackles

multiple diffuse bounces in the scene, handling most of the color bleeding, and then Final

Gather adds diffuse lighting and color bleeding to improve the GI result, as well as improve

some of the detail near surfaces in close proximity. Furthermore, if Final Gather is used

with low settings so that it doesn’t expose all the fine detail (occlusion near objects), ambi-

ent occlusion or an ambient occlusion pass (preferable) can be used to add a lot of occlu-

sion detail such as self-shadowing and light occlusion from nearby surfaces. Combining

these techniques and more information about Final Gather and ambient occlusion can

be found in Chapter 13, “Final Gather and Ambient Occlusion.” See the image “Physical

Lighting” in the color gallery, which combines all these techniques (GI, Final Gather, and

an ambient occlusion pass).

indirect illumination options and fine-tuning ■ 505

08547c12.qxd 10/24/07 4:39 PM Page 505

Physical Shaders

Also note that the “Physical Lighting” image in the color gallery was rendered solely with

physical shaders. If you choose to use physical shaders, you should use them for all the

surfaces in the scene. This is because they deal with energy conservation, as discussed in

Chapter 10, “mental ray Shaders and Shader Trees,” and thus will appear darker than

nonphysical shaders such as Phong or Blinn shaders. Using both types will produce incon-

sistent shading on surfaces so that one surface may appear overexposed, while neighbor-

ing surfaces under the same light will appear underexposed. Mostly, it is easier to follow

this approach from the beginning rather than realizing at the final stages of rendering that

several shaders are inconsistent and that you need to start converting them to physical

shaders, or vice versa.

T O N E M A P P I N G A N D G A M M A W O R K F L O W S

Indirect illumination deals with linear light (radiance) values that are meant to represent

real-world energy values. They can easily exceed the 0 to 1 range of color and overexpose.

Using 32-bit images allows you to adjust the exposure in compositing software, without

losing detail in overexposed areas, as discussed in Chapter 3, “mental ray Output.” You

may apply a tone-mapping operation to remap the values from the brightest and darkest

areas in the scene so that the final result better simulates human perception under those

conditions. Chapter 9, “The Fundamentals of Light and Shading Models,” discussed

tone mapping, and Chapter 13, “Final Gather and Ambient Occlusion,” presented a tone-

mapping shader.

With respect to workflow, I typically test render the scene using an 8-bit image with a

gamma correction of 1.8 to 2.2. I use a gamma of 1.8 since it better resembles the gamma

for film, giving a more cinematic appearance. When I am satisfied with the GI solution, I

render the final image as a 32-bit image using a gamma of 1 (linear, unchanged), so I can

apply the gamma correction in compositing or Adobe Photoshop. Note that with 32-bit

images, gamma correction is disabled with mental ray, so it always renders a linear gamma.

This approach provides more control over color correction, exposure, and gamma using a

high bit depth so that color artifacts caused by image processing don’t appear in the image.

When you open an OpenEXR or HDR 32-bit image (or 8-bit RGBE; see the discussion

on data types in Chapter 3) in Photoshop, it automatically applies a gamma correction

of 2.2 so that even though you rendered a linear image, it appears gamma corrected. To

see what the image looks like without gamma correction, you can select View ➔ 32-bit

Preview Options. In the window that opens, set Gamma to 2.2, removing the gamma

correction and displaying the image with a linear transition from black to white. The same

window appears when you convert a 32-bit image to an 8-bit (or 16-bit) image using

Image ➔ Mode ➔ 8 Bits/Channel. You will clearly see that some level of gamma correction

is required to finalize the rendered appearance, as discussed in the sidebar “Indirect Illu-

mination and Gamma Correction.”

506 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 506

I N D I R E C T I L L U M I N A T I O N A N D G A M M A C O R R E C T I O N

One of the most important considerations with respect to indirect illumination rendering is gamma

correction, as discussed in Chapter 3, “mental ray Output,” and Chapter 9, “The Fundamentals of

Light and Shading Models.” If you don’t apply gamma correction, then the light will get too dark

too fast, so you’ll end up increasing the energy and getting blown out areas around the source light

similar to those shown earlier in Figure 12.2 image A. In the image shown here you can see a very large

area light at an entrance to a room, casting direct and indirect light. The direct light and indirect light

are both set with the same energy values and falloff rate. Gamma is set to linear (unchanged). You can

see the light falloff is rapid and unnaturally fast for a source light of that scale.

To fill the room with more light, you may attempt to increase the light’s energy, as I have done

for both direct and indirect light in the next image. Notice how the entrance to the room reaches

overexposure, yet the far side of the room still receives very little light. Thus, increasing the energy

was not an adequate solution to render a more realistic appearance to light scattering.

continued

indirect illumination options and fine-tuning ■ 507

08547c12.qxd 10/24/07 4:39 PM Page 507

continues

Instead of increasing the energy as with the previous example, in the next image I applied

a gamma correction of 2.2. With mental ray I used a gamma value of 0.454 for the render set-

tings (see Chapter 3, “mental ray Output,” for details on gamma correction). As you can see,

in this image the light scatters more realistically in the room, filling it with light. It reaches

the far side of the room without creating overexposure near the entrance, closer to the source

light. However, creatively speaking, it may appear too flat for your purposes, which in such

cases you can use a lower gamma correction.

Gamma correction is required when using indirect light, just as much as when you bring

images from a digital camera into the computer. With digital photographs it’s done for you

automatically; most digital cameras use the sRGB color space (discussed in Chapter 9, “The

Fundamentals of Light and Shading Models”), which resembles a gamma correction of 2.2.

Although the image after gamma correction may appear flatter, meaning there is less con-

trast, the distribution of light is correct. To remedy the loss of contrast, some artists prefer

using a gamma correction of 1.8 (a gamma setting of 0.555) instead of 2.2, which provides a

more cinematic look with more contrast. In all cases some gamma correction is desirable, or

you end up rendering images with blown-out regions that rapidly and unnaturally transition

to black.

The workflow of testing with gamma correction before rendering a high-bit-depth image

enables you to see what the lighting should look like while adjusting direct and indirect light

settings.

508 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 508

Caustics
Caustics deal with focusing light through refractive and from reflective surfaces. One of

the primary differences you’ll see when using caustics is in how they manage light energy

and shadows. As light transmits or reflects from surfaces, it tends to create more focused

patterns of light on the surroundings that magnify in intensity or simply reflect very

intense light with minimal absorption, as with a magnifying glass or a mirror. The process

of combining caustics with direct lighting using the rendering equation is not the same as

when combining GI with direct lighting. GI is influenced by shadows, whereas caustics

are used to add light in opaque shadows (for refractive surfaces). Let’s look at some of

the examples of caustic rendering in the color gallery. The image labeled “Glass Shark

Comparisons” shows two glass sharks, one with the dielectric shader (top) and the other

using the mia material (bottom). In both cases you can see the caustic patterns on the

floor. Notice that the intensity of the caustics is influenced by the thickness (absorption)

of the refractive shark, and thus you see more light passing through the fins than through

the thicker body regions, particularly with the mia material image on the bottom. You

can also see the image labeled “The Water Bottle.” Notice the interesting patterns that

are formed by the bottle on the wall. One of the nicest effects you gain with caustics is pat-

terns that are formed by caustic light as it passes through shapes that have a more com-

plex form when compared to simple shapes such as spheres or windows.

GI and caustic options are similar; you can see that by comparing the caustics options

shown here to the GI options:

caustic [on | off]

caustic filter [box|cone|gauss] [size]

caustic accuracy [photons] [radius]

caustic scale [RGBA color]

“caustic merge” [distance]

Aside from the caustic filter option, the remaining options are the same as with GI.

They all have the same functionality as with the equivalent GI options discussed earlier

with the difference of controlling caustic photons; see that section (GI) for the option

details. With respect to using these options, the main difference is in the approach to

selecting values while fine-tuning caustic effects.

The caustic filter option defines how the intensity from the center of the sample

point transitions outward within the radius. With caustics, the filter option provides

additional control in smoothing or sharpening the caustic effect. Typically it should be

set to cone or gauss, where cone will appear sharper. The filter size has the effect of increas-

ing the blurriness with larger values, where the minimum is 1. Typically you would not

change it from its default value of 1.1.

indirect illumination options and fine-tuning ■ 509

08547c12.qxd 10/24/07 4:39 PM Page 509

The following sections discuss the characteristics of caustics and examine some of the

considerations while choosing accuracy and radius values, similar to the earlier discussion

with GI.

Shadows and Stained Glass

With respect to transparent (refractive) surfaces, shadows appear brighter based on how

much light transmits through the surface. In that respect, caustics are used to add visible

light in shadow. With physical shaders, when using the mental ray dielectric shader or the

mia material, the shadow renders opaque, as shown in Figure 12.17 image A using the

dielectric shader. Caustics are then used to add the “brightness,” as shown in the shadow

in image B. It also inherits color from the surface color defined with the surface’s photon

shader. You can also see scattered caustics on the ceiling from reflections as the dielectric

surface maintains Fresnel reflections and thus possesses both reflective and refractive

characteristics.

Note that the mia material provides an option for choosing whether you want to define

the shadow transparency using caustics or a shadow shader, as discussed in Chapter 10,

“mental ray Shaders and Shader Trees.” Thus, if you select the shadow shader, the shadow

will appear transparent, but the light will not amplify. If you select caustics, the shadow

renders opaque, and then caustics define the light intensity in the shadow.

A B

Figure 12.17

Caustics add light to
opaque shadows

while transmitting
through refractive

surfaces.

510 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 510

Surfaces that have a transparent shadow from a shadow shader (discussed in Chapter 7,

“Shadow Algorithms”) and are also affected by caustics doubling up the effect of shadow

transparency. To clarify, the shadow is already transparent, and caustics then add even

more light on top of that. Creatively speaking (not physically accurate), caustics don’t

always provide the detail you want to see in transparent shadows since they’re harder to

fine-tune than a shadow shader. You can use both, but you then need to reduce the inten-

sity of the caustics so they don’t create large blown-out areas in the shadow. One problem

users typically need to address is stained glass transmission, where you want to see the

color of the glass appear in the shadow regions, as shown in the color gallery image

“Stained Glass.”

In that image you can see patterns of color transmit through the surface. The glass is

applied with a dielectric shader. To create the effect of color patterns, I connected the

stained glass (checker) texture to the dielectric shader’s color input (see Chapter 10,

“mental ray Shaders and Shader Trees”) and then connected it to the photon shader’s

color out input. In this way, the color of the glass appears in the direct lighting render

(the illumination shader) and also in caustics using the photon shader. You can find

the Maya scene file in the Chapter 12 folder on the companion CD. This image is a great

example for making the point that caustics are meant to simulate the appearance of

light as it transmits or reflects from surfaces, not just a tool to create cool looking

patterns.

Note that when using host-specific shaders that already provide shadow color, as dis-

cussed in Chapter 7, “Shadow Algorithms,” you can override their shadow shader by

attaching a separate shadow shader to the material, generating an opaque shadow rather

than a transparent one. Consider that if the surface doesn’t have the same texture applied

to its photon shader’s transparency, the caustics will generate a uniformly colored caustic

effect that is superimposed over the direct lighting shadow shader effect. Ideally you should

use one method for generating shadow color, which also makes it easier to tweak because

you don’t have to manage two completely different and separate components (caustics

and shadow shaders).

Caustic Accuracy and Radius

When you tweak the accuracy and radius values with caustics, you typically try to generate

a sharp effect, not a smooth transition of color as with GI. You can see that in the color

gallery with the image “The Water Bottle” where the caustic patterns have some rough

edges. Therefore, with caustics you will use smaller accuracy or radius values generating

sharper patterns. Let’s look at an example to see the influence values have on caustics.

As with GI, I first generate a photon map and then disable the Rebuild option so I can

examine accuracy, radius, and caustic scale (intensity) without rebuilding a photon map

each time I render.

indirect illumination options and fine-tuning ■ 511

08547c12.qxd 10/24/07 4:39 PM Page 511

The scene shown in Figure 12.18, a Cornell box, has four refractive spheres that are

contained within a reflective ring. The spheres demonstrate refractive and reflective

caustics using a dielectric shader, and the ring demonstrates reflective caustics using a

DGS shader (fully specular). Caustics are enabled on the global level and a photon-casting

light is present at the top of the scene, casting 100,000 photons. Gamma correction is set

to 0.454 (a standard 2.2 gamma correction for PC monitors) so that the caustics don’t fade

to black rapidly, as discussed in the sidebar “Indirect Illumination and Gamma.”

In Figure 12.18 the accuracy was set to 32, and the radius was set to 1. As you can see,

there are some nice patterns in the figure, but there is a lot of grain and artifacts everywhere

in the image. With caustics, light doesn’t spread everywhere; it’s based on the surfaces and

their reflective or refractive character. The result is that some areas of the scene will receive

Figure 12.18

Examining the
effects of caustics

using dielectric and
DGS shaders

Tweaking GI and caustics requires a trial-and-error approach to resolve the right look. Also,

energy values may differ based on the scene scale as energy is simulated with an inverse

square falloff.

512 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 512

few photons that are sparsely spread. You can remove or improve their effects in sparsely

spread areas in a few ways:

• Increasing significantly the accuracy and radius values until they blend in with the

other photons. This has an effect of blurring the patterns, which defeats the purpose.

• Increasing significantly the photon count, which is not always efficient because they

still form patterns; however, it provides for better blending when you increase the

accuracy.

• Decrease the per-surface irradiance using the surface’s shader (discussed on a per-

host basis next).

• Decreasing the caustic scale option so that there is less visible irradiance in areas

with low irradiance value is probably the best approach (discussed shortly).

In Figure 12.19 image A you can see the result of reducing the caustic scale, which has

the effect of removing some artifacts—those that were not very bright. By reducing the

scale, I keep the detail, reveal more detail that was overexposed, and remove artifacts in

the low-intensity areas. In addition, the radius was increased to 2, and the accuracy was

increased to 100. As you can see, there is still some grain, but the image has some nicer

caustic qualities to it.

The roughness or graininess of caustic can have a visually pleasing appearance, but if

you want to remove them completely, you need to continue adjusting values such as

increasing the photon count and then changing the accuracy and radius. In image B, the

accuracy was increased to 500. As you can see, the result was to blur the caustic effect as

well as remove more artifacts. The process of tweaking caustics is usually based on using

as low an accuracy as possible to maintain the sharpness of the effect.

A B

Figure 12.19

Increasing the accu-
racy with caustics
has an effect of
removing the fine
detail seen in the
patterns.

indirect illumination options and fine-tuning ■ 513

08547c12.qxd 10/24/07 4:39 PM Page 513

Caustic Irradiance and Merging Photons

The caustic scale option acts like a threshold that can remove irradiance below a certain

intensity. In actuality, it is a multiplier that darkens the overall effect. As mentioned earlier

with GI, you are not dealing with values between 0 and 1 so that the brightest areas typically

possess higher values and will not lose their intensity as you decrease the caustic scale, while

artifacts such as those shown in Figure 12.19 are removed.

In Figure 12.20 you can see a glass that has been rendered with caustics enabled, and

the caustic scale is set to white (RGB values of 1). The result is a blown-out caustic effect

that possesses very little detail. By reducing the scale, you reveal the fine detail that was

overexposed. In image B the scale has been reduced to 0.14 for the RGB values, a very sig-

nificant reduction; however, all the detail stands out. In the same way, you can reduce the

light’s photon energy; however, that requires you to generate a photon map every time

you change that value.

A B

Figure 12.20

Revealing caustic
patterns by decreas-

ing irradiance.

You should always test lower scale values to see if you’re losing details in overexposed areas.

The photon scale option for GI or caustics, a color option, not only can reduce irradiance, but

it can also force a given tint so it can be used to further tweak photon color influence after a

photon map is generated.

Consider rendering a 32-bit caustic pass and then fixing its exposure and sharpening its

appearance in compositing, which is an easier and more intuitive approach.

514 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 514

Note that in the case of Figure 12.20 I used 300,000 photons to bring out the detail;

however, the result appeared very grainy, as shown in Figure 12.21. Figure 12.20 (image B)

and Figure 12.21 have the same settings. The only difference is that in Figure 12.20 (image B)

I also used the caustic merge option with a value of 0.5 to merge photons in the denser

areas. The result is a significant reduction of the noise shown in Figure 12.21; it also reduces

some of the sharpness of the effect.

All these methods can be used together to find the best solution for each case. Typically

you want to compromise with some grain while maintaining the sharpness of the effect

shown in the color gallery images “The Water Bottle” and “Glass Shark Comparisons.”

GI and Caustics Workflow Considerations
When you want to use GI and caustics in the same scene for diffuse and specular indirect

light, there are a few points to note. Most important is that each is an independent solu-

tion that stores photons in the photon map. Thus, GI photons are used only for GI, and

caustic photons are used only for caustics. Here are a few considerations (in no particular

order) for you to contemplate while using indirect illumination:

Figure 12.21

The caustic effect
used for Figure 12.20
before photons are
merged

indirect illumination options and fine-tuning ■ 515

08547c12.qxd 10/24/07 4:39 PM Page 515

• Use separate photon-emitting lights for GI and caustic photons. This approach allows

you to change the energy level for each solution independent of the other, as well as

use better scene framing for the caustic light (further explained in a moment). The

following considerations and consequences should be noted.

• When both GI and caustics are enabled on the global level, GI and caustic photon

emission is automatically enabled with each photon-emitting light, using default pho-

ton emission values (typically 10,000). Thus each light will cast both GI and caustic

photons, so you must remember to set the caustic photons to 0 for the GI light, and

vice versa, for the caustic-emitting light. See the section “Photon-Emitting Lights”

earlier in this chapter.

The GI direct lighting should apply diffuse and specular light since it is cast on all the

surfaces in the scene. However, the caustic photon-emitting light should be set to cast

specular light only. Better yet, reduce its light intensity to zero so that it casts only photons

and doesn’t participate in direct lighting. With caustic emitting lights, it is particularly

important to remove any direct diffuse light influence. As cited earlier, this approach

allows you to focus the caustic emission light only on specular reflective or refractive sur-

faces that participate in generating caustics. In Figures 12.20 and 12.21 an area light pro-

vides the direct lighting, and a spot light, placed at the same location as the area light,

casts caustic photons onto the glass. The spot light’s perspective (cone) is set to encom-

pass only the glass so that all the photons are being used efficiently. In this way, none is

being wasted in the remainder of the room. This approach is particularly important with

caustics because they don’t need to fill the room with photons before they interact with a

specular surface. However, after they reflect or refract on a surface, their influence is applied

everywhere in the scene.

Don’t forget to rebuild a photon map every time you do the following:

• Change the source light’s GI or caustics settings

• Change photon shader settings

• Change the trace depth settings on the global level

• Change the merge photons value

Host Application Settings
The following sections identify the global illumination and caustics options discussed in

the previous sections in host applications. The mental ray options are almost identical to

those found in each host.

In addition to controlling the radius and accuracy on a per-surface level, as cited earlier,

surfaces can also be set as GI or caustic receiving only, casting only, or casting and receiving

516 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 516

surfaces. This option allows you to tweak which objects participate in the photon-gener-

ating phase and to what extent.

Maya

Except for photon merging, you can find all the global options cited previously in the Ren-

der Settings window ➔ mental ray ➔ Caustics and Global Illumination rollouts, as shown in

Figure 12.22. The Caustics and Global Illumination attribute checkboxes enable that fea-

ture. Once enabled, you can then specify a photon count for a photon-emitting light, as

cited earlier. Each of these features has default

settings that can be changed when you expand

the Caustics Options or Global Illumination

Options rollout. In the Photon Volume roll-

out at the bottom of the figure, you can change

how participating media effects render in a

similar way to GI and caustics, a topic further

discussed in the “Participating Media (PM)

Effects” section.

You can see the Accuracy, Radius, and

Scale attributes for both features that correlate

to the globillum accuracy [photons] [radius]

and globillum scale [RGBA color](or caustic)

mental ray options. Under the Caustics

Options rollout, you also find the Caustic Fil-

ter Type and Caustic Filter Kernel attributes

that select the caustic filter type and size,

respectively.

Under the Photon Tracing rollout, you can find the Photon Reflection, Refraction, and

Max Photon Depth attributes, which control the number of photonic reflections and

refractions, as discussed earlier.

When the Rebuild Photon Map attribute box is checked, a new photon map is gener-

ated with every render. When it’s not checked, the photon map is reused. The Photon

Map File attribute specifies the name for the photon map. You should omit any extension

when entering a name. Typically for a given project the photon files are stored in \proj-

ects\project_name\renderData\mentalRay\photonMap.

T H E M E N T A L R A Y M A P V I S U A L I Z E R W I N D O W

The Enable Map Visualizer attribute checkbox creates a Maya MapViz node (listed in the

Outliner window) in the scene. As shown in Figures 12.3 and 12.4 earlier in this chapter,

indirect illumination options and fine-tuning ■ 517

Figure 12.22

Maya indirect illumi-
nation attributes in
the Render Settings
window

08547c12.qxd 10/24/07 4:39 PM Page 517

it provides an easy way to diagnose the photon distribution in 3D. You can easily see

how photons interact in the scene, as well as the photon color when the view is in shaded

mode. To control the appearance of these photons in 3D, you can use the mental ray Map

Visualizer window shown in Figure 12.23. You can open this window from under the

main menu by selecting Window ➔ Rendering Editors ➔ mental ray ➔ Map Visualizer.

When you enable the Enable Map Visualizer attribute in the Render Settings window,

the photon map is automatically specified under the Map file name attribute shown in

Figure 12.23. You can load a different preexisting map and click the Refresh attribute but-

ton to see it update in the scene. One of the best features of this window is the attributes

under the Photon Visibility heading. Disabling

or enabling any of these attributes allows you

to see the effect of only GI or caustics in the

scene, making it easy to troubleshoot the pho-

ton distribution for each component (GI,

caustics, and participating media). It is espe-

cially helpful when you want to see participat-

ing media distributions in the scene; in such a

case, you can clear the Globillum Photons and

Caustic Photons attribute checkboxes.

M E R G I N G P H O T O N S

You have already been introduced to the miDefaultOptions node, which can be found in

the Outliner window after you disable Display ➔ DAG Objects Only. Once you select the

miDefaultOptions node, you can examine its rollouts and attributes in the Attribute

Editor window. Note that mental ray needs to be set as the current renderer for the node

to exist in the scene.

The miDefaultOptions node has all the mental ray options that are included in the

Render Settings window and then some. You already used this window in Chapter 8,

“Motion Blur,” with motion blur. Under the Extra Attributes rollout you will find the

Caustic, Photon Volume, and Global Illum Merge attributes (in that order), which were

discussed in previous sections.

You can also access the miDefaultOptions from the Render Settings window mental ray tab ➔

Framebuffer rollout ➔ User Framebuffer ➔ Open Editor attribute button.

If you want to remove the map from your viewport, you can delete the MapViz node in the

Outliner window or press Delete in the mental ray Map Visualizer window.

518 ■ chapter 12: Indirect Illumination

Figure 12.23

Maya’s mental ray
Map Visualizer win-
dow enables you to

see photons in the
3D viewport.

08547c12.qxd 10/24/07 4:39 PM Page 518

D I A G N O S I N G P H O T O N S

In the Render Settings window under the mental ray tab ➔ Diagnostics rollout, you can find

the Diagnose Photon and Photon Density attributes. Diagnose Photon selects whether you

want to render density or irradiance (applied after the image renders), and Photon Density

specifies the max value for each option, as discussed earlier in the “Photon Diagnostics”

section and shown in the image “Photon Density” in the color gallery.

P E R - S U R F A C E A T T R I B U T E S

You can find per-surface attributes within two different nodes for a given surface. Under

the transform node ➔ mental ray rollout ➔ Flags, you find the Caustic and Globillum

attribute overrides. To use them, you need to first clear the Derive from Maya attribute

checkbox, as shown in Figure 12.24. As you can see in the figure, I changed the Caustic

attribute to Cast+Receive and set Globillum to Cast Only.

These options define how surfaces participate in indirect

illumination. In this case, the surface would both receive

and cast caustic photons and cast (reflect) only GI photons.

Thus, the surface would not receive any indirect diffuse

(GI) light, but it would affect other surfaces with indirect

diffuse light, because it is set to cast.

Under the shape node of a given surface, you find another mental ray rollout, as shown

in Figure 12.25. In that rollout you can define per-surface accuracy and radius options

overriding the global option values. Both Global Illumination Override and Caustic Over-

ride attribute checkboxes are checked in the figure. Thus, when rendering, the surface

will use these values to define the radius and accuracy. It can be used to fine-tune areas

with a lot of artifacts so that you increase the radius

and accuracy only for a particular object, such as the

ceiling in a room. This ensures the remaining areas

of the scene maintain their detail, but the ceiling will

look smoother, as discussed earlier in this chapter.

S H A D E R I R R A D I A N C E

You can fine-tune the irradiance across a surface when using Maya-centric shaders.

Each of the Maya shaders (Blinn, Phong, and so on) has a mental ray rollout, as shown

in Figure 12.26, which contains the Irradiance Color attribute. Reducing the color

from white to black has the effect of

decreasing the irradiance effect on

the object, as cited earlier.

indirect illumination options and fine-tuning ■ 519

Figure 12.24

Overriding
per-surface attribute
under a surface’s
transform node

Figure 12.25

Overriding accuracy
and radius per-sur-
face attributes
under a surface’s
shape node

Figure 12.26

Shader irradiance
controls the light
intensity on a per-
shader basis.

08547c12.qxd 10/24/07 4:39 PM Page 519

XSI

You can find the global mental ray options in the mental ray Render Options property

window (or in the Render Manager) ➔ mental ray ➔ GI and Caustics tab. The Global Illu-

mination and Caustics Enable property checkboxes enable those features. You will then

see all the options for each feature appear in the window, as well as the general options

used with both of them, such as photon map name and trace properties, as shown in

Figure 12.27. Also, when either option is enabled, you can then specify a photon count

for a photon-emitting light, as mentioned earlier. Notice the Photon Volume Accuracy

section near the bottom of the window, where you change how participating media effects

render in a similar way to GI and caustics, a topic further discussed in the “Participating

Media (PM) Effects” section.

You can see under the Global Illumination and Caustics properties the Accuracy,

Search Radius, Merge Factor, and Photon Color properties for both features; these corre-

spond to the globillum accuracy [photons] [radius], globillum merge, and globillum

scale [RGBA color] (or caustics) mental ray options, respectively. Under the Caustics

properties you can see the Sharpness Filter Type and Size properties; these select the

caustic filter type and size.

Under the Trace Depth section you can find the

Combined, Reflection, and Refraction properties

that control the number of photonic reflections

and refractions and the total for both, as discussed

earlier.

When the Rebuild Map ➔ Rebuild property box is

checked, a new photon map is generated with every ren-

der. When it’s disabled, the photon map is reused. Use

the Photon Map File property to specify the name for

the photon map. You should omit any extension when

entering a name. You can see the path where the pho-

ton map is stored in Photon Map File Resolved Path;

typically it uses the active project’s Render_Pictures

directory.

You can easily fine-tune accuracy and search radius properties while viewing a constant

update within a render region.

520 ■ chapter 12: Indirect Illumination

Figure 12.27

XSI indirect illumina-
tion properties

shown in the Render
Manager window

08547c12.qxd 10/24/07 4:39 PM Page 520

D I A G N O S I N G P H O T O N S

On the Render Options window ➔ Diagnostics tab, you can find the View Photons and

Maximum properties, shown in Figure 12.28. The View Photons drop-down list speci-

fies whether you want to render density or irradiance (applied after the image renders),

and the Maximum property specifies the max value for density, as discussed earlier in

the “Photon Diagnostics” section and shown in the image

“Photon Density” in the color gallery. You can easily view

these diagnostic modes in a render region while trouble-

shooting indirect lighting.

P E R - S U R F A C E P R O P E R T I E S

You can find per-surface properties in a surface’s Visibility property window, as shown in

Figure 12.29. You can access this window from the Explorer window under the surface’s

stack or from the Main Command Panel (on the right) Selection ➔ visibility.

As you can see in the figure, under Caustic

I disabled the Caster property, and under

Global Illumination I left all three properties

enabled. These properties define how sur-

faces participate in indirect illumination. In this case, the surface is visible to GI photons

and will receive and cast GI photons. The Visible property defines whether the GI or caus-

tic photons interact (reflect or refract) with a surface. When it’s disabled, the photons pass

through the surface, ignoring its existence. It differs from the Caster property in that cast-

ing means the surface actually reflects or refracts (redirects) photons and Visible means

they merely pass through it.

With respect to caustic photons in the scene, in this case the object will only receive

caustic photons. Thus, the surface would not cast any caustic photons into the scene, even

if it has specularity defined in its photon shader. However, it would be affected by caustics

from other surfaces in the scene.

S H A D E R I R R A D I A N C E

You can fine-tune the irradiance across a surface when using XSI shaders. Each of

the XSI shaders (Blinn, Phong, and so on) has an Indirect Illumination tab, as shown

in Figure 12.30. On this tab you can find the

Radiance color property shown in the figure.

Reducing the color from white to black has

an effect of decreasing the irradiance on the

surface, as cited earlier.

indirect illumination options and fine-tuning ■ 521

Figure 12.28

XSI diagnostic
properties for
photon density
and irradiance

Figure 12.29

Overriding per-
surface attributes
in the Visibility
window

Figure 12.30

Shader Radiance
controls the surface
irradiance on a per-
shader basis.

08547c12.qxd 10/24/07 4:39 PM Page 521

3ds Max

You can find the global mental ray options cited earlier in the mental ray Renderer

window ➔ Indirect Illumination tab. The Global Illumination (GI) and Caustics Enable

parameter checkboxes enable those features, as shown

in Figure 12.31. Notice the Volumes section, where you

change how participating media effects render in a

similar way to GI and caustics, a topic further discussed

in the “Participating Media (PM) Effects” section.

Under the Global Illumination (GI) and Caustics

parameters, the Maximum Num. Photons per Sample

parameter refers to the mental ray accuracy option, and

the Maximum Sampling Radius parameter refers to the

radius option. When the Maximum Sampling Radius

parameter is disabled, the radius is derived automatically

from the scene size. The Multiplier parameter and color

swatch refer to the globillum scale[RGBA color] (or

caustics) mental ray options. Both the multiplier and

color swatch are used together to define the GI and

caustics irradiant influence in the scene, as discussed

earlier.

Under the Global Illumination (GI) parameters, the Merge Nearby Photons parameter

corresponds to the globillum merge mental ray option. Under the Caustics parameters,

you can see the Filter and Filter Size parameters, which select the caustic filter type and

size, respectively.

Under the Photon Map parameters, when the Read/Write File parameter checkbox is

enabled, a new photon map is generated with every render. When it’s disabled, the photon

map is reused. Select the browsing button below this parameter to specify a photon map

file and directory, as shown in the figure. You should omit any extension when entering

a name.

Under the Trace Depth parameters, you find the Max. Depth, Max. Reflection, and

Max. Refraction parameters, which control the number of photonic reflections and

refractions and the total for both, as discussed earlier.

The Light Properties parameters are used to set scene global values for photon count

and decay. As discussed in the 3ds Max instructions in the “Photon-Emitting Lights” sec-

tion, each light has two sets of options for defining the photon emission. The automatic

technique described in that section uses these values as base settings. You can then use the

multipliers under the light’s parameters to amplify or decrease each component. Thus, all

the lights will have the same starting point for photon emission and decay when set to

522 ■ chapter 12: Indirect Illumination

Figure 12.31

XSI indirect illumina-
tion parameters in

the Render Manager
window

08547c12.qxd 10/24/07 4:39 PM Page 522

automatic. When you set a light to Manual Settings, these settings are not used with that

light. Ideally, with a large number of photon casting lights, it becomes easier to find a good

balance of light by using a global starting point and then increasing or decreasing photon

emission counts locally.

D I A G N O S I N G P H O T O N S

In the mental ray Renderer window ➔ Processing ➔ Diagnostics rollout, you can find the

photon diagnostics parameters, as shown in Figure 12.32. The Enable parameter enables

diagnostics. When it’s enabled, you can then select the

Photon parameter radio button and select Density or

Irradiance from the drop-down list, as discussed ear-

lier in the “Photon Diagnostics” section and shown in

the image “Photon Density” in the color gallery.

P E R - S U R F A C E A T T R I B U T E S

You can find per-surface properties in a surface’s Object

Properties window ➔ mental ray tab, as shown in Fig-

ure 12.33. You can access this window by right-clicking

over an object and selecting Object properties.

As you can see in the figure, Generate Caustic is by

default disabled. These parameters define how surfaces participate in indirect illumina-

tion. In this case, the surface will receive and cast GI photons, and with respect to caustic

photons, in this case the surface will only receive photons. Thus, the surface would not

cast any caustic photons into the scene, even if it has specularity defined in its photon

shader. However, it would be affected by caustics from other surfaces in the scene. Also,

under the mental ray Renderer window ➔ Indirect Illumination tab ➔ Geometry Properties

parameters, shown in Figure 12.31, the All Objects Generate & Receive GI and Caustics

forces all the objects to participate in indirect lighting regardless of their per-surface

parameters, as shown in Figure 12.32.

Participating Media (PM) Effects
Participating media effects are used to simulate any type of atmospheric effect that absorbs

and scatters light, as well as the effect on shadowing (with segmented raytrace shadows

only; see Chapter 7, “Shadow Algorithms”). The environment we usually deal with in CG

can be thought of as a vacuum; atmospheric particles are nonexistent. When such effects

To use a surface as a caustic-generating surface, you need to first enable the Generate Caus-

tics parameter in the Object Properties window or enable the global All Objects Generate &

Receive GI and Caustics parameter.

participating media (pm) effects ■ 523

Figure 12.32

3ds Max diagnostic
parameters for pho-
ton density and irra-
diance

Figure 12.33

Setting per-surface
parameters in the
Object Properties
window

08547c12.qxd 10/24/07 4:39 PM Page 523

are needed such as haze, mist, and so on, mental ray uses a PM shader with certain vari-

ables (provided by the user) to determine how to simulate the existence of an atmosphere.

Calculating the influence of suspended particles in air requires a technique known as ray

marching.

PM effects are applied using the parti_volume and parti_volume_photon shaders (see

the host application sections in the “Photon Shaders and Settings” section), which illumi-

nate nongeometric particles that are suspended within a volume; these shaders support

both direct and indirect illumination simulations.

In contrast to other volumetric lighting techniques, PM is independent of source lights.

It is not a volume effect that is added to a light. Rather, it is an effect applied within a given

region (volume). Therefore, participating media utilize all the illumination sources that

have influence within that volume. (You can define which lights will be associated with

the shader, but by default all lights that have influence in the volume will be used.) Vary-

ing sources of illumination will affect participating media at varying colors and intensities,

where the strongest effect appears in close proximity to the source lights, where you see a

lot of light absorption and scattering that decays over distance, as shown in the color gallery

images “Participating Media Effects” and “Photon Counts.” Obviously, for PM effects,

you must have at least one source light that has influence in the volume.

In the color gallery image “Participating Media Effects,” you can see the two large spot

lights on the ship provide a strong source of light that is responsible for illumination most

of the scene. Aside from that, you can see rays of light casting out from the windows. Since

light absorbs fast, I also used an area light above the front of the ship to light up the canon.

As you can see, various light sources at various intensities provide for variation in the PM

effect’s color and intensity.

I then set all the surfaces in the scene with a constant black shader and removed the

windows (hidden layer) for the purpose of rendering participating media as an inde-

pendent pass. The PM pass was then multiplied by the color pass so that I could tweak

the intensity of PM effects in compositing. I’ll briefly return to the topic of PM passes

later in this chapter.

I recommend using physically correct lights, such as the mental ray physical light, which pro-

vides more realistic participating media simulations by accounting for realistic light decay

and energy.

The term particles as used in this discussion does not refer to CG particles but to molecules or

water droplets that are present in the atmosphere.

524 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 524

There are three categories of PM effects:

• Direct light PM handles the effects seen in a direct line of sight from source lights; for

this the PM volume shader (direct lighting) is always required regardless of whether

you use GI and caustics.

• When a PM photon shader is added and GI is enabled, the PM effect handles multiple

photon scattering in indirect lines of sight.

• When a PM photon shader is added and caustics are enabled, the PM effect handles

illumination of particles that transmit through or reflect from caustic surfaces.

The following section examines all these categories.

Ray Marching and Light Scattering
Light spills into a room in a particular direction, illuminating visible dust particles in its

path. The observer can look at that light and recognize the interaction between suspended

particles and light. Ray marching calculates the path light takes between these visible parti-

cles from the camera’s point of view, and the PM shader settings determine the frequency

(interval for ray marching rays), illumination, and absorption at those points of contact.

Essentially, ray marching casts rays between suspended particles in a given path, evaluat-

ing the light’s influence at those locations, as shown in images A, B, and C in Figure 12.34 A.

Thus participating media simulates eye-rays that are cast into the scene (from the camera’s

point of view), and collide with illuminated particles within their paths as seen under

labels A and B in the figure. At each point of collision (with a theoretical particle) the illu-

mination is calculated with the PM shader, providing perceivable particles that reflect and

absorb light in the scene.

Anisotropic and Isotropic Scattering

With respect to the scattering characteristics of PM, there are four fundamental aspects of

light that are considered: emission, abosorption, out-scattering, and in-scattering.

Emission The emission of light (photons) from suspended particles that are not depend-

ent on incoming light; self-illumination properties. It has the effect of increasing radiance

scattered from particles. For example, fire is a self-illuminating type of participating media.

PM effects are expensive to render (slow); therefore, when you’re making subtle changes in

intensity, you should apply them in compositing with more control and while viewing imme-

diate feedback (the result).

participating media (pm) effects ■ 525

08547c12.qxd 10/24/07 4:39 PM Page 525

Absorption This deals with decreasing radiance by absorbing light. For example, the sky

molecules or clouds absorb light on its way to Earth; this is further discussed shortly.

Out-scattering This deals with light that is reflected outward from the particles (perturbed

from the light path), as with the example of the sky cited earlier. It has the effect of

decreasing radiance while absorbing and reflecting light. For example, as discussed in

Chapter 9, “The Fundamentals of Light and Shading Models ,” the Beer-Lambert law

of absorption is used to determine how much light is absorbed and scattered through a

dense medium such as fluids, clouds, or the sky.

In-scattering This determines how much light (how many photons) enter and scatter

internally in a medium. It has the effect of increasing radiance while scattering light within

the medium, such as with subsurface scattering.

Ray Marching
(participating media)

A

B

C

Isotropic scattering

Forward predominant scattering

ABC

Figure 12.34

Ray marching in par-
ticipating media

evaluates the light
path between parti-

cles that are seen
from the observer’s

point of view and
reflect light from a
given source light.

526 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 526

Typically you can pair out-scattering and absorption, which both define how a medium

decreases radiance, and you can pair in-scattering with emission because they both define

the increase of radiance due to internal scattering and emission.

With respect to the scatter intensity and directionality, participating media can scatter

light in a particular direction, referred to as anisotropic scattering. Chapter 9, “The Fun-

damentals of Light and Shading Models,” discussed anisotropic scattering in the context

of surface grooves flowing in a particular direction, as with brushed metals. But in this

case there is no surface, and the scattering characteristics are based on a phase function

that models the probability of light scattering (its intensity in a given direction) in a

hemisphere around the incident light point of contact on the particle and based on some

predefined parameters. It is, as with BSDF functions, based on the particle’s characteris-

tics, primarily the particle size that dictates the absorption and scattering characteristics

and the angle of incidence (incoming radiance). The particle size provides different scat-

tering characteristics that are defined by two well-known functions, known as Rayleigh

and Mie scattering. These phase functions describe the anisotropic vs. isotropic character

of the scattered light based on the medium’s character.

R A Y L E I G H S C A T T E R I N G

The effect of light scattering through molecules in the atmosphere or gases is described as

Rayleigh scattering. The Rayleigh function describes a more uniform (diffused) light

scatter from each particle in 360°, as illustrated in Figure 12.35 image A, where each light

particle emits an equal amount of light in all directions over the hemisphere around the

incident light. The Rayleigh phase (p) scattering intensity, in a given scatter angle (�), is

described by the following equation:

p(�) = 3÷16� × (1+ cos2�)

Essentially Rayleigh scattering is a result of particles that are smaller than wavelengths

of light and mostly scatter higher frequency wavelengths. To clarify, the violet-blue (higher

frequencies, see Chapter 9, “The Fundamentals of Light and Shading Models”) wave-

lengths of light that interact with molecules in air are scattered more than larger frequencies

such as green and red. In a nutshell, it explains why the sky is blue, because direct light

from the sun travels through the atmosphere predominantly scattering higher frequencies

of light on its path to Earth. Furthermore, during sunsets and sunrises, the distance light

travels to the viewer is significantly larger (the sun is not directly above, rather farther

away), so that more light gets scattered in the atmosphere before we see it. Eventually only

the lower frequencies remain visible, because the higher ones have already been absorbed

and scattered, and thus we see a warmer color in the sky. Rayleigh scattering is then char-

acterized as selective scattering that predominantly scatters higher frequencies of light.

Another example is gases that scatter mostly blue or green frequencies of light.

participating media (pm) effects ■ 527

08547c12.qxd 10/24/07 4:39 PM Page 527

M I E S C A T T E R I N G

The Mie scattering function deals with light scattering through particles or droplets of

water that are equal or a bit larger then the size of visible wavelengths of light, typically

providing more forward scattering as shown in Figure 12.34 image C and 35 image B. If

the particles are much larger, then we start to deal with geometric optics, which is the scat-

tering of light on solid surfaces. Mie scattering is not selective (wave dependent) as with

Rayleigh scattering, and it scatters all wavelengths of light so that it is not seen as blue or

red. For example, clouds that appear gray absorb some of the light internally and scatter the

rest outward (scattering all wavelengths equally). It’s the type of scattering you see in mist,

fog, liquids, clouds, smoke and so forth. Larger particles typically produce more forward

scattering. You can see an example for complex environmental conditions that encompass

different scattering characteristics in Figure 12.36. The sky is scattered based on Rayleigh

scattering, and the clouds and rays of light possess more Mie scattering characteristics.

The Henyey-Greenstein Phase Function

Participating media can favor forward or backward scattering, as with Mie scattering, or

Rayleigh scattering referring to anisotropic vs. isotropic scattering. The Henyey-Greenstein

(HG) and Schlick (HG mathematically simplified) phase functions are typically used in

CG to model anisotropic or isotropic light scattering. You will learn about phase functions

while referencing only the HG phase function.

The HG works well with empirical data collected thorough experimentation, and thus

it can be fit with data that is representative of the scattering characteristics for a given

medium. The HG phase function (p) scattering intensity in a given angle (�) is given with

the following equation:

p(�) = 1 – g2 ÷ (4� × (1+ g2 – 2g × cos�)1.5)

B

A
Figure 12.35

Rayleigh vs. Mie
scattering

528 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 528

Without getting into the math, the g parameter is used in the function to define the rel-

ative intensity of light in a given direction (�), relative to the light’s angle of incidence (the

center of the hemisphere for the phase function) and dependent on the cosine of the scat-

tering angle. In Figure 12.37 you can better understand the basics of a phase function. As

you can see, a ray forms a hemisphere around a center point, and then the phase function

dictates the scatter intensity in each angle (�) from that center point. In this case, it shows

isotropic scattering.

It is similar to how a dot product is used in shading models to define the light intensity

relative to the surface normal and direction to the source light. In this case, the phase

function p(�) is used to describe the scatter intensity in all possible directions within the

hemisphere around the center point, as shown in Figure 12.37. Since the HG phase func-

tion provides only for a single hemisphere, it can represent scattering in only 180° in the

hemisphere, thus either forward or backward scattering. To remedy this, a two-term HG

phase function is used, one for forward scattering using a g1 term and the other for back-

ward scattering using a g2 term. Essentially the HG function is then used twice to combine

two separate lobes (see Chapter 9, “The Fundamentals of Light and Shading Models,”

for lobes) of light scattering together. An additional r term is then used to balance the two

together, blending them together. Thus, the two-term HG phase function for a given

scatter angle (�) considers two g terms and an r term like this (“HG” refers to the HG

equation shown earlier):

HG(g1) + (1 – r) × HG(g2)

Figure 12.36

You can see both
Rayleigh and Mie
scattering in this
photograph.

participating media (pm) effects ■ 529

08547c12.qxd 10/24/07 4:39 PM Page 529

In this way it considers the probability of light scattering at a given intensity in all

directions (360°) around a particle, relative to the light’s center point (the two hemispher-

ical origins). If the r term is set to 1, you can see that the intermediate equation of 1 – r

will result with zero, which is then multiplied by the second term, resulting with zero.

Thus, if r is set to 1, only the g1 term is used.

In a following section, you will look at how the mental ray PM shader uses this two-term

approach with two g parameters and an r parameter to model isotropic or anisotropic PM

light scattering.

PM and the concepts discussed here for forward and backward scattering deal with the

same concepts of subsurface scattering. In fact, participating media effects can be used to

simulate volume scattering such as with subsurface scattering in skin, volume effects such

as fire, and rendering deep scattering mediums such as liquids. Thus, the PM volume

shader, although typically used in hosts for lighting particles of light, is not limited only to

that purpose.

P (�)

Phase Function (forward scattering)
Figure 12.37

A ray of light defines
a center point

for a hemisphere
that defines the

scattered light
intensity in each

angle over the hemi-
sphere center.

530 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 530

Direct Light Participating Media
The mental ray participating media shaders are part of the physics library. The options

found on the parti_volume and parti_volume photon shaders for the most part are

identical, just as with illumination and photon shaders (DGS, dielectric, and so on).

The shaders can be found in each host under the

locations specified earlier in the “Photon Shaders

and Settings” section. XSI users should also see the

section “PM Shaders and XSI” later in this chapter.

In this section, you’ll examine the parti_volume

shader options shown in Figure 12.38 with direct

lighting; then, in following sections I’ll review the

differences when using GI and caustics with the

parti_volume_photon shader. Note that when

using these shaders, you need to set up the scene

in a particular way as discussed in the “Scene

Setup” section later in this chapter.

The Scatter and Extinction Options

Standard volume light effects in 3D applications allow you to attach a volume effect to a

light source. The volume light is relatively detached from the direct light in the sense that

volume light appears to acquire the light’s intensity but does not absorb direct light and

reduces radiance from the scene. Thus, you typically use additional settings to better

match the intensity and decay of direct light and volume light. They are merely two differ-

ent and detached components of rendering. PM effects, by contrast, deal with a realistic

simulation of light within a volume that handles direct and volume light absorption and

scattering. That means the direct light and volume light are influenced by the PM shader;

they are not two separate components.

The Scatter color attribute shown in Figure 12.38 defines the color and intensity of the

scattered light. With higher scatter values (closer to white), the light reflection intensity

increases, and you see more volume light scatter in the environment. The Extinction

attribute defines the level of absorption. Higher Extinction values produce more light

absorption, and lower values will allow more light to travel through the scene. At a value

I continue to discuss the HG phase function, and empirical data for light scatter characteris-

tics in Chapter 14 with the mental ray physical subsurface shader.

participating media (pm) effects ■ 531

Figure 12.38

The parti_volume
shader in Maya. The
same shader options
are seen with this
shader and the pho-
ton shader in each
host.

08547c12.qxd 10/24/07 4:39 PM Page 531

of zero the scene is in vacuum, and there are no participating media particles to render. At

high Extinction values the light absorbs rapidly in near proximity to the light source, and

the remainder of the room will receive very little or no light; the radiance in the volume

decreases. Because the Scatter and Extinction attributes are closely tied together, while

adjusting them you need to consider how you balance these two attributes in a way that

does not remove all the direct light from the scene.

Let’s look at an example that examines different values and their effect on the lighting

in a Cornell box. In Figure 12.39 you can see a Cornell box with an area light as the light

source and a sphere in the center that is used to occlude some of the light from reaching

the floor. The sphere has a dielectric shader, and so you need to use caustics to reveal

transparency in the opaque shadow area. The scene is contained within a volume that has

the transmat and parti_volume shaders attached, as discussed in the “Scene Setup” section

later in the chapter.

In Figure 12.39 image A, the Scatter attribute’s RGB values are set to 0.8, and the

Extinction attribute is set to 0.05. This is a relatively high Extinction value, and the room

becomes significantly darker. You can also see that there is a high level of light scattering

near the source light, because this Extinction value rapidly absorbs light. Since the scatter

value is relatively high, you can see a lot of particles reflect light in the scene; in some cases,

they may reflect too much light. Thus, the Extinction attribute absorbs light rapidly, mak-

ing the room very dark, but the Scatter attribute reflects a lot of light from each particle in

the environment within the direct light’s perspective, including through the dielectric

sphere.

In Figure 12.39 image B, the Scatter attribute has been decreased to a value of 0.05 for

the RGB colors. You can see that less light is being scattered by the participating media.

Thus, it decreases the radiance of the particles. However, as the extinction remains the

same (0.05), the direct light is still absorbed at the same rate and the room remains dark.

To show more light in the room, you could either increase the area light’s intensity or

reduce the decay rate (extinction value).

A B

Figure 12.39

Examining the effect
on PM while chang-

ing the Scatter
attribute’s color

value

532 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 532

In Figure 12.40 image A, the Extinction attribute has been set to 0.001 and the Scatter

attribute’s RGB values are set at 0.45. As you can see, there is more visible light in the room.

Thus, by reducing the Extinction value from 0.05 in Figure 12.39 to 0.001 in Figure 12.40,

you allow more direct light to travel in the scene. The room is brighter because less light is

absorbed per unit distance. However, as a result, the Scatter attribute’s influence increases,

as the PM doesn’t absorb as much of the direct light radiance. Notice that in Figure 12.39

image A the Scatter attribute is set to 0.8, and in Figure 12.40 it is set at 0.45, almost half

of the former value, and yet you see much brighter light scattering from PM in the room.

After I reduced the Scatter value to 0.02 (Figure 12.40 image B), you can see the room

clearly because the light isn’t fully absorbed, and there is a decent amount of PM scatter-

ing for a visually pleasing result.

You can see a similar balance in the color gallery with the image labeled “Photon

Counts” where some PM effects are seen for the light that enters the room from outside,

as well as the two lights above the stove. The purpose was to add a subtle effect without

reducing the overall intensity of light in the scene, at least not significantly.

P H Y S I C A L L I G H T S A N D P M D E N S I T Y

In the case of Figure 12.39 and Figure 12.40, the physical light’s intensity (Color attribute)

is set to 1000 for the RGB color channels. Participating media functions better when the

source light’s range is not set to a 0 to 1 range, as with physical lights. You can use the

Extinction and Scatter attributes along with the physical light’s energy (Color attribute) to

balance the density and intensity of PM effects in a volume. If you set low energy values

You should always examine very low Extinction values that range from 0.001 to 0.1; higher

values tend to absorb too much light and create very dark scenes.

A B

Figure 12.40

Examining the effect
on PM while chang-
ing the Extinction
and Scatter attribute
values

The Scatter attribute defines the radiant intensity of light scattering from a given particle, and

the Extinction value defines the rate of absorption in the atmosphere.

participating media (pm) effects ■ 533

08547c12.qxd 10/24/07 4:39 PM Page 533

for the light, then you need low extinction rates to maintain lighting in the room. You

then adjust the scatter value so that PM effects appear in the room as with Figure 12.40;

however, it will typically appear bright so you use lower values and show less PM scatter-

ing (not very dense). If you significantly increase the light energy, you can then use much

higher extinction rates that absorb a lot of light and form a denser effect. In such cases, the

scatter value will need to be set higher to reveal the dense volume light. Thus, higher phys-

ical light energy values provide more light that may be absorbed by the PM shader in a

way that will still introduce enough radiance in the scene and a dense volume light effect.

As mentioned, in the color gallery image labeled “Participating Media Effects,” you can

see various physical lights used with different intensities and colors. The PM effect

accounts for each light in the volume area and shows its effect relative to the other lights,

based on the light’s energy settings and the light’s decay rate (inverse square falloff).

A N I M A T I N G L I G H T S C A T T E R A N D N O N U N I F O R M I T Y

You can use a 3D texture such as turbulence to create patterns in volume light. In this way

you can animate the effect by using 4D shaders (the fourth dimension is time) or by using

host-specific 3D projections that are translated in the scene, moving from one point to

the next.

In Figure 12.41 you can see a small shader network

in Maya. I used the Binary Alchemy (BA) 4D fractal

texture (see Chapter 10, “mental ray Shaders and

Shader Trees”) labeled A to generate 3D turbulence.

Since PM effects produce very different results with

small changes in value, you should use an additional

texture that can limit the output range of the 3D tex-

ture to a given range such as 0.2 and 0.6. In this case,

the BA texture is connected to a Maya luminance

shader (B) that converts the RGB values to a scalar

grayscale value so you can use it as a mask. Note that

you could use the alpha output from the BA shader,

but in Maya it caused the render to abort, so I used

the luminance as a conversion shader. I connected the

luminance shader to a mental ray mib_color_mix (C)

shader’s Weight_0 attribute input and set Mode_0

to mix. This way it acts as a mask that mixes the

Color_base and Color_0 color attributes. I set the

darkest value using the Color_base attribute and the

brightest value using the Color_0 attribute. If you

534 ■ chapter 12: Indirect Illumination

A B C D

Figure 12.41

Mapping the Scatter
attribute with a 4D

texture to render
nonuniform volume

light

08547c12.qxd 10/24/07 4:39 PM Page 534

map the texture to the Scatter attribute, then brighter values scatter more light and darker

values scatter less light, as discussed earlier, only based on the mib_color_mix texture out-

put values. I connected the mix shader to the parti_volume (D) Scatter attribute. I then

rendered a point light within a boxed volume, and you can see the result in the figure. You

looked at using the mix shader and limiting ranges in the tutorials in Chapter 10, “mental

ray Shaders and Shader Trees,” with brushed metal.

PM Isotropic or Anisotropic Scattering

The intensity of light scattering based on a direction relative to the source light’s incident

ray, discussed in the section “Anisotropic and Isotropic Scattering,” can be modeled

using lobes. Lobes are used to outline on polar coordinates the relative intensity of scat-

tered light in a given direction, as shown in Figure 12.42, also shown with arrows that

depict intensity in Figure 12.35 and Figure 12.37.

A
g = 0

B
g1 = 0.2
g2 = –0.2

C
g = 0.8

Figure 12.42

Lobes depict the
intensity of light
based on the scatter
direction relative to
the source light.

participating media (pm) effects ■ 535

08547c12.qxd 10/24/07 4:39 PM Page 535

The mental ray PM shader has three attributes that handle the intensity of scattered

light based on the scatter direction; they are shown in Figure 12.38 earlier and are the R,

G1, and G2 attributes that directly correspond to the r, g1, and g2 terms discussed earlier

in “The Henyey-Greenstein Phase Function.”

As discussed earlier, the Henyey-Greenstein (HG) and Schlick phase functions define the

probability of scattering in a hemisphere around the incident light origin (see Figure 12.37)

using the g term. Furthermore, the two-term phase function uses two g terms and one r

term that correlate to the PM shader attributes cited earlier. Thus, these attributes enable

you to utilize a two-term phase function to model forward and backward scattering

(each in a separate hemisphere) using two lobes, one for forward scattering and the other

for backward scattering. The r attribute is used to blend the two together (selecting a

predominant lobe).

The lobe shown in Figure 12.42 labeled A demonstrates isotropic scattering, where there

is an equal amount of scattering in each direction. In this case, the r, g1, and g2 attributes

are set to 0. Under label B you can see two overlapping lobes for forward scattering (g1) and

backward scattering (g2) using a value of 0.2 for g1 and negative 0.2 for g2. Both create the

same lobe, just in opposite directions. Note that forward scattering is applied in the same

direction as the light, as noted in the figure. Thus, when the mental ray g1 or g2 parame-

ters are set with negative values between 0 and -1, the lobe represents backward scattering,

and when using positive values from 0 to 1, it represents forward scattering. Thus, either

lobe can be set to handle forward or backward scattering. Essentially you specify one that

defines backward scattering and the other forward scattering, and then use the r parame-

ter to balance the two together. When r = 1, the g1 lobe is used, and when r = 0, the g2

lobe is used. Any value between 0 and 1 defines a blending factor between both lobes.

To understand how g values influence the intensity of the scattered light based on

direction, under label B you can see a g1 value of 0.2 and under label C you can see the

g value of 0.8. As the value increases, the scattering intensity increases significantly for

forward or backward scattering, as shown with the more elliptical shape under label C; it

demonstrates predominant forward scattering. By contrast, when g1 and g2 are set with

values closer to 0, the function provides more isotropic scattering, as shown under label B

and with full isotropic scattering under label A.

The illustration shown in Figure 12.42 is drawn to visually “ballpark” the phase function with

those values; it was not generated by a scientific application.

Note that the r parameter defaults to 0, which means that only the g2 parameter is used

unless you increase the r value. And, use g values less than 1 or negative 1 (that is, 0.99);

a value of 1 will “break” the effect, and it will appear black.

536 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 536

R E F L E C T A N C E D A T A A N D R E S O U R C E S

Andrew Glassner has written several books on computer graphics. His Principles of Digital Image Synthesis (Morgan Kauffman,

1995) is a thorough two-volume set on all matters concerning programmers, shader writers, and software developers who

work with CG. In his documentation, he recommends values that represent the reflectance character of Rayleigh scattering

and Mie scattering using the Schlick phase function based on empirical data acquired by experimentation. They are as follows:

F U N C T I O N R G 1 G 2

Rayleigh 0.5 -0.46 0.46

Hazy Mie 0.12 -0.50 0.70

Murky Mie 0.19 -0.65 0.91

The same values are also presented to you in the same context in the mental ray help documents. You can see the dif-

ferent results of these settings in the images shown here. Each one renders a point light within a boxed volume with the

parti_volume shader assigned. The Rayleigh scattering (A) produces a relatively linear decay of light from the center in all

directions. Both the hazy (B) and murky (C) Mie have a stronger forward scattering intensity and thus appear to have a

brighter region close to the light, where the camera is looking directly at the light source (which is why the “white circle” is

larger). However, their transitions away from the light, meaning the transition from forward to backward scattering,

decay faster. The murky Mie (C) demonstrates the fastest decay because the light is predominately forward scattering,

exhibiting the strongest intensity in a direct line of sight from the light.

XSI users will find the values shown in the previous table as presets in the Tek2Shoot parti_volume shader implementa-

tion. Note that there is an enormous amount of information on the Web that details the scattering properties of dielectric

media, but not so much on atmospherics that can easily be implemented using the parameters shown in the table and dis-

cussed in this section. As cited earlier, the process of light scattering, its directionality, and its intensity represent the sub-

surface character of light that interacts with molecules and water droplets that are relatively smaller or a bit bigger than the

wavelength of perceivable light. Thus PM concepts apply to all sorts of liquids and atmospheric effects, as cited earlier, that

exhibit subsurface scattering. On that topic you can find a lot of research online about the reflectance properties of materials.

One very useful paper is “Acquiring Scattering Properties of Participating Media by Dilution” compiled by various

researchers and universities. You can find the PDF downloadable file at the following address:

http://graphics.ucsd.edu/~henrik/papers/acquiring_scattering_properties/

Note the paper is advanced and will only bring your attention to how PM effects can be used for subsurface scattering

effects. The values you will find in such papers are not easily implemented with the PM shader.

participating media (pm) effects ■ 537

08547c12.qxd 10/24/07 4:39 PM Page 537

Uniform vs. Nonuniform Scattering

In addition to the scatter directionality, different environments may provide for more

uniform or nonuniform scatter characteristics; for example, a smoky shaft of light will

appear to scatter light rather nonuniformly, compared to a source light in a uniformly

dense fog or underwater. Clearly, it all depends on the environment and how the particles

interact with light, because their general distribution will define how uniform they appear.

You can see some examples of different participating media nonuniform atmospheres in

the color gallery.

You saw a method to create nonuniform volume light in “Animating Light Scatter and

Nonuniformity” earlier, using 3D textures. However, the PM shader offers a more visually

pleasing (but more render-expensive) technique for nonuniform PM effects using the

Nonuniform attribute shown in Figure 12.38. This attribute utilizes values from 0 to 1 for

controlling uniformity. At a value of 0, the PM appears uniform, as shown in Figure 12.43

image A, a deep-sea example using murky Mie scattering. As you increase the Nonuniform

value toward 1, the PM takes a more nonuniform appearance as shown using a value of 1

in image B. In both cases, only one point light is present in the scene.

A

B

Figure 12.43

Uniform (A) vs.
nonuniform PM

effects (B)

538 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 538

Note that increasing the value can take a significant toll on render times, so the more

nonunifrom the PM, the longer the render time. Also, with uniform PM, the ray marching

sample settings (discussed next) can be lower (higher values) than with nonuniform effects.

Also note that it is much slower to render than when using a 3D texture and that with a

3D texture you can easily animate the volume light.

Ray Marching Sample Level

The Min and Max_step_len attributes shown in Figure 12.38 control the sample interval

for ray marching (discussed earlier). These values define a minimum and maximum

length for ray marching rays. Essentially by doing so, they are the primary attributes that

define the appearance and quality of PM effects; they control how often rays simulate

nonexistent participating media in the volume. Higher values will lead to grainy results,

and lower values produce fine detailed effects by visualizing participating media in close

proximity, again resulting in more detail and slower render times.

Values such as 1 (min) and 5 (max) can be used for quick testing Although the appear-

ance is very low quality; with PM effects the low values are enough to allow you to identify

the pattern and intensities of light in PM effects, which makes this an effective means for

working fast without waiting for slow renders. Values between 0.1 and 1 usually suffice to

produce high-quality PM effects, but you can use even higher-quality settings such as 0.01

and 0.1 (not recommended). Typically the Min_step_len value should be set to 10 percent

of the Max_step_len value.

Also note that you should use lower quality sampling values, such as -2 and 0 for min

and max sample levels (see Chapter 5, “Quality Control”), for anti-aliasing while testing

ray marching values. Then when you see that the quality is relatively sufficient, increasing

the sampling will produce a final high-quality image. With some hands-on experimenta-

tion you will learn to recognize when PM length settings will appear smooth once the

anti-aliasing for the scene is also increased, allowing you to work with lower anti-aliasing

during the testing phase without specifying too high-quality ray marching length settings.

Additional Options

The Height attribute controls the height from the scene floor (the Y axis floor) at which PM

effects appear. This attribute merely enables you to select the highest point in the scene

where PM effects appear. In this way you can force the PM effects to apply their influence

closer to the floor, removing absorption near the source light. For example, you can use it

to create a low-level fog. For the Height attribute to function, the Mode attribute needs to

be set to 1, which is the only reason for you to change the Mode value from 0 to 1.

The Light_distance attribute is used to optimize the sampling quality from area lights.

When the area light has a low sampling level defined (see Chapter 6, “Lights and Soft

participating media (pm) effects ■ 539

08547c12.qxd 10/24/07 4:39 PM Page 539

Shadows”), those lower sampling values will be used at a given distance from the light.

Thus, the Light_distance attribute specifies a distance at which lower sampling values are

used for calculating an area light’s influence on PM effects.

Under the Lights rollout (shown contracted in Figure 12.38), you can drag and drop

particular lights that will interact with PM effects. If you don’t manually connect any

lights to the light list, the PM shader will use all the lights in the volume. However, once

you connect lights to the light list, only those lights will be used. After you connect the first

light, an additional option will appear, enabling you to connect an additional light. You

can accomplish these connections in each host application.

Scene and Shader Setup

The only conditions for rendering participating media effects are that a light source exists

in the scene and a given volume is defined with a geometric object such as a sphere or box.

The volume may be visible geometry such as a room or an invisible (fully transparent) con-

tainer applied with a transmat shader (as an illumination shader), as shown in Figure 12.44.

A

B

D

C

A

Figure 12.44

Scene setup using
two transmat planes

With PM effects for both direct and indirect lighting, the global shadow option should be set

to segmented shadows (see Chapter 7, “Shadow Algorithms”).

540 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 540

You can see the two planes marked A that are used for specifying the volume area.

Notice that they don’t have to encompass the entire scene; they just set a near and far

region relative to the camera. Any lights within that region will be affected by the PM

shader. You don’t have to use these containers; they are merely a means of defining a

particular area for volume light that may not correspond to existing scene geometry. If

you omit them, you can apply the PM shader directly to the walls labeled B, C, and D

that define the room. However, it is easier to use transmat surfaces, because you don’t

have to apply the PM shader to various shaders (for each surface); you have to apply it to

only one shader that is assigned with the transmat shader and the parti_volume shader.

One important consideration is that the containers need to cover the entire render

region seen from the camera’s perspective. To clarify, the far container needs to be scaled

up so it covers the entire view from the camera’s perspective. If it doesn’t, the PM effects

will cut off at the container’s borders and not fill the entire room. An alternative to scaling

the containers so that they cover the render region is to use floor and ceiling containers to

ensure that the defined volume area, applied with the parti_volume shader, bounds the

entire scene. I usually prefer to use two near and far planes and just scale them up.

T H E T R A N S M A T S H A D E R

The transmat shader is a transparent shader that doesn’t affect the direct lighting; it does

not have any options and is intended purely for assisting in rendering PM effects. Note

that you should disable the transmat surface’s shadow-casting abilities, or it will cast

opaque shadows. Disabling shadow casting is only significant if the transmat surfaces are

occluding light based on their placement in the scene, which is the case with setup dis-

cussed next for indirect PM effects.

S E T U P F O R G I O R C A U S T I C P M R E N D E R I N G

With caustics and GI PM effects, a photon collector surface (Figure 12.45 labeled B) needs

to be placed below the photon-casting light and assigned the transmat, transmat photon, and

PM volume and volume photon shaders, as shown in Figure 12.46. Note that the photon

collector surface has shadow casting disabled and it’s facing the light; that is, its normals

are pointed upward. Thus, to generate GI and caustic PM effects, you need to have at least

one surface assigned with the transmat and PM shaders, which I will refer to as the PM

material. The other surfaces that define the container, labeled A in the figure, should also

be assigned with the same PM material, or alternatively you can omit the containers and

use the walls (shown in wireframe labeled C). In such a case you need to apply the PM

shader to those surface materials’ volume and photon volume inputs.

Surfaces used to set volume regions should have their surface normals pointing inward, facing

into the container.

participating media (pm) effects ■ 541

08547c12.qxd 10/24/07 4:39 PM Page 541

Notice that in this case an additional transmat surface is placed below the room along

the floor. You will need this surface to define the near and far boundaries of the container

seen from the light’s perspective. Thus, the photon collector and floor surfaces are added

for indirect illumination PM effects and assigned with the PM material. With GI or caustic

PM effects, the photon collector object must be set to cast GI or caustic photons into the

scene, based on your intentions. Note that in XSI and 3ds Max for PM caustic effects you

need to enable caustic photon casting (disabled by default). I discussed per-object settings

earlier in this chapter in “Host Application Settings.”

There are a few additional considerations for setting the scale of the photon collector

surface and the light type when creating PM caustic effects. I discuss the topic in more

detail in the “GI Participating Media Effects” section later in this chapter.

T H E S H A D E R N E T W O R K

In Figure 12.46 you can see a typical setup for PM effects using the parti_volume shader

and transmat shader, which is the PM material. You also see the transmat photon and

parti_volume_photon shaders that are required when rendering indirect PM effects. As

cited earlier, the transmat and transmat photon shader are optional (with the exception of

a photon collector surface for GI

and caustics) as long as bounding

surfaces exist that define the vol-

ume area and are assigned with

the PM shader.

A

A

A

C

D

B

Figure 12.45

Scene setup using
two transmat planes

542 ■ chapter 12: Indirect Illumination

Figure 12.46

Shading network
shown in XSI using

the transmat and PM
illumination and
photon shaders

08547c12.qxd 10/24/07 4:39 PM Page 542

P M S H A D E R S A N D X S I

In XSI you can use the PM shaders described here after installing the Tek2Shoot mental

ray shader library or the Xphysics shader library, as cited in the “Photon Shaders and Set-

tings” section earlier in this chapter. However, the PM shader is already built into XSI

using similar settings and can be found in the Render Tree window ➔ Nodes ➔ Volume ➔

Volume Effects shader. When you create this shader, you simply attach it to the volume

input on a material as you would with the PM shaders.

The volume effects shader has all the options discussed in this section as well as several

additional options, such as defining nonuniform texture-based PM effects, as discussed

earlier in “Animating Light Scatter and Nonuniformity.” You can find this on the Fractal

tab. If you review the help files for the properties, you can easily identify the correspon-

ding options discussed here. Furthermore, most of them are labeled in the same way, so

they clearly stand out. Note that you must attach scatter and shadow-casting lights to the

shader on the Lights tab.

Indirect PM Effects
When participating media effects are combined with indirect illumination techniques, the

parti_volume_photon shader is used to define the illumination of suspended photons

within the environment that are part of the indirect illumination simulation. The indirect

illumination of PM is divided into GI and caustic effects, just as with indirect light simula-

tions. Thus, for PM indirect effects, at least one of the two indirect (GI and caustics) tech-

niques needs to be enabled. To clarify, unlike GI and caustics you do not specifically cast

PM photons into the scene. PM photons are separate from GI and caustic photons; how-

ever, they are generated only when one of the two techniques is enabled.

PM Options and the PM Photon Shader

Controlling the rendered appearance of indirect PM effects is similar to using GI and

caustics (but more like caustics). The global options for PM effects are added in the

options block, as with GI and caustics, and are as follows:

photonvol accuracy [photon] [radius]

photonvol scale [RGBA]

photon autovolume [on | off]

As you can see, the accuracy, radius, and scale options are present and function exactly

as they do with GI and caustics. You can find these options in host applications under

their render settings, and I discussed them in the chapter’s earlier coverage of GI. As with

The volume effects shader does not include a photon shader; it is meant to be used only with

direct light PM effects.

participating media (pm) effects ■ 543

08547c12.qxd 10/24/07 4:39 PM Page 543

caustics, you are interested in revealing the detail between the different PM particles.

Thus, you’ll tend to use lower accuracy and radius values, as when fine-tuning caustics.

The autovolume option enables mental ray to keep track of multiple volumes. It should be

enabled if the camera is going to transition through different volumes during an anima-

tion. Typically you should leave it enabled, the default in host applications.

With respect to the photon shader, it has the same attributers as with the parti_volume

shader shown in Figure 12.38, with a few minor exceptions that should be considered:

• The Min_level attribute is used only with the photon shader and defines when PM

caustic photons are stored (don’t confuse this option with the Min_step_len attrib-

ute). Caustic PM photons are stored only after refracting or reflecting as many times

as specified with this attribute. Note that with GI and caustics, the number of times a

photon can refract or reflect in the scene is based on the general options that define

the max reflection, refraction, and max trace of both combined, as discussed earlier in

“Controlling Photon Reflections and Refractions.”

• The Min and Max_step_len attributes for ray marching are the same as with the

parti_volume shader. When using GI or caustics, they can be set to high quality (low

values) while generating a photon map. After that you can reuse the photon map

(disable rebuilding) without the overhead of recalculating the PM photons.

• The Extinction attribute contributes to the density of PM photons in the scene. When

the extinction is set to a high value, a larger number of PM photons will be stored on

“particles” in the scene (volume). As noted, the photon shader primarily influences

the distribution of photons, and thus you can use higher extinction rates to generate

more photons that provide for better photon blending in indirect areas of the scene.

It is particularly useful with caustics where you may want to generate a sharper dense

beam of light as shown in Figure 12.49.

• The parti_volume shader has to be present. If you attach only a PM photon shader,

PM photons will be generated, but they will not be visible in the render. Essentially

you can think of the PM photon shader as a tool that spreads more participating

media particles in the scene that are then rendered with the PM shader.

• Thus, for fine-tuning PM effects, the photon shader is really used only for distribu-

tion and absorption; the appearance of PM effects, such as their scatter color and

extinction, is primarily a result of fine-tuning the parti_volume shader settings more

than the photon shader settings. Decreasing the scatter value decreases the photon

radiance in the scene, so you may use it to lower the radiance of PM photons if they

appear too bright. Also, PM photons may absorb too much light, making the indirect

lighting look dark. To fix this you may need to reduce the extinction, a topic further

discussed shortly. If the scene is set up for physical correctness, where the physical

544 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 544

light’s energy and the photon casting light’s energy are set at the same value, you

have a better chance of getting away with a white scatter value for the photon shader,

adjusting only the scatter value on the direct light’s parti_volume shader.

• The Light_distance and light list are not functional with the photon shader. The

photon shader doesn’t use direct lighting, only indirect lighting photons generated

during GI or caustic simulations.

GI Participating Media Effects

The GI effect deals with enhancing the indirect effect of PM around the source light,

referred to as multiple scattering effects. Multiple scattering reflects light from particles

that are outside the light source’s direct line of sight and provides a more realistic effect,

as well as a brighter region around the source light. It helps explain why the approach of

assigning PM shaders to a volume makes more sense if you consider that volume light

should scatter within both direct and indirect lines of sight in a given volume and not

from a particular light source. If an environment is dense and reflects a lot of light, it will

do so everywhere light can be seen.

In Figure 12.47 image A you can see a spot light casting direct light into the scene as

well as PM effects using the parti_volume shader. In image B, GI was enabled, and a PM

photon shader was added. Note the difference in the distribution of the volume light in

image B in indirect areas of the scene and around the source light, compared to image A.

To generate GI PM effects, all you need to do is follow the scene setup instructions

discussed earlier and have at least one photon casting light with GI enabled. Note that

because GI photons are stored in air on theoretical particles, you may need to increase

the photon count to account for a high-quality distribution for both PM and GI photons

in the scene. With respect to the photon shader, a lower extinction value and brighter

scatter value will reveal more indirect light in the scene. To clarify, if the extinction is set

A B

Figure 12.47

GI participating
media effects for
direct and indirect
light

participating media (pm) effects ■ 545

08547c12.qxd 10/24/07 4:39 PM Page 545

high, then the scene will not reflect a lot of light from surfaces that are influenced by indirect

light, because the light is absorbed before it reaches them. This has the effect of creating

denser PM effects near the source light. Balancing these values is based on the scene scale,

so they differ in each case; for example, you may need to use very low values such as an

extinction of 0.002 and a scatter of 0.5 to see indirect light in the scene. In this way you

allow GI photons to interact with the scene rather than absorb within a short distance

from the source light.

Caustic Participating Media Effects

The caustic component deals with scattering focused light through surfaces that amplifies

in intensity, just as with caustics only for suspended particles. You can see in Figure 12.48

the same scene used previously with caustics with the addition of PM effects and PM caus-

tic effects. As you can see, the parti_volume shader (direct light) handles the PM effects

down from the source light, within its line of sight. The PM caustics effects contribute the

light beams seen through the refractive spheres, as well as the light beams projected back

toward the light by the specular ring and the spheres.

Figure 12.48

PM effects with the
addition of caustic

PM effects using the
parti_volume_pho-

ton shader

546 ■ chapter 12: Indirect Illumination

08547c12.qxd 10/24/07 4:39 PM Page 546

If you use an area light to illuminate the scene and use a spot light to cast caustic pho-

tons, as in Figure 12.49, then the photon collector surface will cast caustic photons based

on the spot light’s perspective and form a ring of bright light in the scene, as shown in

image A. To remedy this effect, you should cast caustic photons from the point or point

area light in the scene so that these caustic photons are cast everywhere and don’t form a

clear ring around the spotlight’s terminator line (along the transition to shadow). Alterna-

tively, you can try scaling down the size of the photon collector surface, as I did in this

instance in image B, so the influence remains within a specific region without affecting

areas outside the sphere yet still maintains the caustic beam effect.

F I N E - T U N I N G C A U S T I C S

Let’s look at Figure 12.50 to examine some of the parti_volume_photon characteristics

and how they can be fine-tuned with the parti_volume shader. In image A you can see the

caustic beam exiting the sphere. The parti_volume shader is set with an extinction value of

0.05 and a scatter (RGB) value of 0.05. The parti_volume_photon shader has an extinction

of 0.02 and a scatter value of 1 (white).

For image B I increased the parti_volume_photon extinction to 0.12, which yields a

stronger caustic beam, because more PM photons absorb light near the sphere and enhance

the effect. For both images C and D I left the extinction at the same value of 0.12, reusing

the same photon map.

In image C I changed the extinction for the parti_volume shader to 0.1 from 0.05. As

you can see, there is less light in the room, and the caustic beam has decreased in intensity.

The only difference with respect to the beam between A and C is that there is more detail

inside the beam, shown as a more intense line that runs through the center of the beam.

Thus, by increasing the photon count and reducing the overall radiance, I increased detail.

A B

Figure 12.49

The photon collector
object adds caustic
photons to image A,
and in image B its
influence has been
removed.

participating media (pm) effects ■ 547

08547c12.qxd 10/24/07 4:39 PM Page 547

To introduce more light into the room and maintain a strong

beam in image D, I reduced the parti_volume extinction to

0.02 and set the scatter value to 0.005 instead of 0.5 as with the

previous images. The result is that there is more light and a

strong beam; however, some of the detail appears overexposed.

At this point, I would continue to reduce the parti_volume

scatter to try to reveal the detail that is already there. Or better

yet, I would render a 32-bit image and manage the exposure in

compositing.

Rendering Efficiently

PM effects are extremely processor intensive, leading to very

long render times. It is better to render PM effects as a separate

pass and then superimpose it over the image, allowing you to

tweak the two passes independently of each other in the host

application. You can accomplish a PM pass by applying a con-

stant black shader to all the surfaces in the scene so that they

mask out the effect of PM in the scene and can superimpose

over the image in compositing, as I mentioned earlier with

respect to rendering the color gallery “Participating Media

Effects” image. Note that you may need to use semitransparent

shaders for objects that display transparency in the scene.

With indirect light passes you need to consider generating

the photon map while the shaders are intact, and then you

need to change all the shaders to the constant shader and ren-

der using the prebuilt photon map. In this way, the photons

acquire the correct color values before you render a PM pass

for compositing.

548 ■ chapter 12: Indirect Illumination

A

B

C

D

Figure 12.50

Comparing different
settings using the

PM and PM photon
volume shaders

08547c12.qxd 10/24/07 4:39 PM Page 548

Final Gather and

Ambient Occlusion

The Final Gather (FG) and ambient occlusion techniques dis-

cussed in this chapter overcome some limitations of using GI indirect illumination to

account for diffuse-reflected radiation in the scene. These techniques add more detail,

improve the spread of light, and account for environmental sampling. In fact, FG is a

hybrid of indirect lighting techniques, and the ambient shader is a subset of FG. FG deals

with color-bleeding effects across surfaces from directional irradiance, whereas ambient

occlusion mostly deals with the effects of occlusion in nooks and crannies in the scene.

In this chapter, we examine both of these techniques and look at using Final Gather

alongside indirect illumination photon casting. We also look at using the architectural

library’s physical sun, sky, and tone mapping shaders, as well as using HDR images. This

chapter covers the following topics:

■ Final Gather Fundamentals

■ Final Gather Options and Techniques

■ Advanced Final Gather Techniques

■ Ambient Occlusion

C H A P T E R 1 3

08547c13.qxd 10/24/07 4:41 PM Page 549

Final Gather Fundamentals
Final Gather, also referred to as Final Gathering, is an additional tool for indirect illumi-

nation. As with global illumination (GI), FG calculates diffuse irradiance from indirect

light in the scene without considering caustic effects on glossy to specular surfaces. Unlike

global illumination, FG does not rely on photons to calculate indirect illumination; it uses

raytracing to trace rays from a surface outward into the scene, a topic explored through-

out this section.

The most significant difference between FG and GI is that FG does not solely depend

on light sources for illumination; it reflects light from various sources that either are affected

by a light source or that generate their own radiance by means of a shader. To clarify, in

3D the diffuse and specular color components of a shader require a light source in order to

appear visible when rendered. Aside from that, you can use background images or constant

shaders that are not affected by lighting, and render as is, displaying a texture or constant

color. These colors appear as indirect reflected light when used with FG. Any of the follow-

ing elements are used by FG to generate indirect diffuse lighting:

• Surfaces that are lit by light sources

• Surfaces that reflect ambient light (a shader’s ambient color)

• Surfaces that have constant shading such as bounce cards (light reflectors) and light-

emitting surfaces (surfaces acting as light sources); texture color is rendered as is,

without utilizing a light source that affects its shading (more on that later)

• Environment images or constant background shading

You will see examples of each of these elements in the following sections. Let’s start by

examining FG rendering to demonstrate a few common FG techniques. You’ll then learn

in depth about FG basics, about the differences between FG and global illumination (GI),

and finally about FG mental ray options and advanced techniques with HDR images.

Final Gather Rendering
FG provides two main components, which are ambient occlusion and irradiance sampling

(scene and environmental), both demonstrated in Figure 13.1. Irradiance sampling, a

topic discussed in detail throughout the following sections, refers to the process of sam-

pling irradiance (diffuse reflection) across a surface, as affected by other scene elements

(listed earlier). As a result of irradiance sampling, FG renders color-bleeding effects from

nearby surfaces, similar to GI.

The FG algorithm and its mental ray options have significantly changed in mental ray 3.4 and

3.5 from previous versions; this is further explained throughout the chapter.

550 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 550

As cited in the earlier list, FG can use several resources for extracting and interpolating

diffuse indirect illumination. In Figure 13.1, you can see the simplest form of FG. The

background color is set to a constant color (white), providing FG with a source of illumi-

nation (360° around the model) that affects the model. Thus, there are no light sources in

the scene so that when FG is disabled, the scene renders as black. However, with FG, the

entire model appears lit by a constant light because FG extracts the same irradiance values

(constant intensity) that are reflected from everywhere in the scene. Constant background

shading can be applied either with an environment shader (see Chapter 3) or by means of

a bounding surface such as a sphere with a constant shader.

Since certain areas of the model occlude light from penetrating between the various

surfaces (cracks, folds, and so on), some areas appear darker than others; light is occluded

from reaching deep into those areas. Thus, the irradiance across the surfaces varies based

on occlusion and the irradiance source, in this case a constant background color. If you

change that color to blue or red, for example, the irradiance across the surface would nat-

urally inherit that color. Furthermore, if you apply a texture or image file as a background,

you will see a variation in the irradiance across the surface from various color intensities

displayed in that background.

Light-Emitting Surfaces

As noted, FG is sensitive to any color value that appears in the scene, whether lit by a source

light or reflecting its own ambient light. Thus, you can use various surfaces as light emitters

Throughout the chapter, the term background refers to a spherical environment that projects

color into the scene from 360°, regardless of how it’s applied on a per-host basis.

Figure 13.1

FG applied with a
constant back-
ground shader

final gather fundamentals ■ 551

08547c13.qxd 10/24/07 4:41 PM Page 551

(one of the key advantages of FG) by applying a constant shader to them with a color,

texture map, or image file. The same is true with illumination models, that if you increase

their ambient (and ambience when applicable) color or map it with a texture, they too act

as light sources (with XSI you also need to use the scene ambience, discussed later).

In Figure 13.2, you can see a simple scene with various surfaces acting as light emitters.

The label A points at a plane that has a constant shader with a texture applied. The texture

has two white stripes that run across the surfaces, and all the remaining areas are set to a

very dark gray. As you can see, these stripes reflect diffuse light into the scene in areas that

are closest to them, within a given spread beneath them. The stripe numbered 2 is narrower

than 1 and is also set with a brighter value. The value for that stripe is set to 12 (HSV, V

parameter), and the stripe numbered 1 is set to 1. As you can see, the intensity of the light

reflecting downward from the stripe numbered 2 appears to cast brighter irradiance across

the cubes and floor, whereas the stripe numbered 1 appears to cast a softer, more natural

light that spreads out more, because it’s a broader stripe with a lower intensity value.

1 2

A

B

C

Figure 13.2

Using surfaces as
light sources with FG

Color values with FG don’t need to remain within the 0 to 1 range. As discussed in Chapter 9,

“The Fundamentals of Light and Shading Models,” HDR images and lighting in general are

not bound by a specific range. Thus, in the following sections, I occasionally refer to values

that exceed the 0 to 1 range by specifying color using an HSV color picker. The V (value) param-

eter controls the intensity (luminance) of the light, and the H (hue) and S (saturation) parame-

ters control chromaticity, which is the color of light. It is easier to specify value in this way

than independently for each RGB channel.

552 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 552

Label B points to various surfaces that are also used in a similar way, only without a

texture; they all have a constant shader applied. As you can see, there are three spheres,

where one appears bigger, and all cast light into the scene. The largest sphere is set with a

value of 2, and the two smaller ones are set with a value of 5. You can see that even though

the largest sphere has a lower value, it produces more light because it’s larger and closer

to the surrounding surfaces. These sorts of spheres can be used as lightbulbs to cast radi-

ance into the scene. You can also see that the label B points to a thin, curvy surface that

reflects its shape on the floor. This demonstrates how you can use custom shapes for

effects such as neon lights using constant shaders and FG.

Under label C, you can see one of the more common practices of using flat planes

to reflect light as bounce cards. Some are placed between the cubes indicated with the

arrows. As you can see, they reflect light upward from their location. These sorts of sur-

faces can be used as bounce cards or as light fixtures. For example, they can mimic light

fixtures that emit light upward onto a ceiling

and then reflect (bounce) back into the

room, providing softer indirect lighting.

S T U D I O L I G H T I N G

In studio conditions or on film sets, it is

common to use large diffuse light reflectors

that reflect soft light onto actors or subjects.

The source lights are pointed toward the light

reflector and then bounce back at the subject.

FG is particularly good at simulating these

sorts of lighting conditions, reflecting light

from simple flat surfaces that have a constant

shader. This effect results in soft shadows and

a lot of light wrapping in the scene. Both top-

ics were discussed in Chapter 6, “Lights and

Soft Shadows,” using area lights.

In Figure 13.3, you can see a model that

receives light from a single bounce card that’s

placed in close proximity. There are no addi-

tional light sources in the scene. The bounce

card is fairly large, providing a lot of light

wrapping and soft shadowing on the charac-

ter’s face. You can see how light wraps around

the face across the nose, providing a very soft

and diffused effect.

final gather fundamentals ■ 553

Figure 13.3

Soft light with large
bounce cards pro-
vides a lot of light
wrapping and soft
shadowing.

08547c13.qxd 10/24/07 4:41 PM Page 553

All the surfaces are set with a white diffuse color so that you

can see the influence of the lighting without any texturing. In

addition, the panels on the face have been set with a low glossy

reflection value using the architectural material. The purpose

of the reflections is to add specular highlights, in this case the

reflections of the bounce card across the surface. Without the

raytrace reflections, FG would not produce any specularity; it

solely deals with diffuse reflections, as discussed next.

Specular Highlights

FG lighting doesn’t produce specular highlights; therefore, for

specular highlights, you must have light sources that cast specu-

lar light. However, if the light source is visible, such as with a vis-

ible area light or a bounce card (Figure 13.3), raytrace reflections

will provide for specular highlights. As discussed in Chapter 9,

“The Fundamentals of Light and Shading Models,” the specular

component on base shaders emulates the effect of specular high-

lights, because 3D light sources are infinitely small.

In Figure 13.4, you can see a standard setup for FG; again,

simple shading models are used so you can focus on the effects

of FG. Image A shows the scene with direct lighting using a phys-

ical light. As you can see, the scene is very dark and primarily

reflects specular highlight with a Cook-Torrance shader. Image

B shows the FG effect without any lighting; the physical light

has been removed, and you don’t see any specular highlights.

You do see some soft shadows under the model, as well as the

effect of occlusion in various areas of the model, such as inside

the engines, intakes, and panels. There is one exception that is

inside the tail where you see specular reflections from a chrome

shader (a purely reflective DGS shader). As you can see, it reflects the environment, show-

ing how raytracing is the only means for specular highlights in absence of light sources in

the scene. Image C shows the combination of FG with the physical light (images A and B),

providing both specular highlights and indirect diffuse reflections with FG.

In the following sections, you’ll learn about the technical aspects of FG, as well as FG

mental ray options. While examining the options, you’ll learn more about the techniques

you can use to control FG and the effect it has on lighting.

It’s a common practice to use source lights to produce highlights with FG.

554 ■ chapter 13: Final Gather and Ambient Occlusion

A

B

C

Figure 13.4

Combining specular
highlights (image A)
with FG (image B) in

image C

08547c13.qxd 10/24/07 4:41 PM Page 554

Final Gather Basics
The purpose of FG is to provide a final pass that gathers irradiance values in the scene

before rendering commences, which is why it’s called Final Gathering. Similar to GI, it too

is implemented as a two-stage process:

1. Preprocessing FG points in the scene (distributing FG points and gathering irradiance).

2. Interpolating the irradiance (color and brightness) values from various FG points

during the rendering phase. Furthermore, during the rendering phase, FG has the

ability (optional) to add additional FG points as required.

FG uses raytracing rather than photons, meaning it’s a backward raytracing technique,

not forward raytracing as with GI (see Chapters 2 and 12). In Figure 13.5 (the color version

is on the CD in the Chapter 13 folder as “FG primary rays”), you see an illustration of the

FG process where you can see two eye rays (see Chapter 2) cast into the scene from the

camera’s perspective. Once they hit a surface in the scene, an FG point is generated, and FG

primary rays are cast into the scene to look for the incident illumination cast on that FG

point, as shown for both FG points labeled A.

FG initiates as a result of an eye ray that interacts with something in the scene; it could be

either hair geometry, surfaces of all types, and software-rendered particles such as fluid effects.

B
FG primary ray

FG primary rays

FG primary rays

Diffuse reflection (FG point)

FG point

FG Specular reflection Camera eye rays

Specular reflection
D

A

A

C

Figure 13.5

The FG process cast-
ing FG rays from FG
points in the scene

final gather fundamentals ■ 555

08547c13.qxd 10/24/07 4:41 PM Page 555

Unlike GI, which deals with one photon at a time, FG deals with several rays cast from

each FG point, one point at a time. In other words, GI traces the path each photon takes

throughout the scene from the source light, whereas FG looks at the entire scene from a

given FG point. At each FG point the diffuse irradiance is then calculated by casting several

FG primary rays in the hemisphere around that shading point’s surface normal, as illus-

trated in Figure 13.5 with the FG points labeled A. These rays are used to gather irradiance

values from various entities in the scene by extracting their radiant exitance (see Chapter 9,

“The Fundamentals of Light and Shading Models” for radiometry) values as follows:

1. With geometric surfaces, their material illumination shader is used to provide radiant

exitance from the surface based on its interaction with direct lighting in the scene.

Thus, FG utilizes the surface’s illumination shader and does not require a photon

shader as with GI effects.

2. If GI is enabled, additional illumination influences from GI photons are sampled from

the photon map. When GI is enabled, FG has an ability to leverage photons to accel-

erate the process of sampling radiance from photons by storing FG irradiance values

with photons, a topic further discussed with mental ray options later in this chapter.

3. Environment maps such as HDR images are commonly used to extract luminance values

from a nongeometric environment. This practice uses images as diffuse illumination

sources in the scene. In a similar way, image-based lighting techniques use an array of

source lights to cast light into the scene based on the luminance values from an image file.

FG Points and Paths

The first set of rays cast from an FG point are FG primary rays. When a ray hits a diffuse

surface, it extracts the diffuse-reflected illumination from that surface and terminates. You

can see that with the FG primary ray on the wall that travels from A to B. Because both

walls have Lambert shaders (purely diffused surfaces), the primary ray that reaches the

point labeled B initiates a material shader call at that point to evaluate its (point B) illumi-

nation. The values derived from the material shader are then cached with the FG point as

explained in the section “FG Maps.”

If a surface exhibits specular to glossy reflection or transmission, a secondary ray is cast,

as with standard raytracing, reflecting and refracting through the scene. In Figure 13.5,

you can see that the ray at the point labeled C reflected from a glossy sphere in its path. In

a similar way, the ray that hits the point D first refracted through a refractive sphere. In

Another image based lighting technique can be applied using the architectural library's portal

light shader (mia_portal_light). This shader (with Maya 2008) is also used to further optimize

GI and Final Gather rendering; after completing the chapter you should refer to the architec-

tural library's help files for more details on using the portal light shader with HDR environments

and indirect lighting techniques.

556 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 556

each case the FG primary rays eventually hit a diffuse surface (the walls) where irradiance

values are extracted from the illumination shader, as cited earlier.

The number of times a ray can bounce (reflect and refract) in the scene is based on a

user-defined maximum trace depth as with all raytrace techniques. With FG, primary rays

are cast from FG points in the scene with the purpose of evaluating indirect diffuse light

paths, and secondary rays perturb (reflect or refract) the FG primary ray’s direction, carry-

ing it through the scene to a final destination.

It’s important to note that influence from reflections or refractions is irrelevant; FG

deals only with diffuse indirect light. Thus, those reflective and refractive secondary rays

are only a means for redirecting the FG primary ray to a diffuse surface (final destination),

if any exists.

G E N E R A T I N G F G P O I N T S

The FG points that are created in the scene are dependent on the surface’s material. FG

will not generate an FG point on a surface that has purely reflective qualities, as shown in

Figure 13.6, which is an FG diagnostics render (we discuss FG diagnostics later in the

chapter). In the figure, FG points are shown as small dots across the surfaces (green).

For now, notice that under label A, FG points are generated everywhere across the sur-

faces, which all share the same Lambert diffuse shader. Under label B some of the cubes

(circled in the figure) are applied with a purely reflective DGS shader. As you can see, the

FG points omit those surfaces, generating FG points around them where they intersect with

the floor; the FG points are generated on the floor, not on the cubes. Thus, you can see how

a surface’s material shader has influence on the generation of FG points in the scene.

With partially diffused surfaces, FG points are generated.

B

C

A B

Figure 13.6

FG points are cre-
ated only on sur-
faces that possess
diffuse qualities (A),
omitting surfaces
with purely reflec-
tive (glossy to spec-
ular) qualities (B).

Each FG point emits a set of first-generation FG primary rays, which is a single indirect diffuse

reflection that can be reflected or refracted in the scene.

final gather fundamentals ■ 557

08547c13.qxd 10/24/07 4:41 PM Page 557

S I N G L E A N D M U L T I P L E D I F F U S E B O U N C E S

FG is primarily intended for extracting a single indirect diffuse bounce, even though you

can specify multiple diffuse bounces. Unlike GI, which deals with casting and bouncing a

photon several times within the scene, FG is mostly used with one or two diffuse bounces

as a means of improving the indirect illumination solution. For this reason FG is known

for acquiring a final pass of irradiance influence in the scene that provides first-generation

diffuse indirect lighting effects.

If you specify more than one diffuse bounce, a secondary FG ray is cast after the primary

FG ray hits a diffuse surface, as shown in Figure 13.7. In the figure you can see an eye ray

cast from the camera to point A. At that point, an FG point is generated, and primary FG

rays are cast into the scene. If you track one of these rays, you can see that it hits point B. If

you increase the diffuse bounces to 2 (trace depth for FG rays), a secondary FG ray is cast

from point B to C. And if you allowed for three or more diffuse bounces, an additional sec-

ondary FG ray will cast from point C to D, and so forth. Note that if a reflective or refrac-

tive surface existed along any of these secondary FG ray paths, as shown in Figure 13.5, the

FG secondary ray would reflect or refract from it as described earlier with primary FG rays.

FG secondary ray (2)

FG secondary ray (1)

Diffuse reflection (FG point)

Camera eye ray

A

B

C

D

Figure 13.7

Secondary diffuse
bounces with

Final Gather

You need to distinguish between FG primary and secondary rays that are used for diffuse

bounces and raytrace secondary rays that are used to redirect FG rays from reflective and

refractive surfaces.

558 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 558

Typically you should not use more than two diffuse bounces with FG, because that

would be inefficient. If you need several diffuse bounces in the scene, you should prefer

GI. That’s because FG casts an enormous number of raytrace rays from each FG point,

and if each of those rays bounces multiple times in the scene, it increases the rendering

time and reduces efficiency. Furthermore, the influence of FG illumination in the scene

decreases as you increase the diffuse bounces. Two bounces will show more color bleeding

between surfaces in the scene than a single bounce. If you increase the diffuse bounces to 3,

you will not see a significant change in the illumination on the floor; however, you will

reduce the rendering efficiency. You can see the color version of Figure 13.7 (rendered

with two diffuse bounces) in the Chapter 13 folder on the CD, named “FG secondary

rays,” where you see red and blue color bleeding from the walls on the floor and ceiling.

FG Maps

The FG point stores irradiance information within a special KD data tree (see the “3D

Photon Maps and Kd-Trees” sidebar in Chapter 12, “Indirect Illumination”), known as an

FG map, and uses it for color interpolation during the rendering phase. That information

includes directional dependent color and luminance values from the surroundings that

are stored with each FG point. The cached FG map file can then be reused to reduce the

overhead of recalculating FG points for each frame. However, the way FG maps are used

and implemented are very different from GI, as you will see throughout this chapter.

FG Sampling
To extend our discussion of FG efficiency (see the earlier “Single and Multiple Diffuse

Bounces” section), we need to discuss FG sampling, which is the distribution of precom-

puted FG points during the first stage of FG. You already know how adaptive sampling

works with mental ray (see Chapter 5, “Quality Control”), and how the sample density

exponentially increases with high maximum sample values (that is, 64 samples per pixel

with super-sampling). With FG it would be very expensive to calculate hundreds of FG rays

per shading point (if each shading point is also an FG point) for each sample in the scene.

To avoid excessive calculations, FG utilizes its own sample pattern (and user-defined

density) to evaluate incident illumination, shown in Figure 13.8. The distribution of FG

points during the precomputation stage within the 3D scene is based on a raster space dis-

tribution (2D pixel space). To clarify, it distributes points by projecting eye rays through a

Consider that GI photons are cast from light sources and behave differently than FG. Their

sole purpose is to simulate multiple bounces and thus produce better (more realistic) results,

whereas FG has the sole purpose of improving GI renders with an additional set of first-

generation (single) diffuse bounces.

final gather fundamentals ■ 559

08547c13.qxd 10/24/07 4:41 PM Page 559

hexagonal 2D grid of potential FG points from the camera’s perspective. When these eye

rays intersect with geometry in the scene, actual FG points are generated in 3D space at

those 3D world space coordinates.

In Figure 13.8 label A, you see a rendered surface where FG points appear distributed

across the entire surface. In label B, you can see a zoom on a small portion of the surface.

Since the surface is simple (mostly planer), you can easily identify the hexagonal sample

pattern. When the surface curvature shifts, particularly at the corners, the FG sample den-

sity appears to increase, as shown under label C. Typically, round corners and sharp edges

produce more FG points for interpolation, depending on the FG mode used and other FG

options. We will discuss the FG modes and controlling the density of FG points in more

detail in the “Final Gathering Options and Techniques” section.

Since FG points are generated in raster space, their distribution is dependent on the camera’s

perspective and thus subject to change when a camera animates; by contrast, GI photons

depend on the location of source lights in the scene and do not change because of a camera

animation.

A

B

C

Figure 13.8

The distribution of
FG points depends
on a 2D hexagonal
grid from the cam-

era’s perspective.

560 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 560

The fact that FG is a camera-dependent solution, not a scene-based solution like GI,

has two important implications:

• The solution is optimized for rendering performance by avoiding the generation of

FG points everywhere in the scene; FG points are created only on surfaces that are in a

direct line of sight from the camera’s perspective (see Figure 13.9).

• When rendering animations, the fact that each frame has its independent FG solution

results with FG flickering. Consider that raster-based FG sample patterns may distribute

differently (and at different densities) on objects as the camera pans and dollies around

them. These different FG distributions produce flickering artifacts, a well-known issue

with FG. To resolve flickering in animations, there are a few well-developed options

based on the usage of FG maps, which are discussed in detail in the section “Final

Gathering Options and Techniques.”

In Figure 13.9, you can see the distribution of precomputation FG points within a 3D

scene. (In Maya, after executing a render, it is possible to view and analyze the distribution

of precomputation FG points within the viewport). In image A you can see how the FG

points are distributed within the boundaries of the resolution gate, which is the rendered

perspective. As you can see, geometry outside the resolution gate does not receive any FG

points. In image B I rotated the camera’s perspective to better illustrate how FG points are

glued to the surface in 3D, illustrating that the 2D raster space sample pattern projects FG

points within the 3D space.

A B

Figure 13.9

Viewport snapshots
of the FG distribu-
tion in 3D based on
the camera’s per-
spective (A) and
after rotating the
camera (B)

final gather fundamentals ■ 561

08547c13.qxd 10/24/07 4:41 PM Page 561

Render-Time Interpolation of FG Points

As cited earlier, the FG point distribution is independent of shading samples in order to

avoid generating too many FG points in the scene as a matter of render efficiency. Similar

to GI photons, FG can leverage existing FG points within a given area to interpolate color

across the surface, applying FG influence to areas that didn’t receive FG points during the

precomputation stage (sample locations between FG points).

Thus, FG interpolates irradiance values by using existing FG points within a given

radius in world space units or raster (pixel) space, a concept illustrated in Figure 13.10. As

you will see in the “Final Gathering Options and Techniques” section, two radius values

are used to depict the area of influence for neighboring FG points at render time. A min

radius value defines a region; all FG points within that radius must be used for interpola-

tion or extrapolation. The max radius extends that region where a given number of FG

points may be used. To clarify, the radius is “activated” with each sample taken in the scene

(shading point), where irradiance values from nearby FG points (within the radius regions)

are then used to apply FG shading. As with the GI photon search radius, smaller radius

values produce finer details and increase the render time.

Max radius

Min radius

Figure 13.10

The min and max
radius for interpolat-

ing FG points

The methods for specifying and controlling min and max radius values, as well as those val-

ues’ relevance to FG, differ between the different FG modes, as discussed in the “Final Gather-

ing Options and Techniques” section.

562 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 562

Precomputed and Render-Time FG Points

As discussed earlier, FG is a two-stage process that includes precomputing FG points and

render-time FG interpolation with additional FG point distribution (on demand). The

precomputation stage handles the generation of FG points through the hexagonal sample

pattern cited earlier.

During the interpolation stage, FG may decide to add other points when necessary.

Basically, if there are too few FG points for interpolating color within the influence area

(the min or max radius), FG is required to cast additional render-time FG points. Thus,

render-time FG points are added where they are needed, on demand. Typically, you see

them around sharp corners where nearby FG points are lacking. For example, if you place

an imaginary circular plane (the radius) at an object’s corner, because of the curvature,

very few FG points will exist within that circle; hence, additional FG points are generated

at corners, increasing the FG point density locally.

FG Point Diagnostics

When FG diagnostics is enabled, the precomputed FG points appear as green dots, and

additional render-time FG points appear as red dots. In Figure 13.11 under label A, you

can see only precomputation points (correlating to green

dots). Under label B, you can see precomputation FG

points and render-time FG points (red dots). The green

dots appear as brighter and larger circles opposed to the

red ones in the black-and-white image. For generating

the additional render-time FG points, I decreased the

radius discussed earlier, forcing additional render-time

FG points. One thing to notice in this figure is that the

precomputed sample pattern has not changed; it remains the same under both images.

Thus, the only difference is that additional render-time FG points have been added locally

around the precomputed sample pattern.

If you look at the color image “Final Gather Diagnostics” on the CD in the Chapter 13

folder, you can see a color version that illustrates the two types of FG points. In that image

under label A, you see the full diagnostic of the head model. Under label B, you can see a

zoom of the nose area where you can identify a mix of green and red dots. Label C is an

additional zoom that clearly displays their distribution. As cited earlier, the green dots are

distributed based on the projection of eye rays through the hexagonal grid. Render-time

FG points are added at random locations around those points based on demand.

With mental ray 3.5, the FG algorithm differs between the different modes. The automatic

and multiframe modes do not produce additional render-time points.

final gather fundamentals ■ 563

A B

Figure 13.11

The distribution
of precomputed
FG points (A) and
precomputed with
render-time FG
points (B)

08547c13.qxd 10/24/07 4:41 PM Page 563

In the color insert under label D, you can see that the distribution of FG points along

some of the panels appears denser than the rest of the model. This demonstrates per-

object FG settings. In this case, I used different setting for the panels, producing more pre-

computed FG points along their surface. In previous versions of mental ray, per-object FG

points rendered as blue dots.

So the distribution of FG points is based on the initial hexagonal grid, where render-

time FG points may be added (based on the FG mode) around those initial points. Fur-

thermore, per-object FG settings can be specified in each host.

F G S T A T I S T I C S (V E R B O S E O U T P U T)

In addition to visualizing the diagnostics, mental ray outputs straightforward FG statistics

from the RCFG module as verbosity info messages, as follows:

RC 0.4 info : rendering statistics

RC 0.4 info : type number per eye ray

RC 0.4 info : eye rays 442904 1.00

RC 0.4 info : fg points interpolated 441491 1.00

RC 0.4 info : on average 86.44 finalgather points used per interpolation

You can learn from these output statistics more about the FG process. If you use differ-

ent modes, such as the 3.4 modes (discussed in a moment), you will see two additional

lines (in addition to interpolated):

RC 0.4 info : finalgather rays 2219500 4.87

RC 0.4 info : fg points computed 22195 0.05

These provide information on the total computed FG points (fg points computed) and

the total number of FG rays cast in the scene.

E N A B L I N G D I A G N O S T I C S I N H O S T A P P L I C A T I O N S

When FG diagnostics is enabled, the color dots appear after the render has completed,

superimposed on the image as shown in the earlier examples. You can enable FG diagnos-

tics in each host under the following paths:

Maya In the Render Settings window under the mental ray tab ➔ Diagnostics ➔ Diagnose

Final Gather attribute check box.

XSI In the Render Manager window mental ray tab under the mental ray Render Options

rollout ➔ Diagnostics tab ➔ View Final Gather Points property check box.

3ds Max In the Render Scene: mental ray Renderer window under the Processing tab ➔

Diagnostics rollout, enable the Enable parameter check box, and then select the Final

Gather parameter radio button.

P E R - O B J E C T F G S E T T I N G S I N H O S T A P P L I C A T I O N S

This section covers the FG per-object options in host applications. You can find per-object

FG options in each host for a selected surface under the following paths:

564 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 564

Maya In the Attribute Editor window under a shape node’s mental ray rollout, the Final

Gather Cast attribute check box enables a surface to cast influence (FG) on other surfaces.

The Final Gather Receive attribute check box enables a surface to generate FG points and

thus receive influence from FG. When either attribute is disabled, the surface will not cast

or receive FG influence.

The Final Gather Override attribute check box, when enabled, enables additional attrib-

utes that appear directly below it. These per-object options have equivalent global options

and are discussed later in the “Final Gathering Options and Techniques” section.

XSI In the Explorer window, select the Visibility node to open the Visibility property edi-

tor. In the Rendering tab ➔ Final Gathering section, you can specify how an object partici-

pates in FG with the following properties:

• The Caster property enables generating FG points on that surface.

• The Visible in Sampling and Sampled properties both make the object visible to FG

rays cast from other surfaces. When disabled, the Visible in Sampling property makes

the surface invisible to FG rays (does not influence FG) so that they pass through the

surface and can hit surfaces that are farther back. The Sampled property also makes it

invisible; however, it stops the rays at the surface.

• Local FG Map allows you to specify a per-object FG map.

3ds Max Currently 3ds Max does not have per-object FG parameters.

GI and FG
Since both GI and FG evaluate diffuse indirect illumination, why use both? To answer that

question, you need to consider the following points:

• High-quality GI renders typically require an enormous number of photons (mil-

lions), resulting in slow render times.

• Even with high-quality GI, artifacts may appear such as splotchy color smudges

(noise) in the render, as shown with the kitchen sample on the CD in the Chapter 13

folder labeled photonSpread_high; look at the ceiling.

• To resolve artifacts in GI renders, you typically increase the search radius for photons;

this has the effect of reducing the detail in the scene, such as in tight corners, by

smoothing out the GI effect, as with the image on the CD in the Chapter 13 folder

labeled photonSpread_low.

The purpose of FG is twofold: it improves the GI quality and improves rendering times

by significantly reducing the number of photons required for GI as well as requiring fewer

FG rays from each FG point. Thus, the reason you use both solutions is to remove GI

splotchy artifacts, enhancing the quality of the image as well as improving the rendering

final gather fundamentals ■ 565

08547c13.qxd 10/24/07 4:41 PM Page 565

time. Having said that, FG is extensively used as a single diffuse pass without GI, in which

case it requires more rays to produce good results resulting with slow render times.

The effect FG has on the rendered image is more than just a means to remove GI arti-

facts; it’s also a means for generating finer detail around and between surfaces (occlusion).

Occlusion greatly improves realism by adding finer detail such as darkening in nooks and

crannies, unlike GI, which is smoothed out over a search radius. In the same context, it

also adds irradiance in nooks and crannies that may have been missed with GI photons.

To clarify, in Chapter 12 you saw how the distribution of photons, its coverage in the

scene, may miss certain target areas in the scene that are hard to access, such as along a

corner or inside a recessed crack on a surface. FG compensates for the lack of photons in

those areas by sampling irradiance from the FG points themselves (from the surfaces)

rather than based on the distribution of photons from a source light.

In Figure 13.12, you can see a GI render under image A and the combination of both

GI and FG under image B. Notice the increased irradiance, particularly around corners

between image A (only GI) and image B (GI with FG), demonstrating how FG improves

the render quality of GI. You can see a color version of this image in the Chapter 13 folder

on the CD, labeled “GI and FG,” where the influences on color are more apparent. Partic-

ularly note the increase in color bleeding on the cubes from the walls. The cubes are set

as white diffuse surfaces so that they clearly show the color bleeding effect from the

surroundings.

All in all, FG adds some nice qualities to GI rendering but reduces realism. For pure

realism such as CAD rendering, you should use GI and caustics only with very high pho-

ton counts. For most creative purposes, a combination of GI with FG provides aesthetic

results.

A B

Figure 13.12

Comparing GI (A)
and the effect of GI

and FG combined (B)

566 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 566

Final Gather Options and Techniques
In this section, we review the mental ray FG options and discuss their effect on rendering.

By doing so you will learn more about the techniques for using FG; however, in this case the

techniques are more geared toward optimizing the render for efficiency. In the following

section, we will further discuss more creative usages of FG. After reviewing the options, I’ll

identify them in each host application, as well as note some per-host specifics for environ-

ment mapping and constant shading.

The mental ray options for FG are applied in the options block of a .mi file. The

options are mostly dependent on the selected FG mode; some are required, and others

are optional (some options are only for version 3.5). The FG options are as follows:

finalgather [on | off | only | fastlookup]

“finalgather mode” “[automatic | multiframe | 3.4 | strict 3.4]”

“finalgather points” n (number of interpolation points)

finalgather presample density n (sample density)

finalgather accuracy [view] [n rays] [max radius] [min radius]

finalgather rebuild [on | off | freeze]

finalgather file “file name”

finalgather filter n (filter size)

finalgather falloff [start] [stop]

finalgather trace depth [reflection] [refraction] [diffuse] [total

combined]

finalgather scale [RGBA (color values)]

finalgather secondary scale [RGBA (color values)]

In mental ray 3.5 the automatic and multiframe modes have been added and utilize a

different approach to FG rendering. Mostly they don’t generate render-time FG points

(the red dots discussed earlier) and use an option for point interpolation rather than a

radius value. All these differences will be thoroughly clarified throughout this section.

Let’s start by examining some of the more straightforward options, and then look at the

more complex and influential options in more depth.

The finalgather [on | off | only | fastlookup] option is used to enable or disable

FG. It also provides two alternative “on” options: fast lookup and only. The fast lookup

option leverages photons when GI is also enabled by storing irradiance values with pho-

tons during the photon distribution stage. As a result, when mental ray examines photons

to determine their contribution to FG, it can extract the irradiance from one photon

lookup rather than sample several photons to determine irradiance from GI. Using this

option slows down the GI photon distribution process but accelerates FG. Overall, it pro-

vides for a faster render.

The only option is used to render solely FG without rendering the scene (a color image

is not rendered). Its purpose is to generate FG maps that store information for several frames

(with camera animations). We’ll return to the topic of generating multiframe FG maps

later in this section.

final gather options and techniques ■ 567

08547c13.qxd 10/24/07 4:41 PM Page 567

The finalgather presample density option is used to control the density of the pre-

computed FG points. As discussed earlier, the hexagonal sample pattern (precomputed

FG points) is a fixed grid in raster space. This option acts as a multiplier for the grid den-

sity, where values less than 1 decrease the density and greater than 1 increase the density.

Typically, a density of 1 to 2 will suffice for most purposes. The density has the effect of

improving detail in nooks and crannies, similar to the examples presented in Figure 13.14

while changing the radius sizes.

The “finalgather points” option specifies how many FG points should be used for

interpolating color when the automatic or multiframe modes (discussed shortly) are used.

It’s similar to the accuracy option with GI that defines how many photons will be used

within a search radius for interpolating color.

The finalgather trace depth option is rather redundant; we have discussed similar

trace options with raytracing, GI, and caustics in previous chapters, as well as earlier in the

“FG Points and Paths” section. It simply limits the times an FG ray may reflect, refract,

and a total for both combined. The only difference here is that an additional diffuse

option exists that is unique to FG. This option refers to how many times an FG ray can

reflect from diffuse surfaces to acquire color samples for irradiance, as discussed earlier

with secondary bounces; the diffuse reflection is the sole purpose of FG that collects indi-

rect irradiance from the scene. A value of 0 means there will be only one diffuse FG

bounce (primary FG rays), and a value of 1 enables secondary FG rays, which is a second-

ary diffuse bounce. Thus, the reflect and refract options merely redirect rays, whereas the

diffuse actually acquires color values from shading points. The total combined is the total

of all three reflection types. As cited earlier, you should not use more than two diffuse

bounces, even though you can. For more bounces, GI is a better solution.

The finalgather scale option is simply an RGBA color multiplier for FG primary rays.

It reduces the intensity of FG primary rays based on the value you specify. When the color

value is set to 1 for all four channels (white), the irradiance is multiplied by a value of one

and thus maintains its original intensity. The finalgather secondary scale option is the

same only for all secondary rays, for all diffuse bounces greater than 0. Thus, you have a

color control for the primary rays and another for all secondary rays. Typically when a

scene appears too bright, such as when using an HDR image, you can either scale down

these color values or scale down the environment image’s intensity (luminance) using a

color multiplier, for example, with a color gain option, more on that later.

The finalgather filter option is used to reduce artifacts when rendering with HDR

images, referred to as speckle elimination. A filter size of 0 means that no filtering is

Since the distribution of FG points is based on projected eye rays through the grid, from the

camera’s perspective, higher render resolutions will provide for better quality because more

FG points will distribute in the scene.

568 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 568

applied, and values of 1 and 2 are typically sufficient (you can use higher values). The

purpose and benefits of filtering HDR images are discussed in detail in the “Final Gather

Options and Techniques” section.

FG Falloff Distances
The finalgather falloff option defines the start and stop falloff ranges for FG rays. It’s

an important option that you should use to decrease render times by limiting the distance

FG rays may travel in the scene. When an FG ray reaches the stop distance, it looks for an

environment image (camera environment shader; see Chapter 3) to extract a final color

value. The start value defines a starting point for a linear transition to the environment

color, and the stop value defines the end point of that transition. From a creative per-

spective, it can be used to prevent FG from extracting irradiance influences from objects

that are too far away in the scene so that they don’t get darker or brighter (based on the

target objects), as shown in Figure 13.13. Thus, it adds “creative” control over which

objects influence FG.

A

B

C

D

Figure 13.13

Influences of limit-
ing the distance
FG rays can travel
in the scene

final gather options and techniques ■ 569

08547c13.qxd 10/24/07 4:41 PM Page 569

In Figure 13.13, the entire scene has the same Lambert shader applied using a white dif-

fuse color, and the environment is set as a constant white color. For all purposes, this setup

is an ambient occlusion pass using FG, a topic discussed in detail in “Ambient Occlusion”

later in this chapter. In both images A and B, the influence of nearby occluding objects

causes certain areas to appear darker, such as those labeled C and D in image A.

For image A, the falloff start and stop options are set to 0 (limitless), and for image B

the falloff stop has been changed to 15, which is the maximum distance FG rays can travel

to look for irradiance influence. Any value past that distance returns the environment

color, which is white.

As you can see, under image A the point labeled C shows how the walls on both sides of

the street and the overpass influence each other, as well as the floor, occluding some of the

constant light from passing underneath the overpass. The same areas appear almost com-

pletely white in image B. They are completely white because the FG rays from the walls

and overpass are not long enough to have influence on each other. For example, the floor

emits rays that never reach the overpass; therefore, the overpass is more than 15 units

away from the point labeled C. After the ray travels the distance of 15 units, it looks at the

environment and extracts a white color for the floor’s irradiance (for that ray only). In

other words, in image B the rays “see” through surfaces in the scene, such as the overpass,

and extract the background color.

To provide an extremely ridiculous analogy, light that hits the Empire State Building in

New York will not influence the Eiffel Tower in Paris, and because mental ray has no idea

as to the real scale of the scene, by using these falloff distances you can prevent objects that

should not affect each other from doing so. But, there is a catch; if the environment is

set to white, or any other color other than black, that color will be extracted by FG and

add illumination. Consider these two scenarios when using an environmental image of a

sky and FG:

• In the case of the Empire State Building and Eiffel Tower example noted earlier (an

outdoor scene), limiting the distance is fine since FG will extract color from the sky

after a given distance.

• Inside a closed room with an open window, the window is open so FG can sample the

environment and “cast light” into the room. If you limit the distance in this scenario,

the objects in the room might see through the walls and sample the environment if

the distance is too short, which would be an undesired effect.

In Figure 13.13, the label D points to some more areas of interest in both images that

show significant differences between the images. Note the farthest arrow from D points

at four diamond-shaped windows at the top of the building. In that area, the detail is

lost in image B because the rays within that encompassed area (on the diamond-shaped

570 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 570

windows) don’t extract influence from the surrounding four walls. In this case, clearly the

falloff is set too low.

FG Accuracy
The finalgather accuracy option specifies the number of FG rays cast from each FG point

(the n rays parameter in the previous excerpt). Values such as 100 are good for testing your

scene and keep the render times relatively fast, whereas values from 500 to 800 provide for

high-quality FG rendering.

T H E M I N A N D M A X O P T I O N S

The min and max radius parameters (found only with the “3.4” and “strict 3.4” modes)

were discussed earlier in the section “Render-Time Interpolation of FG Points.” If left

unspecified, the max radius is automatically calculated based on the scene size and the

min radius is set to 10 percent of the max radius. When manually specifying these values,

for the max radius, typically 10 percent of the scene size is a good starting point, and then

use 10 percent of that size for the min radius. The influence of min and max radius on

rendering is significant. When set to low values, such as 0.1 and 1 for min and max radius,

respectively, it has the following influences:

• It increases the render time.

• It adds more precomputed FG point sites.

• It enhances the level of detail around corners.

• It typically forces render-time FG points to generate.

• It can produce splotchy artifacts because of the shift in irradiance at close proximity,

as with GI artifacts, requiring higher-accuracy settings (more FG rays per point) to

improve the quality.

As discussed earlier, the hexagonal sample pattern for precomputed FG points is a fixed

grid based on a given density. If the max radius is too small to encompass enough points

for FG interpolation, then additional points are generated. Thus, small radius values act as

an additional method for increasing the FG density, in this case using render-time FG points

rather than precomputed FG points. Precomputed FG point density can be increased with

the FG density option discussed earlier.

You saw in Figure 13.11 image A an example of precomputed FG points, and you saw

in image B precomputed and render-time points. I forced the render to include the render-

time FG points by decreasing the max radius (and min, respectively) value from 10 to 1.

Note that higher ray values will also produce more FG precomputed points that may show

more irradiance.

final gather options and techniques ■ 571

08547c13.qxd 10/24/07 4:41 PM Page 571

You should use a simple scene to test these characteristics with FG diagnostics while using

the 3.4 mode (discussed next).

Render-time FG points should be kept to a minimum because they can cause flicker-

ing. As you will see, an FG map can store precomputed FG points so that the objective is

to get as many of those precomputed points into the map so that they remain static over a

given number of frames. As cited earlier, when using the “automatic” and “multiframe”

modes, render-time FG points are irrelevant.

In Figure 13.14 image A, the min and max radius are set to 1 and 10, respectively. In B

they were set at 0.1 and 1. As you can see, there is more detail in the areas indicated with

the arrows in image B. Thus, when the radius is set smaller, you can see better occlusion

effects within cracks and neighboring surfaces. With lower values the occlusion effects are

more pronounced and the render times increase.

Again, lower radius values also means that you see faster shifts in irradiance across the

surface. By increasing the number of rays cast from each FG point, you also increase the

likelihood that FG points in near proximity (which don’t affect each other during the

interpolation) will receive relatively similar irradiance values by taking an enormous

amount of FG ray samples (about 400 to 800) in the scene and reducing artifacts.

A

B

Figure 13.14

Decreasing the min
and max radius from

image A to B pro-
vides the enhanced

detail shown.

With mental ray 3.4 and newer, 1,000 rays is considered excessive because it can now use

approximately half as many rays to produce similar results as with the preceding mental

ray versions (that is, typically users used approximately 1,000 rays so they can now use only

500 rays). Some users consider values of more than 1,000 rays, which in my opinion (in most

cases) will prove inefficient (unnecessary). If you use FG in that way for high production qual-

ity, it should be used only when you have the support of very powerful machines.

572 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 572

T H E V I E W P A R A M E T E R (A L L F G M O D E S)

The view parameter of the finalgather accuracy option defines whether the radius sizes

are measured in 3D world space or in 2D raster space. When view is enabled, these dis-

tances basically become view dependent, regardless of the mode, so that objects that are

close to the camera have more detail than those placed farther back. Consider that an

object can encompass a pixel space of 64×64 pixels, so that when you specify a max radius

of 10 pixels, several FG points need to be spread across the surface for interpolation. How-

ever, if you translate the object farther back in the scene so that it encompasses an area of

10×10 pixels, that object will receive fewer FG points.

When you enable view, the min and max radius values used for pixel space may differ

drastically than those used for world space, so you should not assume that the current val-

ues (world space values when view is disabled) are correct; you should specify appropriate

values based on the level of detail in the scene and the render resolution size.

FG Modes
The FG algorithm has improved its handling of modes in mental ray 3.5. Aside from the

difference in how many FG rays are required for producing good results, as noted earlier

with mental ray 3.4, in version 3.5, the quality of the data (irradiance values) stored with

FG points has been improved. Each FG point now stores colors with directional informa-

tion, which improves FG in general and particularly with normal or bump mapping. In

previous versions, for bump mapping, FG had to generate new FG points based on the

bump map, similar to the increased density around sharp corners discussed earlier. Now

FG stores directional color (irradiance) information so that it can simulate bump mapping

without increasing the FG density. Thus, mental ray can interpret the influence bump map-

ping has on irradiance at a given FG point without adding additional FG points, because

each FG point possesses within it directional information on the sources of irradiance.

There are four optional modes for controlling FG. They are specified with the following

option:
“finalgather mode” “[automatic | multiframe | 3.4 | strict 3.4]”

The automatic, multiframe, and 3.4 modes are new to mental ray, whereas the strict 3.4

forces mental ray to function exactly as it used to in previous versions, without leveraging

any of the enhanced features of mental ray 3.5; it’s intended for backward compatibility so

that existing scene files will render the same as with earlier versions of mental ray. One dif-

ference between modes is that the automatic and multiframe modes do not generate render-

time FG points, thus they use only precomputed points. The 3.4 mode does allow render-time

points to generate; it also leverages the enhancements to the FG algorithm. Let’s look at

each mode in more detail.

Consider that higher resolutions can use higher radius sizes, and vice versa.

final gather options and techniques ■ 573

08547c13.qxd 10/24/07 4:41 PM Page 573

The Automatic Mode

With the automatic mode, you specify a number of points that should be used for interpo-

lating color, rather than use the min and max radius parameters with the finalgather

accuracy option; mental ray extracts FG points automatically from the scene determining

on its own the adequate distance for interpolation (the influence area), regardless of a

specified radius. Note that the accuracy statement is still used to specify the number of FG

rays (the ray parameter) and enable the view dependent mode (the view parameter); how-

ever, the radius parameters have no effect. Thus, our discussions on min and max radius

values and interpolation are based on mental ray 3.4. Those concepts still apply, but they

are handled internally without user control, aside from specifying view dependency. The

following points sum up the most relevant options to control quality when using the auto-

matic mode:

• The finalgather presample density option defines the initial distribution of FG

points. Values from 1 to 2 provide adequate quality.

• The finalgather accuracy [view] [n rays] option is used to specify view dependency

and the number of rays.

• The finalgather points option is used to define the number of FG points for

interpolation.

• The finalgather scale and secondary scale options are used to control the intensity

of the FG irradiance contribution, as discussed earlier.

The Multiframe Mode

Multiframe is aimed at improving FG solutions with motion cameras. It’s an extension of

the automatic mode, functioning in a similar way. The difference is in how you approach

rendering and how points are computed. The render should be divided into the two stages

of FG map generation and rendering. The FG map is generated to cover the entire sequence

and then used by mental ray during rendering. Also, during the first stage (point generation),

the multiframe mode ensures that the same number of FG points will be used for each frame.

With this approach, the multiframe mode reduces the likelihood of flickering in animation.

This technique is further demonstrated in the “FG Maps and the fg_copy Utility” section.

In addition, this mode utilizes the max radius parameter from the finalgather accuracy

option. It uses the max radius to define a maximum distance at which FG points can influ-

ence each other during interpolation. This is because with the automatic and multiframe

modes, FG points can be extracted from anywhere in the scene, based on how mental ray

decides to handle the interpolation internally. With multiframe, mental ray knows that FG

points are spread out to cover a larger area of the scene, based on the camera’s animation.

574 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 574

Thus, by allowing you to define a max distance for interpolation, it prevents mental ray

from pulling influence from points that are placed in remote areas of the scene from the

point in question. If FG cannot find enough FG points within that max radius for interpo-

lation, it fades whatever irradiance results it has to black.

Thus, the multiframe mode utilizes the same options as the automatic mode, with the

difference of also accepting a max radius value with the finalgather accuracy option.

The 3.4 Mode

The 3.4 mode is similar to the previous implementation of FG in that it utilizes the final-

gather accuracy option radius parameters and not the finalgather points interpolation

option, while it also leverages the enhancements to the FG algorithm. In other words, you

can specify values using the min and max radius parameters as with previous versions of

mental ray but benefit from the advances in the technology.

The 3.4 mode does generate precomputed and render-time FG points. The reason ren-

der-time FG points are so significant is that they are not stored in FG maps and are less

predictable, which is cause for flickering. On the other hand, they allow finer detail when

needed based on demand. Fine-tuning FG with the 3.4 mode is then divided between the

following options:

• All the parameters of the finalgather accuracy option

• The finalgather presample density option

• The finalgather scale and secondary scale options

Choosing a Mode

With the automatic and multiframe mode, the only option you have to increase the detail

in the render is the precomputation FG point density, opposed to defining min and max

radius values to specify the influence area. The ideal is that these modes simplify the usage

of FG while providing adequate results. Furthermore, in XSI the 3.4 mode is labeled

“Expert” in the XSI options, showing that it is regarded as a more manual approach.

Finally, as a personal preference, I prefer using the radius option and thus the 3.4 mode;

however, that may be because I’m used to it.

One benefit of using the 3.4 mode is that seasoned users may prefer to fine-tune the scene

manually, using radius values, rather than rely on the automatic mode.

The multiframe mode is geared toward camera animation only. If objects are animated in the

scene, you should not use this mode.

final gather options and techniques ■ 575

08547c13.qxd 10/24/07 4:41 PM Page 575

FG Maps and the fg_copy Utility
As cited earlier, FG caches irradiance values in a KD data tree that can be saved to disk in

an FG map for reusability. As long as the FG rays remain the same (as specified by the

finalgather accuracy option), you can reuse the FG map without recalculating the pre-

computed FG points. Also, only precomputed FG points can store in FG maps. FG maps

become useful with animation sequences as a means to reduce flickering, especially when

using the multiframe or 3.4 modes, and to decrease render times. The mental ray options

used for controlling the FG map are as follows:

finalgather rebuild [on | off | freeze]

finalgather file “file name”

As you can see, the finalgather rebuild option provides three optional modes for

controlling FG. You will see in Figures 13.15 to 13.17 the different characteristics of each

mode. Note that the scene consists of a camera attached to a motion path (the curve

shown in each figure) that travels over time between the spheres.

Rebuild Option Set to On

When set to On, the FG map is regenerated with each rendered frame, storing precom-

puted FG points. Thus, if an FG map exists, it’s overwritten. Typically you will use this

option while experimenting with different FG settings to tweak the rendered appear-

ance. In Figure 13.15 rebuild is set to on, and you can see that two separate frames have

been rendered with the same FG map. The FG points can be seen projected from the

camera in the scene (in Maya you can see FG points in the viewport) as white dots, and

as you can see, each frame has a completely different scatter pattern for FG points and

hence a different FG map. Thus, the first frame was rendered in image A, and then when

the next frame was rendered in image B, the previous FG points were deleted and new

ones created.

Consider that with a slow-moving animation, each frame will have a new FG map (its FG

points recalculated) that differs slightly from the previous frame. The result is flickering in the

FG during animation.

You should typically use the 3.4 or automatic modes for still images and use multiframe or 3.4

for animation (discussed next).

576 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 576

Rebuild Option Set to Off

When the rebuild option is set to off, FG points in the map are reused instead of being

regenerated. However, if FG requires additional precomputed points for interpolation, for

example because the camera has moved, then additional precomputed points will be cal-

culated and appended to the FG map, as shown in Figure 13.16. In image A you can see

frame number 13 rendered as a single frame; the FG points appear in the scene. I then

changed to frame 20 and rendered another frame, so as you can see, there are two scatter

patterns that appear in image A. I then switched to frame 3 and rendered another frame,

and a third projection of FG points is added to the scene, shown under B. Thus, append-

ing FG points is independent of a frame sequence; you can append points manually by

moving the camera and rendering a frame, each time other FG points are added to the FG

map, and if sufficient FG points exist, such as rerendering the same camera angle, the pre-

computation stage will be skipped.

A

B

Figure 13.15

FG points projected
at different camera
angles when
rebuild is set to on,
overwriting any pre-
existing FG points

final gather options and techniques ■ 577

08547c13.qxd 10/24/07 4:41 PM Page 577

Rebuild Option Set to Freeze

When the rebuild option is set to freeze, precomputation is skipped, and the current FG

map is reused regardless of whether there are sufficient FG points for interpolation. This

FG maps work well over networks (render farms), even when several machines need to access

the same file, reading and writing information into the file.

One important point is that when objects animate in the scene (aside from the camera), the

FG points will remain static so that irradiance will appear where it shouldn’t; you will see FG

effects for an object that is no longer there, similar to reusing shadow maps with moving

objects. You can’t reuse an FG map with animated surfaces such as characters.

A

B

Figure 13.16

FG points are
appended to the FG

map each time a
render is executed
when the rebuild

option is set to off.

578 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 578

mode is aimed at reducing flickering during animation by freezing the FG map to a given

distribution. Note that with the automatic and multiframe modes, the map is completely

frozen; however, in the 3.4 and strict 3.4 modes, render-time FG points may still be calcu-

lated. When render-time points are generated, they are not added to the FG map so that

they are essentially temporary points that assist FG with a given frame. Of course, having

fewer render-time points reduces the likelihood of flickering.

There is an additional mental ray stand-alone option, rebuild deep freeze. It prevents

render-time FG points from generating in 3.4-compatible modes.

Flicker Control

As you can see, when rebuild is set to off, you can reduce the chances of flickering by

reusing FG points over a sequence of frames. Nonetheless, regardless of the mode (auto-

matic, multiframe, and so on), flickering can still occur during interpolation. The FG map

guarantees only that the distribution of FG points does not change; however, it does not

control how FG interpolates those points during rendering, that is, which points FG

decides to use with each frame. Thus, with the 3.4 and strict 3.4 modes, if you interpolate

over a larger radius, you can reduce some of the chances of flickering. With the automatic

mode, you can specify how many points are used for interpolation, but you can’t control

where those points are extracted from; the maximum radius for the influence area is

determined by mental ray.

As a solution to this limitation with the automatic mode, the multiframe mode (as

cited earlier) uses the finalgather accuracy option max radius parameter to add more

control over the influence area with animation. Thus, multiframe is an extension to the

automatic mode that uses the new approach to FG (no longer dependent on radius values)

with mental ray 3.5 and higher with some added functionalities for animation, such as the

max radius parameter.

Generating FG Maps

Regardless of whether you want to render with the 3.4 or multiframe modes, the approach

to generating and using FG maps is identical. Personally, I get better results with the 3.4

mode than with the multiframe mode. The process has two stages: generating the FG map

and then rendering the sequence.

In the first stage, you use the finalgather only option and set rebuild to off so that you

generate an FG map for the entire animation sequence without rendering the color frames.

You don’t need to render every frame; you can set it to render every other frame instead,

depending on the distance the camera travels between frames, as shown in Figure 13.17. If

the difference between one frame and the next is significant, you need to render frames at

higher intervals. This stage produces an FG map using the finalgather rebuild off option

final gather options and techniques ■ 579

08547c13.qxd 10/24/07 4:41 PM Page 579

that covers the camera’s motion using a constant number of FG points. Thus, when FG

renders, it will have the same FG point distribution across the entire camera animation as

shown in the figure, where you see FG points everywhere in the scene.

At the second stage, render time, you render the animation sequence using the final-

gather rebuild freeze option, which is a frozen FG map. In this way, you avoid adding

new precomputed FG points to the scene. Again, this only reduces the likelihood of flick-

ering as the interpolation stage (render time) may still provide for some flickering. How-

ever, with a good distribution of FG points and the correct max radius values, you can get

good results.

As noted earlier, if you look at Figure 13.17, you can see the importance of max radius

whether with the 3.4 modes or the multiframe mode. It prevents FG from extracting val-

ues from distant areas in the scene during rendering.

As an example for this method, I’ve included under the Chapter 13 directory in the

companion CD a movie clip of a camera animation for the scene shown in Figure 13.17,

with additional walls and windows, solely lit with FG and an external environment image

(casting light into the room). It was rendered using the 3.4 mode. There is no FG flicker-

ing in the animation; however, you may see some compression artifacts because I had to

compact 1GB of images into 4MB. The scene was rendered with rather low accuracy set-

tings and large radius settings (1 and 10), and yet the FG doesn’t flicker.

When the rays parameter of the finalgather accuracy option changes, the FG is rebuilt

and not reused.

Figure 13.17

Rendering a
sequence of frames

with the rebuild
option set to off

produces an FG map
for the entire

animation.

580 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 580

The fg_copy Utility

In addition to these techniques, an FG utility exists that allows you to combine individual

FG maps. You run the fg_copy utility in a command prompt; for example, on Windows,

open the Start menu, choose Run, and then type cmd to open a command prompt. At the

command prompt, type fg_copy, and click Enter; a list of options appears. The idea is to

list all the maps you want to combine and, as a last entry, provide a path and name for the

output file. Remember that you need to specify paths that have spaces, such as “My Docu-

ments” in quotes (the entire path with the filename in quotes). It should look like this

(you don’t need to specify an extension):

fg_copy “path\fgmap1” “path\fgmap2” “path\outfile.fgmap”

To make life easier, you can simply type fg_map and a space and then drag and drop all

the FG maps you want to combine one after the other, applying a space between each of

them. Eventually you enter the output path with the filename and click Enter. You will

have a new FG map with all the data appended.

For 3ds Max users, it’s especially important to get the utility since the finalgather

rebuild off and finalgather only options are not available. Thus, you want to render sepa-

rate FG maps (change the FG map name for each rendered frame) for certain frames and

then combine them with this utility. In XSI and 3ds Max 9, I noticed that the utility doesn’t

ship with the software; maybe their Support department can help you get a copy. For Maya

users, the utility is located in the Maya/bin folder.

FG in Host Applications
As discussed in Chapter 3, “mental ray Output” (see the “mental ray Cameras” section for

host application specifics), mental ray cameras accept environment shaders. These shaders

enable mapping the environment with an exterior environmental image that encompasses

the scene, be it a standard image (low dynamic range) or HDR image, and using a spheri-

cal, angular, cubical or other projection method. The following sections briefly recap some

of these options for FG; however, applying connections, applying projections, and finding

the shaders were covered in Chapter 3.

Let’s look at the host application options for FG and then applying environment images

for FG. In all cases, the FG options have similar names as those presented throughout the

chapter. In addition, all hosts allow you to preview Final Gather tiles while they are being

generated, which are the irradiance values from precomputed FG points. These tiles enable

you to quickly estimate the influence of irradiance from FG and appear darker than the

final rendered image since it displays only the FG irradiance that is then added with the

illumination in the scene.

final gather options and techniques ■ 581

08547c13.qxd 10/24/07 4:41 PM Page 581

Maya

You can find the FG attributes in the Render Settings window under the mental ray tab ➔

Final Gathering rollout, shown in Figure 13.18. You can find additional options under the

miDefaultOptions and mentalrayGlobals nodes in the Attribute Editor.

When mental ray is enabled, you can select these nodes in the Outliner (disable the

Display ➔ DAG Objects Only option) window or by executing the following commands in

the Script Editor window:

select -r miDefaultOptions

select -r mentalrayGlobals

These commands will reveal the .mi default options and render globals nodes in the

Attribute Editor. I refer to some attributes that are not found in the Render Settings win-

dow but only in both of these nodes in the following sections.

Under the Render Settings window’s Final Gathering rollout, shown in Figure 13.18,

you can find most of the FG settings discussed in the earlier sections. Let’s quickly review

each attribute referring to its corresponding mental ray option or its functionality:

The Final Gathering attribute check box is used to enable FG.

The Accuracy attribute is used to define the number of FG rays cast from an FG point

as with the finalgather accuracy option n rays parameter.

The Point Density attribute refers to the precomputed FG density as with the mental

ray finalgather presample density option.

Figure 13.18

The mental ray Final
Gather attributes in
the Render Settings

window

582 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 582

The Point Interpolation attribute is used to specify the number of FG points used for

interpolation, as with the mental ray finalgather points option.

The Scale color attribute controls the irradiance intensity as with the finalgather

scale option for FG primary rays. The Secondary Bounce Scale color attribute is used

for all secondary FG rays as with the finalgather secondary scale option.

The Rebuild attribute drop-down menu is used to select the different FG map rebuild

options, including On, Off, and Freeze as with the finagather rebuild option. You

can specify the FG map filename below in the Final Gather File attribute text box.

Do not specify an extension for the file; just type the name. By default, the file is stored

in the current project directory in project name\renderData\mentalray\finalgMap\FG

file.fgmap.

The Enable Map Visualizer attribute, as with GI, enables you to see only precomputa-

tion FG points in the viewport after you render an image in the Render View window.

You can control the size of the FG points using the Point size attribute in the mental

ray Map Visualizer window, found under Window ➔ Rendering Editors ➔ mental ray ➔

Map Visualizer.

The Preview Final Gather Tiles attribute displays the precomputation FG tiles as they

are calculated before the render commences, as noted earlier.

The Max and Min Radius attributes correspond to the finalgather accuracy option

min and max parameters. And, the View (Radii in Pixel Size) attribute check box cor-

responds to the view parameter where radius values are specified in pixel sizes when

enabled.

The Precompute Photon Lookup attribute check box corresponds to the finalgather

option using the fastlookup parameter. When enabled, GI photons also store irradi-

ance to assist FG in sampling the influence from photons, as discussed earlier.

The Filter attributes correspond to the finalgather filter option for speckle elimina-

tion typically when using HDR images. By default, it’s set to 0, which has no influence

on rendering. We further discuss filtering with FG and HDR images later in this

chapter.

The Falloff Start and Stop attributes limit the distance FG rays can travel in the scene

in world space units, as discussed with the mental ray finalgather falloff option’s

start and stop parameters.

You can load other FG maps to display using the browsing option in the Map Visualizer

window.

final gather options and techniques ■ 583

08547c13.qxd 10/24/07 4:41 PM Page 583

The Reflection, Refraction, Max Trace Depth attributes are straightforward and cor-

respond to the finalgather trace depth option reflection, refraction, and total com-

bined parameters. The Secondary Diffuse Bounces attribute check box corresponds to

the diffuse parameter of the finalgather trace depth option. When enabled, the dif-

fuse parameter is set to 1, allowing one additional bounce of secondary FG rays, as

discussed earlier. If you want to specify additional secondary bounces such as 2, you

need to open the Attribute Editor window and reveal the miDefaultOptions cited

earlier. In the Final Gather rollout, you will find all the trace depth attributes shown

in Figure 13.19. As you can see, an FG Diffuse Bounces

attribute exists (only in this window), allowing you to

increase the number of secondary diffuse bounces. As dis-

cussed earlier, typically you should not use more than two

diffuse bounces (primary FG rays and one pass of secondary FG rays). Therefore, you

should not increase it to a value greater than 1 (two diffuse bounces), which is the same

as enabling the Secondary Diffuse Bounces attribute in the Render Settings window.

Under the mentalrayGlobals node in the Attribute Editor you can enable the mental

ray finalgather only option using the Render Mode attribute drop-down list ➔ Render

Final Gather Maps option. When it’s enabled, mental ray will render only an FG map,

avoiding any actual rendering as discussed earlier.

S E L E C T I N G F G M O D E S

The FG modes are set in the Render Settings window (Figure 13.18) as follows:

• By default the automatic mode is enabled.

• The Optimize for Animations attribute check box enables multiframe mode. When

it’s enabled, you can use the Max Radius attribute to specify the max radius for multi-

frame FG points as discussed earlier.

• The Use Radius Quality Control attribute check box enables the 3.4 mode (not strict

3.4). When it’s enabled, use the Min and Max Radius attributes below to control the

finalgather accuracy option min and max radius values.

• To select the strict 3.4 mode, you need to open the Attribute Editor window and dis-

play the miDefaultOptions node attributes cited earlier. Under the Extra Attributes

rollout you will find the Final Gather Mode attribute drop-down menu shown in Fig-

ure 13.20. The Original option corresponds to the strict 3.4 mode. Notice that the

three additional modes are also present:

Compatible (3.4), Multiframe, and Auto-

matic. Thus, you can select any mode

using this attribute instead of through the

Render Settings window. If, for example, you select the multiframe option (Optimize

for Animations attribute) from the Render Settings window, you will see this attribute

update to read multiframe.

584 ■ chapter 13: Final Gather and Ambient Occlusion

Figure 13.19

Although it’s not
usually recom-

mended, you can
increase the number
of secondary diffuse

bounces to greater
than 1 by using the
FG Diffuse Bounces

attribute, found
under the miDe-

faultOptions node
attributes.

Figure 13.20

To select the strict
3.4 mode, use the

Final Gather Mode
attribute under the

miDefaultOptions
node attributes.

08547c13.qxd 10/24/07 4:41 PM Page 584

A P P L Y I N G E N V I R O N M E N T S F O R F G

With Maya there are four common approaches for specifying backgrounds for FG,

whether using a constant color, procedural texture, or image file. You can apply them

by using one of the following methods:

• Applying a mental ray environment shader to a camera’s shape node in the Attribute

Editor window under the mental ray rollout ➔ Environment Shader attribute (see

Chapter 3, “mental ray Output”).

• In the same window, you could alternatively use the Background Color attribute

under the Environment rollout, applying a constant color or texture for FG. For

example, if you specify a white color, FG will sample white irradiance in 360 around

an FG point. I always use this technique for specifying a constant color.

• The mental ray image-based lighting (IBL) node, discussed in Chapter 3, “mental ray

Output,” is the preferred method for applying an environment image with Maya and

mental ray. It’s found in the Render Settings window, under Environment rollout ➔

Image Based Lighting. Once you click the Create Attribute button, an IBL node is

added to the scene.

• You can also use a geometric sphere, such as a NURBS sphere, with a constant color

or spherical projection applied to a constant shader, such as the Maya surface shader.

Because it’s a surface shader, it renders as is without any influence from lighting.

However, it is not the most practical technique, because you force mental ray to deal

with additional geometry in the scene, which is not the case with all the other tech-

niques cited above.

The techniques for applying environment shaders for reflections were discussed in

Chapter 3, “mental ray Output,” in the “mental ray Cameras” section, particularly some

important IBL node attributes. In addition to the points cited in that chapter, you need

to consider the following points for using the IBL node with FG.

The IBL node should always be used to load background images. It’s basically a nonge-

ometric environment shader with additional advanced options for light and photon emis-

sion for image-based lighting (not for FG). Because it can be used to specify light and photon

emission, it’s categorized as a Maya light shader that can be found on the Lights tab in the

Hypershade window. Regardless of those advanced abilities, it’s a great environment

shader for loading images or HDR images for FG rendering.

In the Attribute Editor window, under the IBL nodes Image Based Lighting Attributes

rollout, the following attributes are important for FG:

• The Mapping attribute is used to select a specific type of panoramic environment

image. You will most commonly use spherical images. The types of images are further

discussed in the section “Advanced Final Gather Techniques” later in this chapter.

final gather options and techniques ■ 585

08547c13.qxd 10/24/07 4:41 PM Page 585

• The Type attribute selects whether you want to use an image file for an environment

or a texture, specified with the Texture attribute. If you set it to the Texture option,

the Texture attribute’s color acts as a constant color for the background, unless

mapped with a procedural texture. For images, use the Image Name textbox attribute

to load an environmental image. HDR images are supported, and you should always

prefer using HDR images for FG environments, as discussed in the section “Advanced

Final Gather Techniques.”

• The Infinite attribute defines whether the environment image (the IBL node itself) is

always placed outside the scene, encompassing the entire scene. When enabled, it has

infinite scale, always casting light from outside the scene inward. You can rotate it

so that it aligns with the scene in a particular way, for example, the sun placed facing

west. When disabled, you can also translate and scale the node so that the placement

of the node in the viewport defines its rotation, scale, and position. For example, you

can wrap the node around a crystal ball in a room and cast light from there into the

ball when Infinite is disabled. This option is mostly for light or photon casting. With

FG, in most cases, you want to leave it enabled.

• When an image is loaded, the Hardware Exposure and Alpha attributes define the vis-

ibility of the image in the viewport, mapped on the IBL node. You will need to see the

image clearly when you position a light source that aligns with the light source in the

image, as further discussed in the section “Advanced Final Gather Techniques.”

• The Color Gain attribute is multiplied against the environment image or texture. Use

this attribute to increase or decrease the intensity of an HDR image. You can use val-

ues that exceed the 0 to 1 range so that FG samples a brighter light for the FG effect.

For example, you can specify using HSV color a V value of 2.

Under the Render Stats Rollout you have a Visible in Final Gather attribute that defines

whether the IBL node affects FG in the scene. You always want to leave it enabled when

rendering with FG; however, you may want to disable Primary Visibility so that it doesn’t

appear rendered in the background, as a background image. You may also want to disable

Visible in Secondary Reflections so that it affects only FG lighting and does not appear to

reflect from surfaces in the scene. Typically, if it affects the lighting, you would expect to

see the environment reflecting on glossy to specular surfaces.

H D R I M A G E E X P O S U R E

The Color Gain attribute cited earlier is currently the only method for setting the exposure

of an HDR image with Maya; however, it doesn’t really set exposure values. Rather, it

multiplies the entire dynamic range by the specified value. To set exposure, you should

use an external tool such as HDR Shop to specify the default exposure, a topic discussed

in more detail in the section “Advanced Final Gather Techniques.”

586 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 586

XSI

When using FG in XSI, you must have at least one light source in the scene, whether it’s

the default light generated with each new scene or a light source you’ve created. In addi-

tion, XSI has a default ambient light that controls the overall (max) intensity of the Ambi-

ent color property for all the shaders in the scene. Thus, a shader’s Ambient color property

is multiplied against the global Ambience property similar to mental ray base shader’s

ambient and ambience options. With FG, you may want to remove any influence from

shader ambient lighting. You can do so by opening the

Ambient Lighting property editor from the main menu

bar by choosing Render ➔ Modify ➔ Ambience, and then

dialing down the Ambience property RGB colors to 0.

Figure 13.21 shows the Ambient Lighting property editor.

If you want to use ambient light with a shader for FG, forcing brighter values for FG

lighting, you can further specify per-object ambience values. In this way, the ambience

color doesn’t affect all the shaders in the scene. You can do so by selecting the Ambient

Lighting node for a given surface in the Explorer window. When the Confirm Make Local

window pops up, select the Yes option to make the Ambience property local for that sur-

face. By doing so, you can, for example, specify a white Ambience color that will affect

only that surface shader’s Ambient color property.

Based on the points cited earlier, a good starting point setup for using FG with an envi-

ronment image is as follows:

1. Select the default light (labeled “light” and hidden) from the Explorer window, and

reduce its Intensity property to 0.

2. Open the Ambient Lighting property editor, and reduce the Ambience property to

black.

If you render a scene it should appear black, and ready for FG testing.

As discussed in the “Final Gather Options and Techniques” section, you may want to render

without any light influence; however, you must maintain at least one light source. Thus,

instead of deleting the light source, simply reduce its intensity value to 0 so that it has no

influence on the scene.

The techniques discussed in the section “Advanced Final Gather Techniques” are based on

using the IBL node with HDR images.

final gather options and techniques ■ 587

Figure 13.21

XSI has a global
Ambience property
that is used to con-
trol the overall influ-
ence of the Ambient
color property in XSI
shaders.

08547c13.qxd 10/24/07 4:41 PM Page 587

You can find the FG properties in the Render

Options window under the mental ray Render

Options rollout ➔ Final Gathering tab, shown in

Figure 13.22. Once you enable the Enable prop-

erty, FG is enabled, and all the FG properties

appear below the property, as shown in the figure.

Let’s quickly review each property referring

to its corresponding mental ray option or its

functionality:

The Visualize ➔ Preview property check box dis-

plays the precomputation FG tiles in the render

view as they are being calculated, before the

actual render commences, as noted earlier.

The Fast Lookup ➔ Irradiance from the Photon

Map property check box corresponds to the

finalgather option using the fastlookup parame-

ter. When it’s enabled, GI photons also store

irradiance to assist FG in sampling the influence

from photons as discussed earlier.

The Accuracy properties section provides all the properties that control the mental

ray finalgather accuracy and finalgather points options. Here are a few points for

this section:

• From the Mode property you can specify which of the four modes you want to

use: Automatic, Multiframe, Expert (3.4), and Legacy (strict 3.4).

• Based on the selected mode, the relevant properties for that mode appear below

the mode.

• In all cases (modes) the View Dependent property check box is available, correspon-

ding to the mental ray finalgather accuracy option view parameter where FG inter-

polates FG points based on pixel sizes rather than scene distances (when enabled).

• Also, all modes use the Number of Rays property corresponding to the mental

ray finalgather accuracy option n rays parameter (number of rays per FG point).

• When the Automatic or Multiframe mode is selected, the Points property corre-

sponds to the number of FG points used for interpolation, as with the mental ray

finalgather points option.

• If you selected Multiframe, you will also see the Max Radius appear, correspon-

ding to the mental ray finalgather accuracy option max radius parameter.

• If you select Expert or Legacy (both based on radius values for interpolation), the

Points property disappears (as it’s irrelevant), and the Min and Max Radius

588 ■ chapter 13: Final Gather and Ambient Occlusion

Figure 13.22

The mental ray Final
Gather properties in
the mental ray Ren-

der Options window

08547c13.qxd 10/24/07 4:41 PM Page 588

properties appear, corresponding to the finalgather accuracy option min and

max radius parameters.

The Sampling Contrast property controls the amount of color bleeding between

objects, increasing or decreasing the FG effect. Higher values produce more color

bleeding. The effect of this property is very subtle; for example, when set to 0, it does

not remove color bleeding; it just reduces the effect slightly.

The Presample Density property corresponds to the precomputed FG density as with

the mental ray finalgather presample density option.

The Filter Size property corresponds to the finalgather filter option for speckle

elimination typically when using HDR images. By default it is set to 1. I further

discuss filtering with FG and HDR images later in this chapter.

The Falloff ➔ Enable property enables the Start and Stop properties, which limit the

distance FG rays can travel in the scene in world space units, as discussed with the

mental ray finalgather falloff option start and stop parameters.

The Trace Depth ➔ Reflection, Refraction, Diffuse, and Combined properties are

straightforward and correspond to the finalgather trace depth option reflection,

refraction, diffuse, and total combined parameters. To enable secondary diffuse

bounces, the Diffuse property should be set to a value of 1, allowing one additional

bounce of secondary FG rays, as discussed earlier. At the default value of 0, only pri-

mary FG rays are cast in the scene, which is one pass of FG indirect illumination. You

can increase the Diffuse bounces to more than 1. But as noted earlier, it is not recom-

mended; you should use GI for multiple bounces.

The Primary Bounce Color property controls the irradiance intensity, as with the

finalgather scale option for FG primary rays. The Secondary Bounce Color property

is used for all secondary FG rays as with the finalgather secondary scale option. Note

that their influence on rendering does not take effect while rendering tests in a view-

port render region, only when you render an actual frame (output a file).

The Map File Settings drop-down menu is used to select the different FG map rebuild

options, including Overwrite existing file (on), Append new FG points to file (off),

and Only use FG points from file (freeze) as with the finagather rebuild option. You

can specify the FG map filename under the Map File property text box or use the

default path.

In the mental ray Render Options ➔ Optimization tab ➔ Render Type section, you can

enable the mental ray finalgather only option using the Render Type property drop-

down list ➔ Finalgathering Only option. When it’s enabled, mental ray will render

only an FG map, avoiding any actual rendering as discussed earlier and demonstrated

in the “FG Maps and the fg_copy Utility” section.

final gather options and techniques ■ 589

08547c13.qxd 10/24/07 4:41 PM Page 589

A P P L Y I N G E N V I R O N M E N T S F O R F G

With XSI there are two common approaches for specifying backgrounds for FG, whether

using a constant color, procedural texture, or image file. You can apply them by using one

of the following methods:

• Applying a mental ray environment shader to a camera from under Render ➔ Render ➔

Pass Options property. You can also access the pass options in the Render Manager

window ➔ Current Pass tab ➔ Pass Output tab ➔ Pass Shaders tab. From the Environ-

ment shader list, select Add to add an environment shader to the list, typically select-

ing the Environment shader shown in Figure 13.23 and discussed in Chapter 3. You

can specify an image file or texture as an environment. If you use a texture, you could

use a texture that has one color value to provide constant shading, such as white.

• You can also use a geometric sphere, such as a NURBS sphere, with a constant color

or spherical projection applied to a constant material shader. Because it’s a constant

shader, it renders without any influence from lighting. However, it is not the most

practical technique as you force mental ray to deal with additional geometry in the

scene, which is not the case with the other techniques cited earlier.

The techniques for applying environment shaders for reflections were discussed in

Chapter 3, “mental ray Output,” in the “mental ray Cameras” section. Consider the

following points when using environment images and FG with respect to the environ-

ment shader’s properties shown in Figure 13.23 (supports HDR images).

• The Environment Mode property is used to select a specific type of panoramic envi-

ronment image. You will most commonly use spherical images. The types of images

are further discussed in the section “Advanced Final Gather Techniques” later in this

chapter.

• Consider that the environment image is always placed outside the scene, encompass-

ing the entire scene. You can rotate it so that it aligns with the scene in a particular

way; for example, the sun shown in the image needs to be placed facing west. Using

the Transformation properties ➔ R (rotations) property X, Y and Z (axes) inputs, you

can specify the degree of rotation on each axis. It’s straightforward; a value of 180 for

the R property Y axis will turn the image 180°. The S and T (scale and translate) prop-

erties also work, but they are mostly irrelevant because the image always encompasses

the scene.

• When an image is loaded, you will need to see the image when you position a light

source that aligns with the light source in the image, further discussed in the section

“Advanced Final Gather Techniques.” Use a Render Region view to control the posi-

tion of the light source while you rotate the environment image without FG enabled

(just as a background image).

590 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 590

• The Image property defines whether the environment affects FG in the scene. The

specified value is multiplied against the environment image or texture so that if set to

0, the environment does not affect FG. Use this property to increase or decrease the

intensity of an image. Note that you can use values that exceed the 0 to 1 range so that

FG samples brighter color values for the

FG effect. For example, you may specify

a value of 2. See the next section, “HDR

Image Exposure.”

• The Background property, if left at a

value of 1, renders the background visi-

ble in the image. Thus, with FG, you

may want to set it to 0 so that you

don’t see the environment image ren-

der as a background. You may prefer to

use compositing to add the environ-

ment with more control over the fore-

ground (the rendered image) and

background images.

• You may also want to disable the Reflections property by setting it to 0 so that the

environment affects only FG lighting and does not appear to reflect from surfaces in

the scene. Typically, if it affects the lighting, you would expect to see the environment

reflecting on glossy to specular surfaces.

H D R I M A G E E X P O S U R E

When you use an HDR image as an environment image, you need to set the current expo-

sure for rendering. The exposure defines the effect the HDR image has on the scene irradi-

ance. In the Environment shader properties shown in Figure 13.23, first click the Inspect

property and load an HDR image using the New

property. Then click the Edit property button.

Navigate to the Adjust tab in the Clip property

window that opens, shown in Figure 13.24. In

the HDR and OpenEXR section, the Exposure

property allows you to set the current f-stop

value used for FG rendering. Higher values pro-

vide brighter irradiance across surfaces in the

scene, and lower values decrease the irradiance.

You can use negative values, since a value

of 0 refers to the default exposure of the HDR

final gather options and techniques ■ 591

Figure 13.24

Editing the exposure
of an HDR image
in XSI

Figure 13.23

The Environment
shader in XSI allows
you to load any type
of image or texture
for background
color and FG
lighting.

08547c13.qxd 10/24/07 4:41 PM Page 591

The Multiplier and Color chooser parameters (at the top) control the irradiance

intensity as with the finalgather scale option for FG primary rays. The Weight

parameter (across from the Diffuse Bounces parameter) is used for all secondary

FG rays as with the finalgather secondary scale option.

The Diffuse Bounces parameter controls the maximum number of secondary rays,

where a value of 0 provides for one level of FG diffuse bounces (casting primary

FG rays) and a value of 1 or higher provides for secondary FG rays, as with the final-

gather trace depth option diffuse parameter.

The Read/Write File parameter check box enables the finalgather rebuild option for

generating FG maps. When enabled, it is set to On, and when Read Only (FG Freeze)

is enabled, it sets it to the FG freeze mode. Unfortunately, you don’t have an Off option

as cited earlier. You can specify the FG map filename below in the text box field. Do not

specify an extension for the file; just type the name in the browser window that opens.

The Noise Filtering parameter drop-down list corresponds to the finalgather filter

option for speckle elimination, typically when using HDR images. By default it’s set

to Standard, which is a filter value of 1. None is equal to 0, which has no influence on

rendering. High equals 2, Very High equals 3, and Extremely High equals 4. We fur-

ther discuss filtering with FG and HDR images later in this chapter.

When the Draft Mode (No Precomputation) parameter check box is enabled, FG

skips precomputation and renders only with render-time FG points. By doing so it

allows you to see a fast draft for the FG result without talking the time to precompute

the FG points. Since the automatic and multiframe modes don’t support render-time

FG points, this parameter is applicable only when the 3.4 mode is enabled.

Under the Trace Depth section, the Max. Reflection, Refraction, and Depth parame-

ters are straightforward and correspond to the finalgather trace depth option reflec-

tion, refraction, and total combined parameters. The Diffuse Bounces parameter

corresponds to the diffuse parameter of the finalgather trace depth option, as cited

earlier. Typically you should not increase it to a value greater than 1, which provides

one level of secondary FG ray diffuse bounces.

The Use Falloff (Limit Ray Distance) parameter enables the Start and Stop parame-

ters that limit the distance FG rays can travel in the scene in world space units, as dis-

cussed with the mental ray finalgather falloff option start and stop parameters.

If you leave the Draft Mode (No Precomputation) parameter enabled with automatic mode,

you won’t see any FG render since it skips precomputation.

final gather options and techniques ■ 593

08547c13.qxd 10/24/07 4:41 PM Page 593

The Use Radius Interpolation Method parameter check box enables the 3.4 mode

(not strict 3.4) instead of the automatic mode. When enabled, use the following

parameters to control the finalgather accuracy parameters:

• The Radius parameter corresponds to the max radius parameter.

• The Min Radius parameter corresponds to the min radius parameter.

• The Radii in Pixels parameter check box corresponds to the view parameter

where radius values are specified in pixel sizes when enabled. Note that in 3ds

Max you can use it only with the 3.4 mode.

Under the Caustics and Global Illumination (GI) rollout, the Optimize for Final

Gather (Slower GI) parameter check box corresponds to the finalgather option using

the fastlookup parameter. When enabled, GI photons also store irradiance to assist

FG in sampling the influence from photons as discussed earlier.

A P P L Y I N G E N V I R O N M E N T S F O R F G

With 3ds Max there is only one method for applying backgrounds for FG, whether using

a constant color, procedural texture, or image file. Unfortunately, the Environment Map

and Color parameters found in the Environment and Effects window do not affect FG,

even though they should. In future versions of 3ds Max this problem may be corrected,

so you should test it with the current 3ds Max version you use.

You can apply an environment for FG by creating a geometric sphere, such as a NURBS

sphere, that encompasses the scene. You then need to apply a constant color or texture

using a spherical projection. A constant shader renders as is, without any influence from

lighting. Since you don’t have a constant shader in the shader library, there are two easy

workarounds for applying a color or image to the surface as a constant color, as follows:

Option 1 In the Material Editor using a 3ds Max standard material, set the Ambient and

Diffuse color parameters to white (or the color you prefer for the background), and set the

Self-Illumination parameter to 100. If the Ambient and Diffuse parameters are locked

together, that’s fine; they both need to have the same value.

As an alternative to using a color value with the Ambient and Diffuse parameters, you can

map the Diffuse parameter with a bitmap shader. It should be locked with the Ambient

parameter so that the image is applied to both parameters.

In the bitmap’s Coordinates rollout, the Environ radio button parameter should be

enabled, and the Mapping parameter should be set to Spherical Environment. Texture

projections with 3ds Max are discussed in Chapter 3, “mental ray Output,” and Chapter 11,

“mental ray Textures and Projections.”

594 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 594

In this way you force the object to self-illuminate using a constant color, texture map, or

image file; however, it will also be affected by source lights in the scene. Option 2 solves

for that discrepancy.

Option 2 In the Material Editor window, create a mental

ray material by selecting a mental ray material shader

from the Material/Map Browser window.

Under the Basic Shaders parameters, map the Surface

parameter with a bitmap shader from the Material/Map

Browser, as shown mapped in Figure 13.26, mapped

with an HDR image file. Apply the same projection

coordinates as cited for option 1.

In this way the mental ray material acts as a constant shader, outputting the mapped tex-

ture or bitmap file color as is, unaffected by scene lights. Thus, it provides a constant color

for the background that is used for illumination with FG.

With both options, you don’t have to use a bitmap shader; alternatively, you can use

any procedural texture, but it is more common to use images with FG rendering. In addi-

tion, the bitmap shader supports HDR images, shown mapped in Figure 13.26. Therefore,

you can use this approach for loading HDR images or standard images.

H D R I M A G E E X P O S U R E

When you select to load an HDR image to a bitmap

shader in the Select Bitmap Image File window’s

browser, an HDRI Load Settings window appears,

shown in Figure 13.27. Under the Internal Storage

section when using HDR images, the Real Pixels

(32bpp) parameter radio button should be

enabled. If the Def. Exposure is enabled, then the

exposure will be set automatically; otherwise

(when it’s disabled), under the Exposure section,

the Log and Linear parameters allow you to set

the black and white point for the image using

either one. Notice that if you change the linear

The background color can be set to any intensity from 0 to 100 using the Self-Illumination

parameter.

final gather options and techniques ■ 595

Figure 13.26

Direct mapping of
the Surface parame-
ter (the illumination
shader input) with a
bitmap, providing
constant shading for
the background
color

Figure 13.27

When loading HDR
images, the HDRI
Load Settings
window allows
you to specify the
exposure.

08547c13.qxd 10/24/07 4:41 PM Page 595

values, the log values update simultaneously. Doing so sets the exposure of the HDR

image used with FG. For example, the White Point value shown in Figure 13.27 (the

right vertical line in the graph) is set below the maximum white point value charted for

the image in this Exposure histogram, which increases the exposure value used for FG.

Advanced Final Gather Techniques
In this section, I’ll extend the discussion of using environment image files, particularly

HDR images, and of generating 3D-based HDR environments using the architectural

library’s sun and sky shaders.

The topic of HDR imaging was covered in detail in Chapter 9, “The Fundamentals

of Light and Shading Models”; see the “High Dynamic Range (HDR) Concepts” section

there. In fact, Chapter 9 covered all the light concepts you need for understanding

HDR lighting with FG, particularly HDR images and photometric light measurements

(luminance/lux); that discussion is an essential preparation for using FG with HDR

lighting and images.

HDR environments with FG serve the purpose of rendering using realistic photometric

light measurements. Of course, if you render with realistic light measurements, you will

be using light and reflection values that exceed the 0 to 1 range, and therefore, the output

image, a low dynamic range (LDR) image file, is prone to overexposure. As a means of

dealing with overexposure, you need to use tone mapping techniques to calibrate the

image so it provides a lot of detail within a low dynamic range. The approach for dealing

with high dynamic range differs between the sun and sky shades and when using an HDR

image. Mostly, the HDR image exposure is set while rendering, as discussed per host ear-

lier, and if it appears too bright, additional measurements are taken to reduce the dynamic

range exposure. However, with the sun and sky shaders, you generate a high dynamic

range environment in 3D and then tone map the rendered image; your output image acts

as an HDR image that need to be remapped to a low dynamic range. These different

approaches are presented in detail in the following sections with respect to using HDR

images for environments and when using the physical sun and sky shaders.

Physical Sun and Sky Lighting
This section covers most of the physical sun and sky shader options in detail with an

overview of using them in each host application. In the mental ray help files you can find

additional explanations and rendered examples.

You can set the Log or Linear parameters to encompass both ends of the histogram and then

increase the exposure using the RGB Level parameter under the bitmap’s Output rollout.

Higher values (greater than 1) increase the exposure used for the FG rendering.

596 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 596

The purpose of three shaders is to provide a realistic environment for HDR lighting

in 3D using an environment shader (the mia physical sky shader) and a light shader (the

mia physical sun shader). As with real cameras, you can capture only a given exposure at

a time, so you need to calibrate the exposure of the camera for maximizing the detail in

the image. Since 3D cameras don’t have a real camera exposure setting for light, you can

use some of the shader options to calibrate the exposure. Also, as discussed in Chapter 9,

“The Fundamentals of Light and Shading Models,” tone mapping techniques allow you to

maximize detail without overexposure. For that purpose, a camera tone mapping lens

shader is provided; it is the mia exposure simple shader, giving you additional control

over the exposure using tone mapping.

The upgraded architectural library available in Maya 2008 (also expected to appear in

XSI and 3ds Max) includes an improved exposure lens shader called mia exposure photo-

graphic shader as well as an improved depth of field lens shader called the mia lens bokeh

shader. The exposure shader is an alternative to the mia exposure simple shader and pro-

vides additional control over camera f-stop exposure as well as better tools for simulating

real camera characteristics. When coupled with the mia lens bokeh lens shader for depth

of field effects you can produce more realistic camera effects with mental ray.

In Figure 13.28 you can see a shader graph that illustrates the connections between

these shaders in Maya, which is applied in a similar fashion in each host application. I’ll

review each of these connections in the following sections, as well as on a per-host basis.

A

B C

DE

F

Figure 13.28

Physical sun, sky,
and simple exposure
shader connections

The physical sun shader provides real-world conditions that should be used with physical

shaders, such as the architectural material that ships with the same shader library.

advanced final gather techniques ■ 597

08547c13.qxd 10/24/07 4:41 PM Page 597

The Physical Sun Shader

The physical sun shader (B) connects as a light shader to an infinite (directional) light source

(C) in the scene (see Chapter 6, “Lights and Soft Shadows,” for light shaders). It generates a

source light that defines the characteristics of sun lighting based on the sun’s directionality,

which is the angle of the sun relative to the horizon, as shown in Figure 13.29, where the infi-

nite light source is rotated to a different angle for each image. You can tell by the directional-

ity of the shadows from one image to the next as I increase the angle between the horizon

and the light source (the sun). You can see the influence of these shaders on light intensity

and colors in the Chapter 13 folder on the CD with the image “Sun and Sky Lighting.”

Figure 13.29

The angle of the sun
relative to the hori-

zon affects the
intensity of light.

As you can see, in the color image, the purpose of the physical sun and sky shaders is to pro-

vide realistic light simulations based on the sun’s angle relative to the horizon, simulating the

time of day automatically based on the sun’s direction.

598 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 598

The sky shader has a few additional options shown in Figure 13.30 that deal solely with

the environment and how it affects FG:

The Sun Disk Intensity option defines the intensity of the sun in the environment

image. It doesn’t affect FG, but it does affect the visual appearance of the sun in the

rendered image. For example, if you use a lot of haze and you can’t see the sun but

want to, you can increase this value to try to restore some of the sun’s appearance.

The Sun Disk Scale and Sun Glow Intensity options define the visual appearance

of the sun, as well as its size. For example, the sun will become smaller at lower alti-

tudes, so if you want a large sun in a sunset environment, you will need to increase

the scale.

The Use Background option applies a background image for the environment, such

as an HDR image, instead of the physical sky environment.

T H E P H Y S I C A L S K Y S H A D E R A S A V O L U M E O R L E N S S H A D E R

The physical sky shader can also be used as a volume or lens shader that provides more

realistic aerial perspective. Thus, you can connect it to the camera’s volume or lens shader

inputs, as discussed with other shaders in Chapter 3, “mental ray Output.” Note that the

Sun Disk Intensity, Scale, and Glow options mentioned earlier solely deal with the

appearance of the sun in the environment and have no influence when used as a volume/

lens shader.

If you use the physical sky shader as a volume or lens shader, you should also apply it

as an environment shader, as discussed earlier. That way, the sky will appear in the back-

ground, and the volume or lens shader will deal with aerial perspective in the scene.

A E R I A L P E R S P E C T I V E A N D H A Z E

The most significant purpose for using this shader as a volume or lens shader is to better

simulate haze over distance and by doing so better simulate aerial perspective. The term

aerial perspective refers to the effect the atmosphere has on the scene. It is dependent on

Suppose you want to export a panoramic HDR image of an environment using the physical

sun and sky shaders. For that purpose, the Sun Disk Intensity option has influence on the

sun’s intensity in the exported HDR environment image. You can see an example of a spheri-

cal HDR image in the Color Gallery image labeled “Sun and Sky Lighting.”

The purpose of the sun is to cast HDR direct lighting, and the purpose of the sky is to reflect

HDR indirect light with FG. Thus, these shaders are intended for use with FG. The fact that

they operate in a high dynamic range environment provides for richer lighting in 3D.

602 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 602

the distances between the camera and the surfaces in the scene. When surfaces in the scene

appear farther away from the camera, they are more influenced by the atmosphere, blend-

ing with the atmosphere’s color. In other words, the contrast between surfaces and the

background decreases as a surface gets farther away from the camera.

The sky shader’s Visibility Distance option shown in Figure 13.30 defines the decay of

haze over distance in the scene, defining the aerial perspective. In Figure 13.31 image A

was rendered using the physical sky shader solely as an environment shader without any

haze; the Haze option shown in Figure 13.30 is set to 0. The only difference with image B

is that the Haze option is set to 15. You can see how the visibility of the sun decreases in

the background, and in black-and-white print you can also tell that there is some change

in the tonality of the image; the background and physical sun colors adjust to better mimic

haze. However, there is still a lot of contrast between the colors of the spheres in the scene

and the background. For image C, the physical shader was also applied as a volume shader

to the camera’s volume shader input. As you can see, aerial perspective is now properly

simulated; the contrast between the background and the spheres decreases over distance,

fading out because of the high haze value. In image C, the haze affects the 3D scene as with

volume effects.

With haze, higher Haze values provide the visual effect of reducing the sun’s intensity

and provide appropriate coloration to the scene, based on the time of day.

The MIA Exposure Simple Shader

The mia_exposure_simple lens shader (labeled Simple_Tone_Mapping in XSI) is used

to apply tone mapping to the rendered image (tone mapping is discussed in Chapter 9,

“The Fundamentals of Light and Shading Models”). Unlike tone-mapping techniques that

When the sky is used as a lens shader, it provides better lighting and shadows than when

used as a volume shader; try using it as both shaders to see these effects. Also note that when

it’s used as either type of shader, with the Haze option set to 0, it will still render aerial per-

spective effects based on the Visibility Distance value.

A B C

Figure 13.31

Simulating aerial
perspective using
the physical sky
shader as a volume
shader

advanced final gather techniques ■ 603

08547c13.qxd 10/24/07 4:41 PM Page 603

are applied on a per-pixel basis, this shader is a lens shader and thus applied during sam-

pling on a per-sample basis (see Chapter 3, “mental ray Output,” for more information

on per-pixel operations). In this way, the quality of the tone mapping process is better than

postprocess tone mapping. Having said that, there are some good tone mapping tools

in 2D applications, so you need to decide when you want to tone map an image based on

production considerations. For example, if you want to process the image as HDR or 32-bit

images in compositing, you may prefer to apply the tone mapping there, at the end of the

composite tree.

The mia_exposure_simple shader connects to the camera’s lens shader input as shown

earlier in Figure 13.28 with the connection from E to D. It is also shown connected to the

physical sky shader (A) exposure input; however, that’s a “Maya” thing. The shader is

designated as a lens shader, and that’s how you should use it for any rendering purposes,

regardless of the physical sky and sun. For example, you can use it with any GI simulation.

S H A D E R O P T I O N S

Let’s review the mia_simple_exposure shader options with some figures and the following

points. You can see the shader options in Figure 13.32 in 3ds Max. These options are

labeled in the same way in all host applications.

As discussed in Chapter 9, “The Fundamentals of

Light and Shading Models,” HDR images have a vir-

tually unlimited range of color, exceeding the 0 to 1

range. To demonstrate the influence of this shader on

tone mapping values, I’ll show the range a waveform

displays of rendered images in Fusion, which is a

compositing package from Eyeon software. In Figure 13.33 image A, you can see an HDR

render of an image using the sun and sky shaders, without any tone mapping. The values

from the HDR render by far exceed the 0 to 1 range. For convenience, in image A the 0 to

1 range is marked with an arrow from 0 to 1, which is black to white. Those bounds are

the same in all the following waveform figures.

We want to tone map this HDR image using the exposure simple shader in the host

application so that the output values better fit into the 0 to 1 range indicated in the figure.

That way, the images will show more detail from overexposed values.

A

1

0

B

Figure 13.33

A waveform display-
ing values of an HDR

rendered image (A)
and values after

applying gamma
correction with the

mia exposure simple
shader (B)

604 ■ chapter 13: Final Gather and Ambient Occlusion

Figure 13.32

The mia_simple_
exposure lens

shader options in
3ds Max

08547c13.qxd 10/24/07 4:41 PM Page 604

In Image B, you can see a gamma correction applied to the image by changing the

Gamma option shown in Figure 13.32 to 1.8. As you can see, the gamma correction

increases the brightness of the image by shifting values between the 0 to 1 range higher up

(see Chapter 3, “mental ray Output,” for more about gamma correction). However,

gamma is intended for dealing solely with correcting values that are already between the

0 to 1 range, and thus it’s the last operation applied by the tone mapping shader. In other

words, after the image is tone mapped using the other options, gamma correction is

then applied; the assumption is that the tone mapping operation distributes (compresses)

values between the 0 to 1 range, and then gamma correction adjusts their appearance for

monitor display.

The Pedestal option is used to offset the color of the sample. Positive values are added

and negative values are subtracted. Thus, it’s a simple add/subtract operation on color

before all the other options take effect.

Let’s discuss the effects of the Gain, Knee, and Compression options (shown in Figure

13.32) with Figure 13.34. In image A, the Gain value has been decreased to 0.5 from the

value of 1 (no effect) used in the previous step (Figure 13.33 image B; gamma correction is

already taking effect). As you can see by comparing Figure 13.34 image A to Figure 13.33

image B, the values have been pushed down because each sample is multiplied by a value

of 0.5. Thus, the Gain option is used as a multiplier and can significantly decrease the

range of values. However, it also has the effect of flatting the low color values as you

decrease the value so that there is less contrast visible in the image (in dark areas). If an

image appears too bright, you should start by testing gain values such as 0.5 to 0.2.

After the Gain option takes effect, the Knee and Compression options further compress

values greater than a certain range. The Knee option defines that range; it defines a start-

ing value where any value greater than that is compressed based on the Compression option.

In Figure 13.34 image B, the Knee option is set to 0.7 and Compression is set to 10. As you

A B C

Figure 13.34

Effects of the Gain
option (A) and
the Knee and Com-
pression options
(B and C)

For illustrative purposes, all these images are rendered as HDR images and not LDR images

so that you can see values that exceed the 0 to 1 range. Typically tone mapping is applied

when the output format (rendered image) will be an LDR image.

advanced final gather techniques ■ 605

08547c13.qxd 10/24/07 4:41 PM Page 605

can see, the illuminance values are significantly reduced, and you can finally see the peak

of the highest values. However, it is still greater than a value of 1; all the values greater than 1

appear overexposed. To force it into the 0 to 1 range, the Compression value is increased

to a value of 30 in image C. As you can see, the peak is now just over the line that indicates

a value of 1. Thus, the image has been tone mapped so that all its values are within the 0

to 1 range and gamma correction has been applied.

You don’t necessarily want to force all the values into the 0 to 1 range; doing so will

flatten the image, losing significant contrast. For example, the sun in this case was set very

high so that it may be better to have left this image as shown in image B, without any addi-

tional compression; values that are within the sun’s area can be overexposed.

The additional Preview option allows you to use a rendered HDR image of the scene,

mapped to the Preview option so that you can see the effects of tone mapping immedi-

ately. In such a case the shader is used to test values without rendering the scene. Every

time you render, the preview image will be used until you disable the preview option and

render your final pass. It helps speed up the decision-making process when dealing with

render-intensive scenes.

Host Applications

This section covers creating the physical sun, sky, and exposure shaders in host applica-

tions. For more information on shader options, refer to the help files.

M A Y A

In the Render Settings window under the mental ray tab ➔ Environment rollout, click the

Physical Sun and Sky Create button. All the required shaders are automatically generated

and connected as shown earlier in Figure 13.28. The mia_exposure_simple is automati-

cally connected as a lens shader, and FG is automatically enabled. You may prefer to dis-

able FG while placing the sun and defining the direct light intensity. You can also find all

these shaders in the Hypershade window under the Create mental ray Nodes rollouts.

You can graph the camera in the Hypershade window and then connect the physical

sky shader as a volume or lens shader by dragging the physical shader over the camera and

applying the connections with the Connection Editor window. Alternatively, you can drag

and drop the physical sky shader directly onto the Camera shape’s Lens or Volume Shader

attributes under the mental ray rollout in the Attribute Editor window. If you want to

attach the physical sky as a lens shader, assuming the mia_exposure_simple lens shader

This example is not a common practice in that you don’t see a waveform while tweaking

these values. It is intended only to visually illustrate the effects of the shader options. Your

decisions with respect to choosing values should be determined visually, based on the output.

606 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 606

already occupies the Lens Shader attribute in the Attribute Editor, you can use the Con-

nection Editor as follows to append another lens shader:

1. Load the physical sky shader under Outputs and the camera shape node under

Inputs. Note that it must be the camera shape, not the transform node (for example,

perspShape).

2. From the Output list select the physical sky’s Message attribute (the first one listed).

3. Under Inputs, scroll to the last input, and expand the Mental Ray Connections roll-

out. Select the MI Lens Shader List.

In this way, you add a lens shader. You can see

the result in the Attribute Editor window under

the camera shape attributes ➔ mental ray rollout ➔

Lens Shaders, as shown in Figure 13.35. In the fig-

ure you can also see that the physical sky shader is

connected as an environment shader.

X S I

In XSI you can manually create the physical sun

and sky shaders in the Render Tree window under

Nodes ➔ Environment and Light menus. Alternately, an

easier method is by selecting the Initialize Sky Shader

option under the Render menu ➔ Edit menu. The win-

dow shown in Figure 13.36 opens, allowing you to

automate the process of creating all the shader connec-

tions. After you click the Apply button, an infinite light

is created in the scene applied with the physical sun

shader.

You can find all the shared options discussed earlier in the physical sky shader, which

has automatically been added to the current pass Environment shader list. You can find

the list in the Render menu; choose Edit ➔ Edit Current Pass. Look on the Pass Shaders tab

in the Passes property window. You can select the Physical_Sky shader in the list, and

click the Inspect property button to modify the physical sky properties shown earlier in

Figure 13.30.

To add the Simple_Tone_Mapping shader (mia_exposure_simple) to a camera, select

the camera, and under its properties navigate to the camera’s Lens Shaders tab. Click the

Add button, and locate the Simple_Tone_Mapping shader in the browser window under

Lens Shaders. It’s typically located in the installation path, for example, in C:\Softimage\

XSI_6.0\Data\DSPresets\Shaders\Lens. You can also apply the same connection after load-

ing the camera into a Render Tree window and importing the tone mapping shader.

advanced final gather techniques ■ 607

Figure 13.35

Appending lens
shaders to a camera
with Maya

Figure 13.36

The Sky_Shader_
Setup window
allows you to auto-
matically generate
the physical sky
and sun shaders
with all the connec-
tions in XSI.

08547c13.qxd 10/24/07 4:41 PM Page 607

You can set the sun’s location using the infinite light, tweaking the direct lighting prop-

erties. Once you are satisfied with the direct lighting, enable FG for rendering indirect

lighting cast from the physical sky shader. The section “FG in Host Applications” that

focused on ambient light is also relevant in this case; you don’t want any additional ambi-

ence influence in the scene. Furthermore, in this case, the default light can be deleted,

because the physical sun generated its own infinite light source.

3 D S M A X

In 3ds Max you can create the physical sun and sky shaders manually by selecting them

from the Create panel ➔ Lights ➔ Photometric Lights ➔ mr Sky and mr Sun. When you do

that, you need to draw both in the scene with the same placement, because they are not

tied together. Alternatively, a better and more convenient approach is to create a daylight

system using the mental ray physical sun and sky. I cover only the latter in this section.

The following steps present the workflow and considerations for using these shaders in

3ds Max:

1. From the Create ➔ Systems ➔ submenu, select the Daylight System.

2. A Daylight Object Creation window asks whether you want to use Logarithmic Expo-

sure control. Select No so that you can first see the default results of rendering, and

then manually enable Logarithmic Exposure control in the Environment and Effects

window under the Exposure Control rollout.

3. Click in the top view to draw the compass rose in the scene that defines the global

coordinates (north, east, and so on). The first click creates the compass, and the sec-

ond click (holding down the left mouse button) allows you to place the physical sun

and sky lights in the scene defining their distance from the scene objects only. Their

direction is defined based on the specified time of day.

4. After the first click, a mental ray Sky window opens, asking whether you want to add

a mental ray Physical Sky environment map; select Yes.

5. On the right under the Create panel ➔ Systems tab (opens automatically), you have a

few options under the Control Parameters rollout for setting the time of day. You can

always set that later.

6. After creating the daylight system, you can now modify the parameters shown in

Figure 13.37 in the Modify panel.

With respect to these parameters, note the following:

• Under the Daylight Parameters rollout shown in the figure, the Sunlight and Sky-

light parameters should be set to mr Sun and Sky, respectively.

• In the same rollout under Position, you can choose the Manual parameter to

manually place the sun in the scene. If the Date, Time, and Location parameter is

608 ■ chapter 13: Final Gather and Ambient Occlusion

Figure 13.37

The mental ray sun
and sky parameters

in 3ds Max

08547c13.qxd 10/24/07 4:41 PM Page 608

enabled, you can click the Setup parameter to change the location and time. It

switches from the Modify panel to Motion panel ➔ Parameters.

• In the Modify panel under the mr Sun Basic Parameters, you have the parameters

discussed earlier for specifying soft shadows.

• Notice that under mr Sun Parameters, the Inherit from mr Sky parameter is

enabled so that shared options are controlled only by the mr Sky Parameters roll-

out, also shown in the figure.

• You can also find all the parameters for indirect illumination. The only new

parameter is under the mr Sun Photons rollout. When the Use Photon Target

parameter is enabled, you can set the radius for casting photons into the scene by

increasing the Radius parameter. Notice how it gives you a visual representation

in the scene as you increase the value. It is used to optimize the distribution of

photons so that they are not wasted in empty space.

Now that everything is set you can enable FG in the Render Scene: mental ray Renderer

window on the Indirect Illumination tab to see the effect of indirect light from the atmos-

phere in the scene. There are a few additional points to consider with respect to FG and

the daylight system setup in general. 3ds Max divides the physical sky shader into two

components: the mr sky light (created with the daylight system or manually, as cited ear-

lier) and the mr physical sky environment shader. From the previous discussion of FG in

3ds Max, you already know that the environment maps don’t affect FG. Therefore, for

the purpose of FG, the mr sky (created with the daylight system) is used for FG indirect

atmospheric lighting, and the mr physical sky shader appended as an environment map is

used only for background color. If you selected to create the mr physical sky in the mental

ray Sky window, you can see that the shader has been added in the Environment and Effects

window. If you open the Material Editor window and drag and drop the mr Physical Sky

shader Environment Map onto an empty slot in the Material Editor, you can edit its param-

eters (select to Instance the map from the prompt). You will notice that in the mr Physical

Sky Parameters rollout, the Inherit from Sky option is enabled so that it derives those val-

ues from the daylight system’s mr sky that you created in the scene (shown in Figure 13.37).

The additional parameters that are used solely for defining the sun’s appearance in the

background are also present. The Distance parameter for aerial perspective, found at the

bottom of the map parameters, is applied only when the shader is also a volume or lens

shader.

If you want to use the mr Physical Sky map as a volume shader, open the Render

Scene: mental ray Renderer window, and drag and drop (select instance) the map from

the Material Editor slot to the Renderer tab ➔

Camera Effects ➔ Volume parameter, as shown

in Figure 13.38.

advanced final gather techniques ■ 609

Figure 13.38

Mapping the camera
with the physical sky
as a volume shader
and the exposure
simple as a lens
shader

08547c13.qxd 10/24/07 4:41 PM Page 609

With respect to the mia_exposure_simple lens shader (tone mapping), if you enabled

the Logarithmic Exposure control in the Environment and Effects window ➔ Exposure

Control rollout, you may not need to add tone mapping to the render. If you want to use

the tone mapping shader, particularly when the exposure control is disabled, under the

Render Scene: mental ray Renderer window Renderer tab ➔ Camera Effects, select the

mapping option for the Lens parameter to add the exposure shader, as shown mapped in

Figure 13.38. From the Material/map Browser window, select the mia_exposure_simple

shader. You can then drag and drop the shader from the Lens parameter to an empty slot

in the Material Editor (select Instance when prompted) to edit its parameters.

Environmental Images and HDR
You already know how to use FG and apply environment images with your host applica-

tion. In the following sections, I’ll cover the differences between using LDR (low dynamic

range images, which are standard image files) and using HDR images. Applying them as

a projection is the same in each case; both are image formats. I’ll also cover the different

types of panoramic environmental images, which may be LDR or HDR images. You will

also learn about tools for creating and editing panoramic HDR images.

LDR vs. HDR Lighting

The purpose of FG is to sample the luminance values from the environment and apply

them to surfaces in the scene. As discussed in Chapter 9, “The Fundamentals of Light and

Shading Models,” HDR images contain within them realistic photometric measurements

of light. These light values provide FG with a realistic source for illumination in the scene.

Most important, it provides FG with a lot of contrast between the brightest and darkest

sampled colors in the environment, which is a topic discussed in detail in Chapter 9.

Since LDR images contain only a range of luminance from 0 to 1, they don’t provide a

high dynamic range for FG, as well as don’t provide for a lot of contrast. As the purpose of

indirect light simulations is to mimic realism, when using LDR images you don’t use real-

istic light measurements and thus don’t mimic realism. With HDR images, the luminance

values stored in the image enable FG to work outside a 0 to 1 range, providing for much

richer shading, more contrast, and more realistic lighting, as you will see in this section.

In the color gallery, the image labeled “LDR versus HDR” shows two images that have

been rendered with the same environmental image using solely FG (no source lights are

If you want to use the mr Physical Sky map as a lens shader in addition to the mia_exposure_

simple shader, use the Shader List (Lens) shader discussed in Chapter 3, “mental ray Output,”

to stack both shaders.

610 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 610

used). In image A an LDR (TIF) image is used, and in image B the HDR version of the

same image is used. The surfaces in the scene are shaded as follows:

• The leftmost apple is a fully specular surface that is not affected by FG. As discussed

earlier in the chapter, FG doesn’t affect fully specular surfaces.

• The apple in the middle is set with the architectural material as a glossy surface with

FG emulated reflections.

• The rightmost apple is a purely diffuse surface.

• The floor is a semiglossy surface.

You can clearly see the differences in contrast between image A and B. In image B,

notice how the diffuse apple on the right appears somewhat overexposed from the bright

intensity in the image, projected from one of the windows from within the HDR image.

Also notice how rich the reflections are on both the specular apple and the floor. Finally,

you can see some gradation in the emulated reflection on the middle apple. In contrast, in

image A the lighting and reflections appear flat and without detail. For example, by look-

ing at the image, you can’t tell that the light from the right side (hitting the diffused apple)

has a higher intensity than that found in other areas of the scene. Thus, using an LDR

environment image to render image A provided for poor reflections and reduced contrast.

HDR lighting with FG provides for brighter light, as shown in image B, because the

sources of illumination have a high dynamic range providing for a lot of variation in lumi-

nance value, outside the typical LDR range of 0 to 1. The variation in luminance means

that FG can accurately simulate the intensities of different light sources in the scene based

on the HDR values stored in the image. Unlike GI, which only deals with indirect lighting,

FG has the effect of also simulating direct light influence sampled from actual light sources

(sun, light fixtures, and so on) in the HDR image. However, as discussed earlier with FG

and specular reflections, there are a few reasons for using FG as well as a light source in

the scene:

• To generate specular highlights.

• To cast clear shadows; FG usually only “hints” at the shadows by occluding light from

reaching the umbra region, which in most cases is not enough shadow.

• To cast volume light (participating media) projected through an HDR image. This

technique has the effect of creating high-quality volume light effects.

With respect to source lights and HDR environment maps, you will need to position

the light source so that it aligns with the brightest light source in the image for consistency.

For example, try placing a directional light where the sun appears in an HDR image so

that you cast shadows and have specular highlights from the right angle in the scene.

advanced final gather techniques ■ 611

08547c13.qxd 10/24/07 4:41 PM Page 611

H D R S P E C K L E E L I M I N A T I O N

There are a few points to consider with FG and HDR images that deal with the current

exposure of an HDR image and the contrast between the brightest and darkest areas. In

Figure 13.39, you can see three images rendered with the same HDR environment image.

Image A used an accuracy setting of one ray per FG point, and the point interpolation was

set to 1. Thus, you see the scatter of individual irradiance values in the scene with the dots.

You can use these techniques to get an idea for the spread of the irradiance across surfaces

in the scene. Some areas stand out in particular where the white dots appear particularly

bright, especially the square “dots” that appear below the diffused sphere. You can also see

that the chrome sphere is not affected by FG and reflects only the scene. For image B, the

accuracy rays were increased to 200, and the point interpolation was set at 50. As you can

see, the dots blend together to form widespread overexposed artifacts in the image. Simply

put, there are several white circles that have extremely high luminance values and provide

overexposure.

When FG was designed, its purpose was to improve GI rendering as an additional tool

for acquiring indirect light influence. As cited earlier, with HDR images and FG, source

lights in an HDR image, such as the sun, actually make FG provide both direct and indi-

rect light influence, because it samples the source light’s projected radiance. When the

sun in particular appears in an HDR image, the luminance value at the sun’s location is

significantly higher than in the rest of the image. The result is that only a given number

of FG rays actually hit that target, which may be only a few pixels wide. Those values are

then interpolated with neighboring sampled FG points, whereas other points never “see”

the sun and are interpolated based on the atmosphere only, which is the indirect light

reflected from the atmosphere. The result is what you see in all three images in Figure 13.39,

where a sudden change in illuminance across the surface provides for extreme variation in

intensity.

To resolve these artifacts, you might try decreasing the intensity of the HDR image

using a color multiplier, as discussed earlier per host in the section “FG in Host Applica-

tions.” Doing so multiplies all the values of the HDR image by a given value, such as 0.5, a

technique that is occasionally used to “change/reduce the exposure.” However, typically it

will not suffice for removing speckle artifacts, as shown in image C. For image C, the HDR

image is multiplied by a value of 0.1, and as you can see, the entire image appears darker,

A B C

Figure 13.39

Examining speckle
artifacts with HDR

images that are
caused by extremely

bright luminance
sources

612 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 612

but the speckle artifacts (bright dots) still appear. Thus, even the value of 0.1 was not

enough to reduce their luminance enough to provide a good result. Furthermore, by

using this method, you lose a lot of detail in the HDR image, because all the areas consid-

ered as indirect light (from the atmosphere) now possess significantly lower values, proba-

bly within a low dynamic range. Clearly, by doing so, you flatten the image and lose the

primary advantage of using an HDR image, which is contrast and detail.

T H E S O L U T I O N S

There are three practical solutions for dealing with speckle artifacts:

• Using the finalgather filter option discussed earlier.

• Creating a convolved HDR image in HDR Shop or another tool. This method blurs

the image and interpolates the sun’s values over a larger area, as well as decreases its

overall intensity.

• Cutting a hole in the image by drawing a black spot over the brightest spot in the

HDR image. You can do so with HDR Shop. See the HDR Shop tutorials online

at HDRShop.com.

The first option is the most practical option and is similar to the second one listed. Fil-

tering reduces the luminance values in the HDR image and assists in removing speckles.

Typical values range from 1 to 4. Remember, it also makes the scene look darker because it

reduces luminance, so you want to use the lowest value possible. In Figure 13.40 you see

the same image used in Figure 13.39 after applying a filter value of 1. As you can see, all the

speckle artifacts have disappeared—simple and fast.

Figure 13.40

Using the FG filter
option allows you to
remove speckle arti-
facts from the ren-
dered image.

advanced final gather techniques ■ 613

08547c13.qxd 10/24/07 4:41 PM Page 613

G L O S S Y R E F L E C T I O N S , F G , A N D H D R I M A G E S (R A Y T Y P E S)

An additional consideration refers to glossy reflections regardless of FG. HDR images also

affect the reflection providing for richer reflections, as discussed earlier. However, lumi-

nance values that create speckle artifacts with FG will typically also cause glossy reflection

speckle artifacts, as shown in Figure 13.41. (This does not happen with pure specular

reflections.) The problem is that the FG filtering option applies its influence only with

respect to FG and does not reduce glossy reflection speckles. To remove the speckles, you

can decrease the amount of glossy reflection until they disappeared—not the most desir-

able solution if you want a specific glossy characteristic. The alternatives are to apply a

correction to the HDR image as mentioned earlier with blurred (convolved) HDR images

or by cutting a hole in the image. In addition, you can render the reflections as a separate

reflection pass using an LDR image, or vice versa, you can render the FG as a separate

lighting pass.

A more advanced approach is to designate specific environment images for specific

ray types. This means you define one environment image that is used for FG and another

for glossy reflections (or refractions). In this way, when glossy artifacts appear, you can

use a lower dynamic range image for the reflections but still use an HDR image for FG. In

Figure 13.42, you can see such a shader tree in XSI’s Render Tree window. The Ray Type

shader labeled C (available in the Nodes ➔ Switch menu) is used to break up the environ-

ment shaders used for a given XSI pass. (XSI users can graph the pass network after select-

ing it in the Explorer window.) In other words, it utilizes two different environment images,

labeled A and E, that are used with the environment shaders labeled B and F. These shaders

represent mental ray camera environment shaders, as discussed in Chapter 3, “mental ray

Output.” However, in XSI they are applied per pass.

Figure 13.41

Glossy reflection
speckle artifacts

caused by high lumi-
nance values in an

HDR image

614 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 614

The HDR image (A) connects to an environment shader (B), which is then connected

to the ray type shader’s (C) fg input. This network designates that environment shader

(B) as a source for FG for the entire scene. The LDR environment image (E) connects to

another environment shader (F), which is then connected to the ray type shader’s eye,

refraction, and reflection inputs. Thus, the LDR image will be used as a source for all ray-

trace reflections and refractions and as a background image, whereas the HDR image is

used as a source for FG sampling only. In this way, you can customize a scene on a ray-

type basis.

With Maya and 3ds Max you can find various shaders that deal with separating rays

in this way (commonly referred to as control shaders). The Ray Type shader is provided by

Horvatth Szabolcs on the CD: ChapterFiles/CustomShaders/Horvath/RayType1.1.zip. 3ds

Max users will need to download a 3ds Max specific include file from www.maxplugins.de.

F G S H I M M E R I N G

One thing to note about these types of shaders is that they are more commonly connected

to the mental ray materials illumination shader slot. Then different illumination shaders

connect to each of the inputs. Using it on a per-shader basis allows you to remove FG

shimmering artifacts that appear in animation because of highly detailed textures. In other

words, background images or textures from other surfaces can be a source for animated

noise (shimmering) especially when FG samples high frequency fractal shaders. Using this

technique allows you to detach a noisy shader from FG and use just a flat color instead,

reducing the shimmering effect. The only other alternative for solving shimmering arti-

facts is to increase the FG accuracy rays number, sampling the scene with more accuracy

and, of course, significantly increasing the render times, which is not the most desirable

approach.

For our purpose, when using FG, you would not want to manually remap each shader

network in this way. That’s why I demonstrated how it can be used globally as a means

to define separate environment shaders (applied as camera environment shaders)

applied to an XSI pass. A similar network can be created for Maya or 3ds Max shaders

using the Horvátth Szabolcs shader or other shaders from online resources such as

www.mymentalray.com.

A B

F C D

E

Figure 13.42

An XSI shader tree
that shows how dif-
ferent environment
images can be used
for different pur-
poses (FG, reflection,
eye rays, and so on)

advanced final gather techniques ■ 615

08547c13.qxd 10/24/07 4:41 PM Page 615

Common Practices

A common production practice is to generate an HDR image of a lighting set, whether

inside a studio or an outdoor environment. Then, that HDR image is used as a source of

luminance to light a subject in 3D so it appears realistically placed within an environment

when composited over that background. The same is true for reflections regardless of FG,

where you want a glossy-to-specular subject to accurately reflect the environment using

realistic light measurements, which are available only with HDR images. In the color gallery

you can see the “3D HDR Color” and the “2D HDR Color” images; both are generated

using HDR images. The only difference is that for the 3D color plate I used 3D software to

generate the HDR environment images, and for the 2D color plate I used photographed

HDR images. You can see that all of them provide variation in illuminance and color val-

ues based on their environment HDR image.

Whether you generate HDR images by means of photography or using software, in

both cases you are required to take several photographs at different exposures and then

combine them into a single HDR image. To generate a panoramic image, you would need

to take each “slice” of the panorama at several exposures so that they can be converted

into an HDR panoramic image.

P H O T O G R A P H Y A N D H D R

With photography you can use Photoshop or HDR Shop (www.HDRShop.com) to combine

multiple exposures into a single HDR image. It is best to use a digital camera with a high

pixel resolution so that you have a lot of detail in the HDR image. The HDR Shop site has

several useful links to resources where you can learn more about HDR imaging, HDR and

3D, and HDR Shop.

2 D A N D H D R P A N O R A M A S

An HDR photography technique I’m not a big fan of is known as the mirrored ball, where

you photograph a chrome sphere (mirrored ball) to obtain almost 180° of the scene in a

single photograph. You can see an example of a mirror ball HDR image in the section

“Environment Image Types and Construction Techniques.” The problem is that you need

to stay far away from the sphere so that you don’t reflect in a large portion of the image,

and you also need the entire sphere to appear in focus so that it doesn’t cover a large por-

tion of the frame. Thus, you lose a lot of detail and resolution, wasting valuable pixel

real estate.

HDR Shop provides a noncommercial free version that you can use to experiment with HDR

images; see the site for details. You will see some examples shortly.

616 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 616

A much better technique is to use a fish-eye lens to obtain three to four images of the

environment. Better yet, use a normal to wide-angle lens and take several photographs

using a custom pan head and tripod, such as the Manfrotto panoramic QTVR head (not

the cheapest solution). The Gnomon Workshop (www.thegnomonworkshop.com) has a series

of DVDs on spherical panoramic photography that covers the topic of generating

panoramic images with different techniques.

3 D A N D H D R P A N O R A M A S

An additional option is to use software to generate 3D HDR environment images; you can

use either your host application or a terrain-specific 3D application.

If you use your host application, you can, for example, create an HDR image using the

physical sun and sky shaders discussed earlier. In such a case you need to render an HDR

image using the RGBE framebuffer data type (see Chapter 3, “mental ray Output”). You

also need to decide how you want to create the panoramic image; for example, 3ds Max

has a panoramic exporter that ships with the software. In other hosts, you may need to

render six images for each direction (cubic), as you’ll see in the examples in the “Environ-

ment Image Types and Construction Techniques” section. (You can also use a panoramic

lens shader.)

An alternative for generating complex terrain HDR images is by using terrain-generating

software, such as Terragen from Planetside software. It allows you to create complex ter-

rains, cloud coverage, and realistic sun and atmospheric conditions that can be rendered

out to an HDR format and as six cubic images that are then combined into a panoramic

image. For the “3D HDR Color” color insert I used different HDR environment images

that I generated with Terragen.

Environment Image Types and Construction Techniques

Let’s look at the different formats used for environment panoramic images. Here are the

common types used with each host:

• Maya supports using spherical and angular maps with the IBL node.

• XSI supports spherical and cubical (six images) mapping with pass environment

shaders.

• 3ds Max supports mostly spherical mapping with the bitmaps environment projection.

All host applications can also use mental ray environment shaders, which ship with the

mental ray base shader library. You can manually connect them as environment shaders to

a camera (see Chapter 3, “mental ray Output”).

Planetside Software (www.planetside.co.uk) provides a noncommercial free version of Ter-

ragen with some minor limitations.

advanced final gather techniques ■ 617

08547c13.qxd 10/24/07 4:41 PM Page 617

When you render an HDR environment image, as discussed in the earlier “3D and

HDR Panoramas” section, you need to obtain six HDR rendered images for each camera

projection: front, right, back, left, top, and bottom. You need to set the camera to a field of

view of 90° as well as set the render resolution to a square resolution such as 800×800 pix-

els. You can see an example for six HDR images I rendered using Terragen in Figure 13.43.

If they were combined in this layout into a single image, it would be considered a horizon-

tal cross environment image.

To compile a single panoramic HDR image, I used a very useful and free tool (Win-

dows OS) called Cube2Cross that you can find on the Terragen page:

http://www2.cs.uh.edu/~somalley/hdri.html

The tool takes six images (depending on the format) regardless of Terragen and out-

puts one vertical cross HDR image; you can see the HDR version in the HDR Images

folder on the CD labeled “Vertical Cross Panorama” and an LDR (for preview) version in

the LDR folder (all the image types presented here are available in those directories). Once

you have a vertical cross image, you can then convert the image into the more common

spherical HDR image format (on the CD) using a program such as HDR Shop, which is a

necessary tool for working with HDR images. Alternately, you can use the six image pro-

jections using the mental ray cubic 6 environment shader that takes six separate images.

Figure 13.43

Six camera projec-
tions rendered with

Terragen and used
to create a

panoramic HDR
environment image

618 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 618

In HDR Shop, after loading a vertical cross HDR image, select from the main menu

Image ➔ Panorama ➔ Panoramic Transform, which opens the window shown in Figure 13.44.

As you can see, this window allows you to take a source format, in this case the vertical

cross generated with Cube2Cross, and output a new image with a different panoramic for-

mat, in this case set to Latitude/Longitude, which is the spherical format supported by all

host applications.

Figure 13.45 shows the spherical panoramic image; the output image generated from

the vertical cross. This type of HDR panoramic image format is the most common format

for environmental images in 3D.

The last two formats shown in Figure 13.46 are mirrored ball (image A) and angular

map (image B, also known as a light probe). A mirrored ball image typically provides

Figure 13.45

The spherical
panoramic format is
the most common
format for HDR envi-
ronments.

Figure 13.44

The HDR Shop
Panoramic Trans-
form window

advanced final gather techniques ■ 619

08547c13.qxd 10/24/07 4:41 PM Page 619

almost 360° of the environment. Typically by using two fish-eye photographs or two pho-

tographs of a chrome sphere (at 90° angles), a 360° mirrored ball image can be generated.

A mirrored ball image or fish-eye photographs can be converted to the angular map, which

is better suited for our purposes, and overall is a better format. The angular map, as shown

in the figure, starts to “bend” the environment farther away from the sphere’s edge. In this

way it does a better job at distributing the image data, using more pixels for representing

the environment along the sides of the sphere. Many of the HDR images you download

from the Web come as either angular or spherical images. If you want, you can always use

HDR Shop to convert an angular image to a spherical one for your host application.

In the context of FG, the purpose is to sample the light intensities from the image and

apply their influence on the scene as indirect lighting. Thus, the purpose is not for image

display such as when creating panoramic images for compositing backgrounds or for

photographic display. For that reason, you can use partial environment images. The only

concern is that they include the information you want within them, which is a high

dynamic range.

In most cases you want to render the environment so its primary visibility is disabled so

that it will affect only the FG lighting without appearing in the frame. Then composite the

rendered frame over a well-prepared background image using a compositing application.

That way you also have more control over fine-tuning the foreground or background images.

It’s not necessary to have perfect environment images for FG lighting.

A B

B

Figure 13.46

Mirrored ball (A) and
angular (B)

panoramic images
providing 360° of

coverage

620 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 620

Controlling HDR Exposure Values

This section will help you understand how to use HDR images in HDR Shop and how to

prepare them for FG rendering.

HDR images are stored at a default exposure that is used when the image is viewed as

well as with FG lighting. You can manually increase or decrease that exposure value, as

specified per host in the “FG in Host Applications” section. You may prefer to leave the

image intact and just change the default exposure.

In HDR Shop, the plus and minus keys on the numeric pad allow you to view the differ-

ent exposures. Select the preferred exposure, and from the main menu under Image ➔ Pixels

select Scale to Current Exposure. Then save the image. This will set the current exposure as

the new default exposure, which will also affect how the image is used with FG.

In addition, HDR Shop shows you the RGB intensity values stored at each pixel as you

drag the mouse over the image. Leaving the mouse at a given pixel, look at the lower bar of

the HDR Shop interface. You can easily identify areas with problematic exposures, like the

speckling you saw how to eliminate earlier. Also note that the current f-stop value is dis-

played on that lower bar.

R E M O V I N G H O T S P O T S

As a follow-up to the speckle elimination discussion, you can use HDR Shop to remove

a problematic area by painting over it in an external program. You can do so by selecting

Edit in Image Editor from under the File menu. It will automatically launch an external

image-editing program, such as Photoshop, and it opens a temporary image so that you

can paint over that area. When you’re done, select Save (not Save As), and return to

HDR Shop. The updates will take effect automatically, removing that area from all the

exposures.

You will find the image Spherical_speckle in the HDR Images folder on the CD. In it you

can see a hole (black spot) that was used to remove the hot spot in the “Spherical” HDR

image in the same folder.

To easily identify a problematic area, use the minus key to reduce the exposures until only

that area remains visible, and then edit it in an external program.

The external editing program is selected based on the file association for bitmap images on

your Windows system. You can set it if you examine the file properties for a bitmap image in

a Windows browser.

advanced final gather techniques ■ 621

08547c13.qxd 10/24/07 4:41 PM Page 621

Ambient Occlusion
Ambient occlusion provides a way of adding realism to images by taking into account the

influence of occluding objects while determining the color at every given point on a sur-

face. Occlusion is the process of blocking or the blocking of a passageway, for example,

blocking a flow of air. In our context, it is the process of objects blocking the flow of light

from each other, which has an effect of darkening the surface area on an object as it gets

closer to another surface. This also affects how a surface reacts to its own geometry such

as around folds or creases (self-shadowing).

This section examines how you can easily improve the detail in images using the men-

tal ray ambient occlusion texture. The great benefit of rendering with occlusion is the abil-

ity to achieve aesthetically pleasing renders to show off a model using a simple shader,

which is the ambient occlusion texture.

With respect to indirect lighting techniques, consider that GI provides multiple bounces

distributing photons indirectly in the scene, and FG adds the ability to improve those

results using primary and secondary FG (diffuse) rays. When both are used together, you

can use fewer GI photons and FG rays, improving the render time as discussed earlier.

However, some of the fine occlusion details you saw earlier with FG in Figure 13.13 and

Figure 13.14 may be lost when you use low FG settings such as a large radius. For that pur-

pose, using the ambient occlusion texture provides a means of maintaining detail around

corners, and by doing so, it allows you to use even lower FG quality values so that FG mostly

contributes color bleeding and irradiance to surfaces in the scene, whereas the occlusion

texture adds all the occluding detail where needed.

The ambient occlusion shader can also be used with the mental ray mib_fg_occlusion

shader. This shader has only one option: result_when_fg_is_off. If you connect the ambi-

ent occlusion shader to this option, mental ray will render using the ambient occlusion

shader when FG is off. When FG is on, mental ray will extract occlusion values from

FG and use them instead, reducing the overhead of calculating both FG and ambient

occlusion.

The Ambient Occlusion Texture
An occlusion texture examines the distance between different occluding surfaces and uses

those distance values to determine the influence they should have on the resulting occlu-

sion (darkening) effect at each point on the surface. The occlusion texture determines how

much light is blocked from the surface based on the distances between surfaces—in other

words, how much light is occluded by other objects. As surfaces get closer to each other,

the occlusion influence rises, and the surfaces become darker in the neighboring regions;

light is occluded from penetrating between them.

622 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 622

The most apparent use for the occlusion texture is to retrieve self-shadowing values,

as well as influence from surfaces within close proximity, as a simple grayscale image

that describes the diffusive occlusion color values across the surface, as shown later in

Figure 13.51. You can choose to bake the diffusive ambient occlusion calculation into

an image file, use it within a shader, or use it as a separate render pass for compositing

(most common).

The ambient occlusion texture can be used to retrieve diffusive and reflective occlusion,

normal maps, and environmental sampling. We will examine all of these within this chap-

ter. In each host application you can find the Occlusion shader in the following paths:

Maya You can find the ambient occlusion shader, shown in Figure 13.47, in the Hyper-

shade window under Create mental ray Nodes ➔ Textures rollout ➔ mib_amb_occlusion.

XSI You can find the ambient occlusion shader, shown in Figure 13.48, in the Render Tree

window under Nodes ➔ Illumination ➔ Ambient Occlusion.

3ds Max You can find the ambient occlusion shader, shown in Figure 13.49, when map-

ping an illumination shader’s color parameter, such as diffuse color, in the Material/Map

Browser window ➔ Ambient/Reflective Occlusion (base).

The Ambient Occlusion Options

Let’s start by examining the purpose of the options found in the occlusion textures. The

option labels are almost identical in each host, so I don’t refer to them on a per-host basis.

You can set the quality of the occlusion by increasing the Samples option. A higher value

will improve the quality of the render but also increase the render time. Typical values

range from 32 to 64. The Samples option defines how many rays are cast into the scene to

sample for occluding surfaces over a shading point.

Figure 13.49

The Ambient occlusion shader in 3ds Max

Figure 13.48

The Ambient occlusion shader in XSI

Figure 13.47

The Ambient occlusion shader in Maya

ambient occlusion ■ 623

08547c13.qxd 10/24/07 4:41 PM Page 623

Spread defines the falloff distance of the effect from the sampled point as shown in

the figure with the arrows labeled B. Note that the Spread option acts in a similar way

to the glossy options in the architectural material or DGS shader; however, in this case

higher values produce a glossier effect, and lower values produce a more specular (focused)

effect. This effect is mostly seen with environment sampling, discussed later in this section.

Thus, higher Spread values will darken and blur a larger region across the surface from a

given sample point. In Figure 13.51 you can see two identical images rendered with differ-

ent spread values. Image A has a spread of 0.5 and image B has a spread of 1.5. As you can

see, the areas, particularly along the back wall and ceiling, appear to spread the occlusion

effect farther away from the corners in image B.

The Mode option determines what type of effect the occlusion texture will calculate; at

0 it is used for diffusive or reflective occlusion, at a value of 1 it renders environment sam-

pling (see “Environment Sampling” later in this chapter), and at values 2 and 3 it renders

bent-normal images in world and object space, in that order (see the “Bent Normals” sec-

tion). In XSI the Output Mode property labels these options with names rather than num-

bers, and in 3ds Max you can see the corresponding numbers with the Type parameter.

A

C

B

Figure 13.50

Examining a sample
point on a surface

with ambient
occlusion

624 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 624

Reflective Occlusion

The ambient occlusion texture lets you do much more than calculate diffusive ambient

occlusion; it also allows you to calculate reflective ambient occlusion. To mimic realism,

we would simulate the properties of natural light being scattered off an object, and this

would include diffuse reflected light as well as specular reflected light. Both are influ-

enced by occluding objects so that when we render without occlusion we always get

unnatural results; the surface appears evenly diffused or reflective across the board, for

example 100 percent reflective, without considering the effects of occlusion on the dif-

fuse or reflection intensities. Having said that, we can control Fresnel reflections, as well

as map color options with textures, but that still doesn’t account for the influence of

occluding surfaces.

Reflective occlusion provides a way to control the amount of reflection color along a

surface based on the reflection rays so that it reduces the reflection intensity where sur-

faces are in close proximity, based on occlusion effects. The technical difference between

rendering a diffusive occlusion versus a reflection occlusion pass is in how the occlusion

is calculated. With the diffusive occlusion the influence is calculated based on the surface

normals, whereas with reflected occlusion it’s calculated based on the reflection rays. To

clarify, with ambient occlusion the effect is calculated based on shooting rays evenly

from a hemisphere above the shaded point, as with diffuse light reflection. With reflective

occlusion, a glossy lobe (see Chapter 9, “The Fundamentals of Light and Shading Mod-

els”) is used to cast rays based on the reflection directionality, not uniformly in all direc-

tions above the shaded point. In doing so, it builds a dependency with the viewing angle

(using reflection rays). So if the camera changes its viewing angle, the effect of the reflective

occlusion will adjust accordingly.

A B

Figure 13.51

Comparing a low
spread value (A)
with a higher
spread value (B)

ambient occlusion ■ 625

08547c13.qxd 10/24/07 4:41 PM Page 625

In Figure 13.52 you can see in image A an ambient occlusion render and in image B a

reflective occlusion render. Image B looks glossy; it has a reflective feel because the reflec-

tive occlusion is applied based on glossy rays that hit polygons in near proximity to each

other adjusting the reflection intensity accordingly. Areas that appear darker would reflect

less light.

The occlusion texture provides a grayscale output that can be used to vary the reflec-

tion values along the surface. To leverage the occlusion shader’s output, you need to mul-

tiply it with the reflectivity value of a given shader so that it affects the overall reflection

intensity across the surface. The result would be a reflection shader that scales the amount

of reflection across the surface based on reflective occlusion, rather than an overall linear

value. If the reflectivity is already mapped with a texture, you can always multiply the

occlusion shader with that texture and then map the result to a shader’s reflection color

or intensity options.

Ambient Occlusion Shading Networks
Ambient occlusion is usually used as a compositing pass. Thus, you want to render the scene

with only ambient occlusion influence, without taking any source lights or shading effects

into account, and then use that pass in compositing to control the intensity of the effect

(more on that soon). To use the ambient occlusion texture for generating an occlusion

pass, you connect the out value from the occlusion node to the ambient color of any shader,

typically a Lambert shader as shown for Maya in Figure 13.53 image A. Another and better

approach to rendering occlusion passes is to connect the value directly to a constant

shader that outputs the texture color as is, without any influence from scene lighting, as

shown in image B.

A B

Figure 13.52

Comparing
ambient occlusion
(A) with reflective

occlusion (B)

626 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 626

With respect to using a Lambert shader or any other shading model (Blinn, Phong)

and connecting an occlusion texture to the ambient color on the shader, consider the

following points:

• An ambient color value acts as a multiplier for the diffuse color value.

• The occlusion texture that is connected to the ambient color value will render out

details of darker/brighter based on occluding objects and then multiply it with the

diffuse color values to determine color for each shaded point in the rendered image.

• The rendered image will have also been influenced by the shading model characteris-

tics, such as the diffuse and specular color values that are influenced from lights in the

scene, as shown in Figure 13.54 image A.

• In the case of a mental ray Lambert shader, if you set the diffuse value to zero, map

the ambient color with the ambient occlusion texture, and set the ambience color to

white, then the result will be the same as using a constant shader. Image A used this

technique with a Lambert shader, and image C used this technique with a constant

3ds Max users, you can connect it to the mental ray material Surface parameter as shown ear-

lier in the chapter with background environment images for FG.

The surface shader in Maya and Constant shader in XSI provide you with a way of viewing the

exact color on an object without any shading influence such as light.

Figure 13.53

Connecting the
ambient occlusion
texture to a shading
network for render-
ing diffuse occlusion
effects

ambient occlusion ■ 627

08547c13.qxd 10/24/07 4:41 PM Page 627

shader; they both look the same because a shader with a zero diffuse

value will not be influenced by any lights in the scene. Note the fol-

lowing host-specific considerations:

• For Maya users, it works this way only with the mental ray

Lambert shader. With the Maya Lambert shader, set the Diffuse

attribute to 0 and the Color attributes to white. The Ambient

Color and Color attributes are multiplied together.

• XSI users should map the Ambient property of a Lambert shader

and set the global scene Ambience property to white, as discussed

earlier in “FG in Host Applications.”

• 3ds Max users should map the Ambient parameter of a standard

shader with the occlusion texture and set the Specular and Dif-

fuse color parameters to black. Then, in Environment and

Effects ➔ Global Lighting, set the Ambient color parameter to

white.

As you can see, the constant shader occlusion pass (image C) looks

much more like the kind of pass you could use in a compositing tree

opposed to a Lambert shader that is influenced by lights (image A).

Note that you might want to adjust the occlusion texture’s dark value

so that when multiplied by the color value in a composite, the result

won’t completely darken the colors at the fully occluded areas. How-

ever, if you are using it as a pass, you can always correct the color

values in compositing. For example, you can decrease the spread by

contracting the values or sharpen the falloff effect. The bright value

should always remain white so there won’t be any influence at unoc-

cluded areas.

Compositing Occlusion
This demonstration of compositing is brief, for the purpose of understanding the theory

behind compositing grayscale occlusion passes over color passes. While compositing a

standard color pass with a reflection pass, the reflection pass is a combination of both a

fully reflected pass (shown in Figure 13.55 image A) multiplied by the reflected occlu-

sion pass (B) to give the reflection more variation on the surface. Then the resulting reflec-

tion pass, shown in Figure 13.55 image C, is added to the color pass, which is also

multiplied by a diffusive occlusion pass as follows:

((color × diffusive occlusion) + (reflection × reflected occlusion))

628 ■ chapter 13: Final Gather and Ambient Occlusion

Figure 13.54

Comparing the
effects of using dif-

ferent shader setups
with the ambient
occlusion texture

08547c13.qxd 10/24/07 4:41 PM Page 628

To clarify, a fully occluded point from the reflected occlusion pass that is multiplied by

the same fully reflective point in the reflection pass would yield a reflection value of zero

for that point; no reflection will render for that point in com-

positing. The same is true for the diffuse color and ambient

occlusion (diffusive occlusion) passes.

Methods for Rendering Ambient Reflective
Occlusion
Rendering reflective occlusion is as simple as enabling the Reflec-

tive check box in the occlusion texture node; you can then ren-

der reflective occlusion in a number of ways.

You can render a reflective occlusion pass with the same net-

work shown earlier using a constant shader just with the ambient

occlusion texture’s reflective option enabled. The resulting ren-

der is a reflective occlusion pass that can be multiplied with a

reflection pass in compositing, as noted earlier.

You can multiply the reflection color with reflective occlusion

in a shader tree, driving the reflection intensity across the surface

in some of the following ways:

• In Maya and XSI, connect the output from the occlusion

texture to the shader’s reflectivity scalar value as follows:

• In Maya, connect the occlusion shader to a Maya Lumi-

nance shader, and use that output for the shader’s

Reflectivity attribute.

• In XSI, connect the occlusion shader to a Color2Scalar

shader, and then connect that to the shader’s Reflection ➔

Scale property (scalerefl input in the Render Tree win-

dow for a given shading model).

• In Maya and 3ds Max, you can connect the occlusion texture output to a shader’s

specular color, which also affects the reflection intensity.

• In all hosts, you can create a specular shading model that is multiplied with an occlu-

sion texture and then connected to the color input of a constant shader or directly to

the material as follows:

• In Maya, use the Multiply/Divide utility to multiply the shading model with the

occlusion texture. Then connect the multiply divide node to a surface shader Out

Color attribute.

• In XSI, connect the occlusion shader and the specular shader (such as a Phong)

to the inputs on a Color_Math_Basic shader and set it to multiply. Then connect

ambient occlusion ■ 629

A

B

C

Figure 13.55

A reflection pass (A),
reflective occlusion
pass (B), and the
result of composit-
ing the two
together (C)

08547c13.qxd 10/24/07 4:41 PM Page 629

the color math shader directly to the material’s Surface input. Note the Phong

shader reflection Color property should be set to white.

• In 3ds Max, for any of the standard shaders under the Maps rollout, map the

Reflection parameter with the RGB Multiply shader. Then map the occlusion

shader to one color parameter and the Reflect/Refract shader to the other color

parameter. Alternatively, you can apply the same steps to a mental ray material

Surface parameter, mapping it with the RGB Multiply shader.

All of these methods provide a way for controlling the reflection value across the sur-

face, and their purpose is the same: the scaling of the reflection value at each point across

the surface based on the occlusion texture output. The main difference is whether you

plan to composite the reflection and reflective occlusion pass within a compositing pack-

age or would rather create a single shader tree that has the occlusion texture multiplied

with the reflection values at render time as described earlier. With the later the difference

is in how the shading network connections are applied rather than the end result.

Environment Sampling and Bent Normals
The ambient occlusion texture also provides a way to render bent normals and environ-

ment sampling. You enable these by choosing different rendering modes from the ambi-

ent occlusion texture mode option discussed earlier.

Environment Sampling (Mode 1)

Environmental sampling is extremely useful for retrieving the environment’s light influ-

ence on an object, similar to a single diffuse bounce with FG. This is useful for controlling

the appearance of a model or digital set that is superimposed on a live action plate, and

you have the appropriate HDR environment image for the background.

With the occlusion shader, the process of retrieving the influence from the environ-

ment is based on the diffuse or reflective occlusion sampling. This means you can choose

whether to examine the environment influence for a diffused surface based on the surface

normals (diffusive occlusion) or for a reflective surface based on the reflection rays (reflec-

tive occlusion).

In practice, using the ambient occlusion texture for extracting environmental sampling,

rather than taking the time to calculate FG, simply speeds up the render process; it gets the

environment’s influence on shaded point without any FG precomputation or FG maps.

Furthermore, you can use an advanced mental ray shader that utilizes baked (light maps)

occlusion and bent-normal image files to render environment sampling without any ray-

tracing, which is significantly faster than raytracing every frame. (You can read about that

in an article I wrote for the HDRI 3D magazine about texture baking in Maya, included on

the companion CD.)

630 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 630

In the case of environment sampling, you retrieve color values from the environment

and multiply them by your surface color; this in return can be used as a render pass or part

of a procedural shading network used in the same way as described earlier with the different

shader trees. The only difference is that you want to multiply the environment sampling

output with the diffuse color (it acts as fill/ambient lighting). Figure 13.56 shows two

examples of environment sampling using different HDR images on a model with the

occlusion texture and a constant shader. It’s essential to see this effect in color; see the

color version in the Chapter 13 folder on the CD labeled “Environmental Sampling.”

The most important fact to know about environment sampling is that the Spread

option controls how glossy the environment sampling appears, and lower values provide

more specular (mirror) reflections. Thus, the glossier the sampling (higher spread values),

the more rays (the Samples option) are needed to produce a quality effect, increasing the

render time.

Figure 13.56

The effect of using
environment sam-
pling with the occlu-
sion texture and two
different HDR envi-
ronment images

It’s important to note that environment sampling will pick up color influence only from the

environment map, not from nearby surfaces; nearby surfaces will affect only the occlusion,

meaning they will make certain areas darker or brighter. Thus, this differs from FG in that it

doesn’t look for color influence from surfaces in the scene, as does FG.

ambient occlusion ■ 631

08547c13.qxd 10/24/07 4:41 PM Page 631

Bent Normals (Modes 2, 3, and 4)

The mode option when set to 2, 3, or 4 enables rendering bent normal-maps as follows:

• Mode 2: It’s based on the world space coordinates.

• Mode 3: It’s based on the camera space coordinates.

• Mode 4: It’s based on object space coordinates.

You already know that normal maps can represent a given coordinate space in color,

color coding the coordinates where the Y axis is green, the Z axis is blue, and the X axis

is red, as discussed in Chapter 11, “mental ray Textures and Projections.”

What bent normals means is that the direction of the average unoccluded vector is used

rather than the shaded point’s standard normal direction (which is perpendicular to the

surface face). Thus, bent normals differ from standard normal maps in that they color

code the imaged based on the average area that represent the least occlusion, in other words,

pointing away from nearby surfaces—which is why they’re considered “bent.” They too

use the same color-coding scheme for the three axes but derive the normals based on the

average result from sampling rays over a shading point’s hemisphere.

They are mostly used for internal shader purposes and don’t really assist you in other

purposes. The best option is to bake them into a texture map, as cited earlier, and use

them with the mental ray mib_ bent_normals shader that provides for nonraytrace envi-

ronment sampling using a baked occlusion texture and baked bent normal map texture

as cited earlier and demonstrated in the HDRI 3D mental ray texture baking article found

on the CD.

632 ■ chapter 13: Final Gather and Ambient Occlusion

08547c13.qxd 10/24/07 4:41 PM Page 632

Subsurface Scattering

Subsurface scattering refers to characteristics of light as it penetrates

and scatters within surfaces. Once light penetrates a surface it can refract and exit, as with

glass; or it may hit several “layers” within that surface, essentially bouncing until it either

exits the surface or is fully absorbed, as with jade, milk, emeralds, wax, opals, and many

other such materials.

To simulate subsurface scattering, mental ray offers shaders it describes as both physi-

cal and nonphysical. The second group is more extensive; these shaders don’t attempt to

calculate the physics of deep scattering. There is also one physical shader, which does cal-

culate deep scattering. This chapter examines both mental ray techniques. The chapter

includes the following topics:

■ Advanced Shading Models

■ Nonphysical Subsurface Scattering

■ An Advanced Shader Tree

■ Physical Subsurface Scattering

C H A P T E R 1 4

08547c14.qxd 10/24/07 4:42 PM Page 633

Advanced Shading Models
The BSDF light transport models discussed in Chapter 9, “The Fundamentals of Light and

Shading Models,” are a simplification of a more advanced approach to modeling light trans-

port known known as the Bidirectional Surface Scattering Distribution Function (BSSRDF).

The BSSRDF model primarily describes subsurface scattering and has been developed for

use in computer graphics by Henrik Wann Jensen (http://graphics.ucsd.edu/~henrik).

Jensen introduced it in 2001 at Siggraph.

You saw that in BSDF shading models a mathematical function accounts for various

characteristics of light scattering without using volumetric simulations (which are used

with participating media photon casting). BSSRDF shading models are similar to BSDF

models but more complex.

BSSRDF is a model for light transport that has few CG shading model implementa-

tions. They are only beginning to emerge in the field, mostly thanks to custom in-house

development for feature films (for example, see Gollum’s skin in Lord of the Rings 2 and 3).

BSSRDF shading models support rendering internal light diffusion such as in jade, mar-

ble, milk, juice, or any other form of matter that exhibits a lot of translucency, including

realistic skin shading.

mental ray shaders apply subsurface scattering using two different methods: nonphysi-

cal shaders use light maps based on a standard BSDF model, and the physical shader

models physically accurate light transport by casting photons for the purpose of address-

ing the principles of BSSRDF light transport.

The physical shader is in fact Jensen’s motivation for developing BSSRDF shading mod-

els. His efforts are aimed at removing the dependency on photon casting while providing a

good solution for rendering surfaces that display some level of internal scattering (almost

every material other than metal). Thus, the advantage of BSSRDF shading models over the

mental ray shaders is that they render faster without a need to cast photons (as the mental

ray physical shader does) and are more accurate shading models and easier to use than the

nonphysical shader.

After a brief conceptual discussion of the BSSRDF model for subsurface scattering, this

chapter then looks at how mental ray implements these concepts using the two techniques

cited earlier.

The BSSRDF Light Transport Model
Jensen’s BSSRDF scattering model is a complex light model that describes subsurface

absorption and light scattering (diffusion) using two terms: single scattering and multiple

scattering. These concepts are mathematically implemented in the form of a shading

model that resolves light transport inside translucent materials where subsurface scatter-

ing is key to their natural (soft/diffused) appearance, as with skin.

634 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 634

As shown in Figure 14.1, BSSRDF light transport accounts for the fact that incident

light does not reflect directly from the point of contact on a surface (externally), but actu-

ally transmits through the surface, where it may bounce around internally (in-scattering)

before it is either absorbed or exits the surface (out-scattering).

The figure also shows the difference between BSDF light transport models and the BSS-

RDF model. You can see that with the BSSRDF model, incident light may exit the surface

at an offset location after carrying out several internal reflections; this is the multiple scat-

tering term cited earlier. It can also refract through the material and exit on the opposite

side without bouncing around internally (low scatter conditions); this is single scattering.

The primary effect BSSRDF has on shading is that surfaces appear more natural, con-

veying a realistic (diffused) feel across the surface. The ability to account for internal single

and multiple scattering is a significant advantage for rendering natural-looking surfaces,

compared to the harsh, “computer-generated” appearance most standard shading models

provide.

BSSRDF shading models and the mental ray physical shader provide an accurate simu-

lation of light. But to simulate subsurface characteristics properly, you also need to know

about the diffusive qualities of the surface, precisely how it scatters light internally. For

that purpose, empirical data from experiments can be applied to these models for greater

BSSRDFBSDF

BRDF

BTDF

Figure 14.1

The BSSRDF light
transport function

The concepts discussed in this chapter are an extension to the discussion in Chapter 12’s

“Participating Media (PM) Effects” section. They deal with rendering light that interacts within

matter (volume rendering), following the same principles presented with the Henyey-Green-

stein phase function for anisotropic and isotropic scattering as well as the concepts of emis-

sion, absorption, in-scattering, and out-scattering.

advanced shading models ■ 635

08547c14.qxd 10/24/07 4:42 PM Page 635

realism. At the following links, you can learn more about BSSRDF light transport by read-

ing papers that describe subsurface scattering and list empirical data for absorption and

scattering coefficients. You can implement these values with the physical shader discussed

later in this chapter:

http://graphics.ucsd.edu/~henrik/images/subsurf.html

http://graphics.stanford.edu/papers/bssrdf/

http://graphics.ucsd.edu/~henrik/papers/skin_bssrdf/

http://graphics.stanford.edu/papers/bssrdf/bssrdf.pdf

http://www.tml.tkk.fi/Opinnot/Tik-111.500/2002/paperit/kalle_koutajoki.pdf

(The first and last links may be the best places to start.)

Rendering Subsurface Scattering Effects
mental ray provides two solutions for simulating subsurface scattering; choosing one of

them will primarily depend on whether deep scattering is required. Other considerations

include ease of use and memory usage. The first method is nonphysical; that is, it does not

attempt any realistic calculation for determining light scattering. This method provides

faster results and fewer artifacts and is not as processor intensive. It is used to simulate

shallow scattering in surfaces that possess some level of internal scattering. Thus, the non-

physical approach is a more creative and time-efficient approach. The other, physically

correct method uses photons to simulate how light scatters within a deep surface, making

it obviously more expensive to render and harder to control.

As with all surfaces, subsurface-scattering effects are based on certain factors that

define the scattering characteristics of the surface. Figure 14.2 (also found on the compan-

ion CD in the Chapter 14 folder as “Subsurface Scattering in Real Surfaces”) demonstrates

some of the properties of different materials and how their interaction with light differen-

tiates them from a common CG look. The surface properties that define their appearance

relate to how light scatters through the surface; such considerations are as follows:

• How much light penetrates through a thin surface? The surfaces shown in images B

(balloon), D (plate), and F (cloth, a seat cover) can be rendered using the nonphysical

shader.

• What about deep scattering? Does light penetrate a thick surface such as A (marble),

C, and E? Both C and E show candle wax, which can be simulated only with the physi-

cal shader. With marble (A), the surface is thick; however, does light travel into its

depth as with the wax? With marble you can use both nonphysical and physical

shaders depending on the type of surface you are rendering; for example, the tile

shown in the figure could be rendered with either method, but a statue that displays

more internal scattering would require the physical shader.

636 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 636

• How much light is absorbed within the surfaces? This property applies to all the sur-

faces in the figure.

• Does the back side appear to transmit light through the surface (through scattering)

as shown in B, D, E, F, and the first thin layer (liquid state) of the candle wax under

image C?

These are all essential questions you should consider before determining an approach

to simulating subsurface-scattering effects.

The most significant use of subsurface scattering in 3D has been to simulate skin char-

acteristics. This feature has ignited a whole new era, in which the CG artist’s ability to sim-

ulate realistic skin shading has greatly improved. Another ability (somewhat undervalued)

is that even a small amount of scattering at shallow layers provides for softer diffused light,

making surfaces appear much more natural, as illustrated in Figure 14.3 as well as various

images in the color gallery and in the Chapter 14 folder on the CD with the image “Card-

board Subsurface Scattering.” In Figure 14.3 you see an “out-of-the-box” render, using

BA

C D E

F

Figure 14.2

Common surfaces
that exhibit subsur-
face scattering

advanced shading models ■ 637

08547c14.qxd 10/24/07 4:42 PM Page 637

only the nonphysical subsurface shader without any additional surface mapping. Thus,

subsurface scattering is a valuable effect for simulating all types of natural surfaces that may

span from translucent materials to skin shading, from wax to stone, and so forth. Note

that for some purposes you can use the architectural material discussed in Chapter 10,

“mental ray Shaders and Shader Trees,” for translucency without taking the time to set up

the nonphysical shader; however, the nonphysical shader will produce better results.

Nonphysical Subsurface Scattering
mental ray ships with the subsurface shader library, which includes several component

and phenomenon shaders specifically designed for nonphysical subsurface-scattering

(SSS) effects. In addition, the SSS library ships with one photon-based shader for physi-

cally correct subsurface scattering; this shader is discussed later in the chapter.

Using component shaders requires a process of developing a shader tree that defines

the subsurface-scattering effect. Chapters 9 through 11 included discussions of mental

ray component shaders; based on those discussions and examples, this process sounds just

right. Each component shader is aimed at solving a particular task. There are shaders for

calculating the scattered light, color, region, and effect, as well as shaders providing con-

trol over external light contributions such as diffuse, specular, and bump shading. When

these subsurface component shaders, along with other shaders (Lambert, DGS, and so

Figure 14.3

The nonphysical
shader used with
“out-of-the-box”

settings assigned to
simple geometry

638 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 638

on), are combined, they form a subsurface shader tree that controls both the external and

internal shading contributions. With nonphysical subsurface scattering, these shader trees

greatly rely on mental ray light maps and depth maps, which provide essential informa-

tion for determining the light’s influence across the surface, front and back, based on the

cameras position in the scene.

Most significant is that you are not required to know how to combine all these different

shaders. As a matter of convenience, certain preset shaders have already been combined as

phenomenon shaders, essentially forming four easy-to-use subsurface-scattering shaders.

These phenomenon shaders are as follows:

• misss_fast_simple

• misss_fast_skin

• misss_fast_skin_d (misss_fast_skin with displacement)

• misss_fast_lmap

Not all hosts offer all four shaders; it depends on how the SSS shader library is imple-

mented in host applications, as described per host next. The misss portion of each name

stands for “mental images subsurface scattering” library. As discussed in Chapters 1 and

9, the phenomenon node is a complex shading network compiled into a single shader

node and interface with access to options within that hidden network. These four shaders

are compilations of the different component shaders found in the SSS library. In the fol-

lowing sections, I’ll cover all the component shaders and their options, as well as the phe-

nomenon shaders, to show how to construct custom shaders or use these preset shaders.

You can find these shaders in host applications as follows:

Maya In the Hypershade window under the Create mental ray Nodes ➔

Materials rollout, you will find the first two shaders listed earlier. In

addition, you will see the component shaders (all the SSS shaders

begin with the misss prefix), as shown in Figure 14.4. You will find the

fourth phenomenon shader listed earlier (a light map shader) under

the Light Maps rollout and the misss_lambert_gamma shader (another

component shader) under the Textures rollout, as shown in the figure.

The disadvantage with Maya 8.5 and lower is that you need to config-

ure the light map shader manually, which at times requires some

troubleshooting. In Maya 2008 the process of creating the shader tree

is automated using the shaders described throughout this chapter.

XSI In XSI you have the two phenomenon shaders listed earlier (1 and 2), and the light

map shader (4) is already built into the first two phenomenon shaders. Thus, in XSI the

SSS shaders are provided as monolithic materials that are the subsurface phenomenon

shaders (1 or 2) as well as the light map shader required by each of the phenomenon shaders.

nonphysical subsurface scattering ■ 639

Figure 14.4

All the SSS shaders
in Maya have the
misss prefix, as
shown in the Hyper-
shade’s Create men-
tal ray Node panel.

08547c14.qxd 10/24/07 4:42 PM Page 639

As we review the SSS shader purposes, it will make more sense. You can find both materi-

als in the Render Tree window ➔ Nodes➔ Illumination menu, where Fast Sub-surface

Scattering Shader corresponds to misss_fast_simple and Fast Skin Shader corresponds to

misss_fast_skin. Note that because these are monolithic materials, both shaders connect to

the material input of an XSI material, as shown in Figure 14.5.

3ds Max In 3ds Max you will find three nonphysical shaders that correspond to the first

three shaders in the earlier list. You can locate them by selecting a new material in the

Material Editor window, and then under the Material/Map Browser window you will find

SSS Fast Material (mi), Fast Skin Material (mi), Fast Skin Material + Displace (mi), and the

SSS Physical Material (mi), which is discussed later in this chapter. The Fast Skin Material

and Fast Skin Material + Displace shaders both correspond to the misss_fast_skin shader

with and without support for displacement mapping. The light map shader is already

implemented in all three monolithic materials, and therefore you do not have to deal with

manually configuring them. These phenomenon shaders are provided as monolithic shaders

that encompass the SSS shader as well as the required light map shader. The component

shaders used to create these shaders are not provided; however, as you learn about SSS in

the following sections, you will learn how these shaders work in detail through their com-

ponent shaders.

In Maya and XSI the misss_fast_skin_d phenomenon shader is not required to extend

support for displacement mapping. In each host you can attach a displacement map directly

to the material shader’s displacement input and the SSS phenomenon shader to the mate-

rial input, which is the Material Shader attribute in Maya and the Material property in

XSI. Essentially, when exported to mental ray, the material is translated as one material

that will have the SSS shaders as well as the displacement map, as with a misss_fast_skin_d

phenomenon shader.

In all hosts, if you enable info verbosity (see Chapter 1), you will see mental ray output infor-

mation on the light map generation process so that you can see that it didn’t fail.

Figure 14.5

The misss_fast_
simple shader

connected to the
material input of an

XSI material

640 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 640

The Component Shaders
As mentioned earlier, mental ray includes a set of component shaders

that when used together form a subsurface-scattering effect. The fol-

lowing are detailed descriptions of the component and phenomenon

shaders, some of which are presented in more detail in the instruc-

tions for host applications.

misss_fast_shader

This component shader, whose Maya interface is shown in Figure 14.6,

is the “brain” behind subsurface scattering. It is used to calculate the

scattered light effect for the internal subsurface layers. Because it’s

implemented internally as part of the phenomenon shader’s (listed

earlier) shader trees, its options can be found in each of their shader

interfaces. This shader controls two internal layers of subsurface scat-

tering, front and back, and provides inputs that accept an additional

illumination shader that provides the external BRDF light contribu-

tion. Figure 14.6 shows these shading inputs mapped with mental ray

shaders that provide additional components for rendering external

diffuse, specular, and bump contributions.

T H E D I F F U S E A N D S P E C U L A R C O M P O N E N T S

The misss_fast_shader Diffuse Color and Diffuse Weight attributes provide for a Lambert-

ian shading model, so this shader does not require other shaders for rendering external

diffuse light reflection. You can map the Diffuse Shader input with a different shading

model, such as an Oren-Nayar model (recommended for skin shading); however, that

shader will be subjected to a diffuse multiplier that will reduce some of the Oren-Nayar

effect; the Diffuse Color and Weight attributes are multiplied by the diffuse input shader.

To clarify, the misss_fast_shader provides a Lambert shading model that is multiplied by

whatever else is mapped to the Diffuse Input attribute. If set as color, it also influences the

color of the mapped shader.

In this case, you can see a mental ray base Lambert shader attached to the Diffuse Shader

input in Figure 14.6 for the purpose of adding a complex shader tree, such as diffuse shader

with various texture maps that enhance the diffuse reflection appearance, which is more

than possible using the weight and color options. Thus, the Lambert shader acts as a

pipeline shader that bridges between a complex diffuse shader tree and the misss_fast_shader.

Furthermore, consider that the purpose of the Diffuse Color and Weight attributes is to

balance the diffuse shading contribution (the mapped diffuse shader) with the subsurface

effect. Thus, they act as an additional tool for balancing how much of the diffuse shader is

combined (influences) with the subsurface effect during rendering.

nonphysical subsurface scattering ■ 641

Figure 14.6

The misss_fast_
shader UI seen
in Maya

08547c14.qxd 10/24/07 4:42 PM Page 641

For specular reflection, the misss_skin_specular shader is attached to the Specular

Shader input, as shown in Figure 14.6. You are not required to use the misss_skin_specu-

lar shader; however, it is a robust shader that provides multiple layers of specularity, as

discussed later in this chapter. As an alternative, you can use (for example) a Blinn shader

that has the ambient and diffuse colors set to black so it contributes only specular reflections.

A L G O R I T H M C O N T R O L

When rendered, the misss_fast_shader is responsible for combining the different external

and internal light contributions into a final result. Another factor in this calculation is the

Algorithm Control attributes shown in Figure 14.6. These attributes provide control over

fine-tuning the scattered light measurement units and the shader compositing method

(internal shader math), all discussed in more detail throughout this chapter.

L A Y E R I N G S H A D E R S

One powerful approach to subsurface shader tree construction is that you can connect an

additional misss_fast_shader to the Diffuse Color attribute of a “base” misss_fast_shader,

providing more layers that simulate internal light scattering, essentially stacking one shader

on top of another. This type of shader stacking is applied internally in the misss_fast_skin

phenomenon shader, which offers three layers of internal scattering.

misss_lightmap_write

The light map shader is responsible for collecting depth and irradiance values from the

camera’s perspective. These values are stored in one or two (depending on how it is set

up) 32-bit floating point light map files. You can see in Figure 14.6 how two mental ray

texture shaders, the results from the light map shader, are mapped to the

misss_fast_shader under Data Storage. When only one map is used, the RGB channels

store RGB light intensities, and the alpha channel is used to store depth values.

Light map shaders look at each surface’s front and back from the camera perspective

and store the overall diffuse light contribution across a surface as well as the distance from

the camera so that the shader can determine the thickness of the surface. The light map is

then used by misss_fast_shader to determine subsurface scattering through a surface. This

If the Diffuse Color and Weight attribute is set to zero, the mapped shader is also affected and

will not contribute any color. In such a case, you could use this shader solely for the purpose

of internal scattering (without a mapped shader); the diffuse component has no effect. You

could then layer the misss_fast_shader with other shaders in a shader tree (using add or screen

math composite operations) that provide the diffuse contribution, such as an Oren-Nayar

shader, without the limitation of having it multiplied with the Diffuse Color and Weight

attribute. This approach can also be implemented with the more complex phenomenon

shaders when setting their diffuse contribution to zero.

642 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 642

means that light maps are essential for any subsurface-scattering effect; without them, it

won’t work because they provide critical information on the front and back surfaces’

external illumination and the depth. As cited earlier, light maps are integrated in the XSI

and 3ds Max monolithic SSS shaders and generated automatically in Maya 2008.

misss_skin_specular

The misss_skin_specular shader, whose interface in Maya is shown in Figure 14.7, pro-

vides two separate layers of specularity, shown as First Layer of Specularity and Second

Layer of Specularity. If you look at the misss_fast_skin phenomenon shader later in the

chapter, you will see that misss_skin_specular is implemented within the phenomenon

shader using the same options as shown here;

the options in each host are presented in the

same order and have similar labels. Thus, by

reviewing the misss_skin_specular shader in

this section, you are in fact reviewing the

specular options of the misss_fast_skin phe-

nomenon shader, which can be seen under

the following rollouts / tabs in each host:

• In Maya look at the misss_fast_skin_

maya shader in the Specularity rollout.

• In XSI look at the SSS_Fast_Skin mate-

rial shader on the Specular tab.

• In 3ds Max look at the SSS Fast Skin

Material (mi) material shader under 2-

Layer Specularity and Reflections.

Each layer has options that specify the glossy nature of the highlight using a Shinyness

attribute and a means to define Fresnel reflections using the Primary or Secondary Weight

and Edge Weight attributes. The shader is also used as a reflection shader, providing the

same set of attributes for reflections as with the highlights shown in the Reflections rollout.

In Figure 14.8 you can see a render using only this shader (attached to a constant shader)

demonstrating glossy reflections and highlights, two layers of highlights, and Fresnel char-

acteristics. Notice how a glossier highlight appears below a more specular highlight, corre-

sponding to the first and second layers of specularity. Also note that each layer can have a

different highlight color.

The Reflect Shinyness, Reflect Weight, and Reflect Edge Weight attributes function

exactly as with their correlating attributes found under each specular layer, so we can

briefly examine their effect on reflections and highlights. In Figure 14.9 image A the Reflect

Shinyness attribute is set to 0 providing a fully specular reflection. In image B the Reflect

nonphysical subsurface scattering ■ 643

Figure 14.7

The misss_skin_
specular shader UI

08547c14.qxd 10/24/07 4:42 PM Page 643

Shinyness attribute is increased to 15 and provides a glossy reflection. The Reflect Shiny-

ness attribute functions exactly like the DGS Shiny attribute discussed in Chapter 10. Thus,

as with the DGS shader, improving the quality of glossy reflections requires increasing the

scene sample settings.

In Figure 14.10 image A and image B the Reflect Weight property (facing angles) is set

to 0 and the Reflect Edge Weight property (glancing angles) is set to 1, providing Fresnel

reflections. The difference between the two images is in the transition from facing to

glancing angles, as discussed for various shaders in Chapter 10, “mental ray Shaders and

Shader Trees.” In this case, the Edge Width attribute (shown in the Common rollout in

Figure 14.7) defines the transition rate. In image A, the Edge Width attribute is set to 1,

A B

Figure 14.9

Specular and glossy
reflections using the
misss_skin_specular

shader

Figure 14.8

The misss_skin_
specular shader pro-

vides multiple
glossy highlights,
glossy reflections,

and Fresnel
reflections.

644 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 644

and in image B it is set to 5. As you can see, the increase in value provides for a narrower

edge and faster transition, compared to the linear transition produced by a value of 1.

These attributes function exactly as with the architectural material, discussed in Chapter 10,

where you define the reflectivity at both angles and specify a curve value to define the

transition. In addition, the Overall Weight and Edge Width attributes are used as a multi-

plier that can decrease or increase the overall reflection and highlight effect as well as the

transition (Edge Width attribute).

Because this is only a specular shader, it carries no diffuse qualities and must be mathe-

matically added to a diffuse shader. An easy way to add this shader to a network is simply

to use an Add operator to superimpose this shader on top of a diffuse shader. For exam-

ple, you can use the mental ray color mix base shader, where the diffuse shader connects

to the base color, the specular shader connects to the first color input (color 0), and the

mode is set to add.

S K I N S P E C U L A R I T Y

All these specular shader options are useful for skin shading, because they allow you to

separate skin specularity into two components. One component deals with the specularity

of skin at facing-to-glancing angles, which is typically very glossy and full of noise, because

the specular highlights break up within the skin’s microstructure, especially around

wrinkles. The second component deals with the Fresnel reflection of increasing highlight

intensity at glancing angles. Here the highlight also increases in noise, distinguishing the

You can use this powerful specular shading model in any network regardless of subsurface

scattering, providing enhanced control over layering glossy to specular reflections and

highlights.

A B

Figure 14.10

Controlling Fresnel
reflections and
falloff rate

nonphysical subsurface scattering ■ 645

08547c14.qxd 10/24/07 4:42 PM Page 645

“broken” structure of skin. Furthermore, at glancing angles specularity typically also shifts

from the warmer specular color it has at facing angles to a cooler color (unless a warm

source light, such as a fire, is in close proximity). One of the reasons for this color shift is

that the glossy specular highlight across the skin (at facing to glancing angles) reflects pri-

marily the skin’s microstructure surface, which has a warmer tint. By contrast, at glancing

angles the Fresnel effect increases in intensity, and the reflections from hair (fuzz) produce

cooler highlights whose color is not as affected by internal scattering from within the

skin’s microstructure.

For skin shading you should use specular texture maps that break the reflections and

highlights according to skin characteristics, as discussed earlier, mapping both the Primary

and Secondary Specular Color attributes and the correlating reflection attributes with high

frequency noise texture maps. Skin reflections should be very glossy so that the shader

primarily deals with environmental sampling—sampling the color influence of an envi-

ronment without drawing a distinguishable reflection across the character. Also, the global

scene anti-aliasing sampling doesn’t need to be increased significantly because you are not

trying to create a smooth glossy reflection like metal. Skin is a very rough surface with a lot

of bumpiness so that you are more likely to want a lot of “noise” in the skin (broken high-

lights), and thus you can get away with using lower sampling values while rendering very

glossy reflections.

misss_lambert_gamma

The misss_lambert_gamma shader is a light-sampling utility used to define the gamma

level and light linking of light maps. It provides control over the gamma as well as addi-

tional color multipliers such as ambient color, enabling you to add light to the light map.

Hence, this shader is a tweaking device for controlling the light map’s colors and intensity

values. All its attributes are built into the misss_fast_lmap phenomenon light map shader

and the XSI and 3ds Max monolithic SSS shaders, as discussed in detail later in this chapter.

misss_call_shader

The misss_call_shader is a pass-through shader used when creating phenomenon shaders.

In a nutshell it allows you to specify inputs in a phenomenon shader that would receive

external shaders. Hence, this shader is used to link external shaders into a phenomenon

network. It can be used to construct SSS phenomenon shaders.

misss_set_normal and Bump Mapping

The misss_set_normal shader is used to perturb the surface normals as with a bump map

using normal maps. (See Chapter 11, “mental ray Textures and Projections,” for a discus-

sion of normal maps and bump maps.) You can use this shader to drive a texture into the

646 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 646

Bump attribute of the misss_fast_shader, but it will not actually simulate a bumped sur-

face unless you use a normal bump map; instead, it applies its effect visually as a color

change, which is not the desired result with a bumped surface. Also note that even if you

use a normal map, you still need to use an intermediate bump shader to define the inten-

sity of the bump, referred to as bump factor with mental ray bump shaders. In the absence

of an intermediate bump shader, the bump value (how bumped it appears) is defined

solely from the normal map, which may suffice.

There are two world-space normal map example images, “normals_1” and “normals_2”

in the Chapter 14 folder on the companion CD, that you can test on a NURBS sphere.

Both maps were baked from the same fractal texture but just at different bump intensities;

therefore, each map will produce a different amount of bump. You’ll also find an example,

Zaxis_wall, of a normal map that was generated from a procedural shader tree; it shows

a tiled bump map with different bump intensities. This example can be tested on a

plane facing the Z axis only. Note that all these examples are world-space normal

maps, which require you to view them under the same conditions as those used to

generate them.

It’s important to note that you can use this shader for the purpose of assigning normal

maps to any shader, regardless of subsurface scattering. In Figure 14.11 you can see a nor-

mal map, labeled A, attached to the Normal attribute of the misss_set_normal shader,

labeled B. The shader is then connected to the bump input of architectural material and

assigned to a flat surface. You can see the rendered result in Figure 14.12, where I also

added a sphere in the center for comparison; it has the same mia material without a nor-

mal map. The amount of the bump in this case is solely defined by the normal map,

because the normal map connects directly to the misss_set_normal _shader.

A B C

Figure 14.11

Using the
misss_set_normal
shader to connect
normal maps to a
mia material

With the nonphysical shaders, the bump effect does not affect the subsurface layers; it affects

only the external diffuse layer.

nonphysical subsurface scattering ■ 647

08547c14.qxd 10/24/07 4:42 PM Page 647

As you can see, some of these shaders have additional purposes that can be handy.

Note that if you install the Binary Alchemy shader library, some of its shaders, such as

the fractal shader, provide a bump map output-only option. When enabled (also bump

mapping needs to be enabled), the output is in the form of a normal map, so you can

connect the BA shaders through a misss_set_normal shader to apply it as a bump nor-

mal map to any shader. The normal maps on the CD were created with the BA fractal

4D shader.

Since the misss_set_normal shader is currently made available only in Maya, the fol-

lowing section demonstrates how it can help create bump map effects in Maya, using

mental ray shaders and Maya textures.

M I S S S _ S E T _ N O R M A L B U M P M A P P I N G I N M A Y A

A practical approach for bump mapping in Maya is to use the misss_set_normal shader in

conjunction with Maya shaders or other custom mental ray shaders. In Figure 14.13 you

can see two shader trees, labeled A and B. The scene file labeled “normal bump mapping”

is available in the chapter directory on the companion CD. Both shader trees show a Maya

solid fractal (3D texture) connected to a bump 3D node. The bump3d node connects to

the misss_set_normal shader as follows:

bump3d.outNormal ➔ misss_set_normal.normal input

Under the shader tree labeled A in Figure 14.13, the misss_set_normal connects to the

misss_fast_shader as follows:

misss_set_normal.message ➔ misss_fast_shader.bump input

Figure 14.12

Rendering normal
maps using the

misss_set_normal
shader and mia

material network
shown in

Figure 14.11

648 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 648

You can apply the connection by dragging and dropping the misss_set_normal onto

the Bump attribute shown in Figure 14.6 earlier. As you can see, the shader appears

bumped by the Maya 3D texture. If you want to use this shader with other shader trees

and not the misss_fast_shader, you can use the mental ray mib_color_mix shader to apply

a similar connection (discussed in a similar context in Chapter 11, “mental ray Textures

and Projections”), as shown with the shader tree labeled B.

In the shader tree B, the misss_set_normal is applied to the Color_base attribute of the

color mix shader, and mib_illum_lambert shader is applied to the Color_0 attribute, and

Mode_0 is set to blend (both connections applied with drag and drop). The color mix

shader can connect directly to the Material input of a shading group node, as shown in the

figure. I also connected the color mix shader to an additional Lambert shader labeled C for

illustrative purposes (you can’t see the bump effect in the color mix shader preview) so

that you can see how the bump effect is influencing shading.

The Maya bump 2D and 3D nodes deal with perturbing normals, which is the objective

of bump mapping. Thus, the output from bump nodes is in the form of world-space nor-

mals. The misss_set_normal can leverage that type of data correctly for bump mapping.

As an exercise, I recommend you connect the outNormal output from the bump3d or

bump2D nodes to a surface shader’s color input and render. You will see the world-space

normals color scheme render (see Chapter 11, “mental ray Textures and Projections”), as

affected by the bump texture. (You did a similar exercise in Chapter 11 with the mental

ray vector shader to visualize surface normals.) It’s an effective way for you to test the out-

put; for example, try it with bulge, checker, and fractal shaders that connect to the bump

A

B

C

Figure 14.13

Using Maya bump
nodes to pass nor-
mal data to through
the misss_set_nor-
mal shader into two
different shader
trees

nonphysical subsurface scattering ■ 649

08547c14.qxd 10/24/07 4:42 PM Page 649

2D node and then to the surface shader. You can find good examples for all these shader

trees in the scene file.

The SSS Phenomenon Shaders
As mentioned earlier, the phenomenon shaders pack the component shaders into three

easy-to-use subsurface-scattering shaders. There are two subsurface phenomenon shaders

(with an additional displacement version) and one light map phenomenon shader.

The misss_fast_simple phenomenon shader is primarily used for most subsurface-scat-

tering effects other than skin. The misss_fast_skin shader provides special features that

better resemble skin characteristics, such as skin-like specularity (using the

misss_skin_specular shader) and three layers of light scattering. The shaders are otherwise

identical, internally relying on the misss_fast_shader component shader to define the

effect of SSS; hence, once you have mastered one shader, you’ve mastered them all.

In all cases, the misss_fast_simple and misss_fast_skin shaders are used either with the

component light map and gamma shaders discussed earlier or with the misss_fast_lmap

phenomenon shader, which includes the light map and gamma shader options internally.

With Maya you actually use both shaders (an SSS shader and light map shader) in the

shader tree, as discussed later in this chapter. With XSI and 3ds Max, the options for SSS

shaders and the light map and gamma shaders can be found in the misss_fast_simple and

misss_fast_skin SSS monolithic shaders. Essentially, the subsurface phenomenon shaders

are prepared for you as monolithic shaders, so all you need to do is assign them to a sur-

face and they will work. With Maya, if you don’t correctly connect the phenomenon light

map shader (or equivalent component shaders), the subsurface shaders will not work.

The misss_fast_simple Phenomenon Shader
Figures 14.14 to 14.16 show the misss_fast_simple shader in Maya, XSI, and 3ds Max. If you

look at options under the misss_fast_simple shader in each host, you will recognize the

misss_fast_shader options shown earlier in Figure 14.6, with slight differences in how they

are organized. For subsurface-scattering effects, the misss_fast_simple shader (in each host)

has front and back radius, weight, and color options, as well as a back depth option. These

scattering options are all derived from the misss_fast_shader internally, within the phenom-

enon shader, and thus function in the same way. All these options are discussed further in

the section “How Does It All Work?” For now, just note where they are located in your host:

• In Maya you can find these options in the Subsurface Scattering Layer rollout shown

in Figure 14.14.

Remember, if you have normal maps, you can apply them directly using the misss_set_nor-

mal shader without using Maya bump nodes, but using the bump nodes (as a normal map

bump) enables you to control the bump factor.

650 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 650

• In XSI you find them on the Scattering tab shown in Figure 14.15.

• In 3ds Max you can find them in the Diffuse Sub Surface Scattering rollout shown in

Figure 14.16.

External Shading

As discussed earlier, a Lambertian shading model is used for the diffuse color contribu-

tion, implemented with diffuse color and weight options in each host. A Phong shading

model is used for specularity, and that is controlled with the specular color and shinyness

options. The misss_set_normal shader is applied internally within the phenomenon

shader tree and provides a connection for normal map bump mapping using a bump

option without a need to pipe the normal map or bump shader through a misss_set_normal

shader, as discussed earlier. These attributes are located in each host as follows:

Maya In Maya you can find the diffuse attributes under Unscattered Diffuse Layer. The

specular attributes are in the Specular Layer rollout, and a Bump attribute is in the Bump

Shader rollout. Figure 14.14 shows all of these. Note that to use the Bump attribute you

simply attach a Maya 2D bump node to the Bump attribute as discussed earlier.

Figure 14.16

The 3ds Max SSS Fast Material (mi)
shader UI

Figure 14.15

The XSI misss_fast_simple shader UI
showing the Scatter tab

Figure 14.14

The Maya misss_fast_simple_maya shader UI

nonphysical subsurface scattering ■ 651

08547c14.qxd 10/24/07 4:42 PM Page 651

XSI In XSI you can find the diffuse properties under the

Surface tab ➔ Diffuse section and the specular properties

under the Specular section, both shown in Figure 14.17.

Because this is a a phenomenon material, it has a bump

input, shown in Figure 14.5, where you can simply

attach an XSI bump shader.

3ds Max In 3ds Max you can find the Diffuse parame-

ters in the Diffuse Sub Surface Scattering rollout and

the specular parameters in the Specular Reflection roll-

out. In the first SSS Fast Material (mi) Parameters roll-

out, you can find a Bump shader parameter where you

simply map a bump map as with all 3ds Max shaders.

Figure 14.16 shows all of these parameters.

Additional Options

The additional options reviewed here are key to generating good results with subsurface

scattering. After you finish reading the chapter, you may want to quickly review these

options and experiment with them in your host application.

L I G H T C O N T R I B U T I O N

The ambient color option is used to add light to the overall external light influence, so it is

added with the diffuse component just as with other shading models.

An overall color option acts as a color multiplier for all three color layers (diffuse, front,

and back). Thus, the overall color affects the scattered and unscattered layers equally and

can be used as an overall scaling factor for the color values across the surface. The image

“Cardboard Subsurface Scattering” in the Chapter 14 folder on the CD utilizes texture

and bump maps for several of the misss_fast_simple shader options. It shows the effect of

a worn-out cardboard box that is placed on a source light, showing localized light trans-

mission through the surface. In the case of the overall color, the texture map is used to

scale the shader’s influence across the surface, similar to a diffuse map in other shading

networks. You might consider mapping it with an occlusion shader or grayscale shader to

reduce the subsurface scattering in dense areas across the model and particularly in areas

that exhibit indentations.

The effect of light is not as pronounced in areas of indentation, and thus using a texture map

to reduce the lighting effect within the indentations is warranted. You should use one global

texture with the overall color and then use separate per-layer textures for each layer that also

has variation in color.

652 ■ chapter 14: Subsurface Scattering

Figure 14.17

The XSI misss_fast_simple shader
UI showing the Surface tab

08547c14.qxd 10/24/07 4:42 PM Page 652

C O N T R O L L I N G S C A L E A N D F A L L O F F

A Scale conversion option is used to convert units of measurement to adjust for scale (vol-

ume). It is used to convert from scene units to a target unit. For example, to convert from

inches to feet (12 inches = 1 foot) specify a value of 0.083, which is the conversion factor

from inches to feet. You can find several conversion calculators online; you can find one

of them here:

www.onlineconversion.com/length_common.htm

You can use the Scale conversion option “creatively” to control the distance-based

options scale using a single option rather than adjusting each independently. It divides all

the distance-based option values by the specified factor, which includes the front and back

radius and the back depth options. In Figure 14.18, also placed in the color gallery and on

the CD labeled “Subsurface Scale and Falloff”, you can see the effects of changing the

Scale conversion from a value of 1 in image A to a value of 10 in image B. As you can see,

image B is brighter and shows more through scattering where you see more translucency.

Figure 14.18 has a green color for front scattering and a red color for back scattering. In

the color version you will notice that image B also appears predominantly red because the

change in scale permitted more back scattering to penetrate. Since I increased the scale

conversion to 10, I effectively changed the measurement for distance to one tenth of that

shown in A, making the volume (distance through the surface) smaller.

A

B

Figure 14.18

The effect of scale
conversion on sub-
surface-scattering
depth

nonphysical subsurface scattering ■ 653

08547c14.qxd 10/24/07 4:42 PM Page 653

An additional Falloff option is used to further define how light transitions from the

sample point to the extent of a given radius distance, a topic discussed in more detail in

the following section.

S S S S A M P L I N G

A Samples option is used to improve the quality of the SSS effect during rendering. It

defines how many samples will be taken from the light map during rendering; higher val-

ues are used to eliminate artifacts caused by the subsurface layers. Specify values in powers

of 2 that should range from 16 to 128. Typically a value of 32 is sufficient for most purposes.

In Figure 14.19 you can see the same surface using 16 samples (image A) and 64 (image

B). Even in grayscale, you can see that along the side of the surface in B the values appear

brighter than in A, demonstrating more subsurface scattering. Thus, an increase in sam-

ples not only removes artifacts such as grain, but it also enhances subsurface scattering.

C O M P O S I T I N G T H E L A Y E R S

Once the external and internal light scattering influences have all been calculated, they are

combined using either a regular add operation (a+b) or a screen compositing operation

(a+b – (a×b)). On the CD you can find the “Nuke Compositing” article from the HDRI

3D magazine that discusses the topic of math compositing in detail. When screen com-

positing is enabled, it essentially prevents overexposure by assuring values don’t easily

exceed a value of 1, if initially each individual component is not greater than 1, including

A

B

Figure 14.19

Increasing the sam-
ples from 16 (image

A) to 64 (image B)
improves the quali-

ties of subsurface
scattering.

When you are satisfied with all the settings and think the object should appear a bit smaller

to show more scattering, or vice versa, rather than change each option’s value, just scale the

surface up or down using the scale conversion option, which is more manageable.

654 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 654

the light source. Note that different light intensities in the scene and external shading

influences also weigh in on the final result.

H O S T A P P L I C A T I O N O P T I O N S

The options discussed earlier are located in each host application as follows:

Maya In Maya you find the Ambient and Overall Color attributes in the Unscattered Dif-

fuse Layer rollout and the Scale Conversion, Falloff, and Screen Composite attributes are

in the Algorithm Control rollout, as shown in Figure 14.14. The Sample attribute is in the

Lightmap rollout, where you also see a light map texture file connected to the Lightmap

attribute, supplied by the misss_fast_lmap shader as discussed earlier and in more detail

later in this chapter.

XSI In XSI you find the Ambient Colour and Overall Colour Multiplier properties on the

Surface tab, shown in Figure 14.17. The Scale (scale conversion) property is located on the

Advanced Settings tab ➔ Miscellaneous ➔ Scale property. On the same tab when using the

SSS_Fast_Skin material (it’s not available with the SSS_Fast_Simple material), you will

find the Use Screen Compositing for Colors property. On the Scattering tab, the Sample

Falloff (falloff) property is on the Front Scattering section, and the Lightmap Samples

property is in the Scatter Controls section, both shown in Figure 14.15.

3ds Max In 3ds Max you find the Ambient/Extra Light and Overall Diffuse Coloration

parameters in the Diffuse Sub Surface Scattering rollout. The Number of Samples param-

eter (set to 64) is in the first rollout, and the Scale Conversion Factor, Falloff Strength, and

Screen (soft) Compositing of Layers parameters are in the Advanced options rollout, as

shown in Figure 14.16.

The Shader Math

When rendering, this shader composites the final result based on either screen composit-

ing or an add function, as discussed earlier, depending on whether the screen composite

option is enabled. I recommend using screen compositing for better results. The way this

shader mathematically adds all the components is as follows:

1. The front and back layers are multiplied against the light map values to determine

their influence on subsurface scattering.

2. The results from calculating the color values for the diffuse (ambient + diffuse), back,

and front scattering components are added together based on the screen compositing

option. If bump mapping has been applied, it will affect only the diffuse and specular

color components.

3. The overall color is multiplied against the result of combining the three color compo-

nents. When set to white, it has no effect because all the RGB colors (per layer) are

multiplied by a value of 1.

4. Specular color is then added into the final result, providing the specular highlights.

Again, it is affected by the bump map if present.

nonphysical subsurface scattering ■ 655

08547c14.qxd 10/24/07 4:42 PM Page 655

As cited earlier, both misss_fast_simple and misss_fast_skin are used with light maps.

The light map provides even more options for adjusting how the light maps are rendered

and thus also influence the final result. All in all, there are several ways to tweak the final

result. Light maps are discussed in more detail shortly.

How Does It All Work?
When preparing your scene for subsurface scattering, you must consider how mental ray

will calculate the results. Different lighting scenarios, scene scales, light intensities, and

indirect illumination all influence the final result. All the light contributions are balanced

against the shader settings for internal and external shading.

External Scattering

Figure 14.20 examines how nonphysical subsurface scattering works. The diffuse and

specular shading components occur at the top level of the surface, externally as shown in

the figure under “Diffuse to specular light reflection.” Another component is bump map-

ping, which also occurs only at the top level of the surface, and hence has no influence on

internal layers. You may also use displacement mapping with these shaders, which influ-

ences the different subsurface layers, external and internal, as it generates additional

geometry during rendering (see the CD excerpt, “Surface Approximation Methods”). See

the color gallery image labeled “SSS Displacement Mapping.” It shows simple primitive

cylinders that are displaced with a procedural texture, demonstrating how the SSS effect

influences the displaced geometry.

Back light

Diffuse and specular
light reflection

Front light and
camera perspective

Front Back

Back depth

Scatter radius

Figure 14.20

The mental ray sub-
surface layers

656 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 656

In Maya and XSI, you simply connect the displacement to the displacement input of

SSS material (Maya shading engine using the Displacement Mat. attribute and in XSI

using the SSS_Fast_Simple displace input shown in Figure 14.5). In 3ds Max you use the

SSS Fast Skin Material + Displace (miss_fast_skin_d) shader to apply displacement map-

ping under the shader’s parameters.

Internal Scattering

SSS shaders simulate light transmission that penetrates a surface, front and back, reflecting

light internally and thus providing additional diffused light reflection beneath the surface’s

top level. The options in the SSS shaders labeled with the terms front and back always relate

to the internal layers of the surface. The front layer is used for diffuse light transmission

penetrating the front of the surface from the camera’s point of view, as shown in Figure 14.20.

The back layer refers to diffuse transmission that occurs from light penetrating the back

of the surface toward the camera, hence illuminated by backlighting. Backlighting is then

seen through the surface front. Thus front and back layers are relative to the camera’s

perspective.

It is important to note the back layer does not reflect light that transmits through the

front layer and reflects from the back layer (toward the front) but instead reflects only light

that transmits through the back side of the surface, as shown in Figure 14.20. An example

would be a strong backlight illuminating a character causing its ears to appear reddish

when viewed from the front. Thus, both front and back layers are based on the influence of

source lights on their side of the surface. In this way, the nonphysical shader simulates sub-

surface scattering without actually calculating any internal reflection of bounced light. For

this reason, light maps are used to provide information on the irradiance across the surface.

Next you’ll look at the front and back Color, Radius, and Weight options, as well as the

additional Back Depth option, to see how they operate while referencing the illustration

shown in Figure 14.20 and some sample renders.

F R O N T A N D B A C K C O L O R A N D W E I G H T

The Weight option acts as a multiplier applied to the Color option’s RGB value of each

layer (front and back), providing control over color and intensity just as with diffuse color

and weight. If the weight for either scattering layer is set to zero, that layer will not affect

the render. The weight is used to balance how much each layer is affected by source lights

that are aimed in its direction (front or back). If you have only backlighting in the scene,

the front layer will not contribute any reflected light, because it does not receive any light.

Thus, each of the layers, as well as the diffuse layer, can be perceived as shading models

where the color and weight define their diffuse color and reflection intensity.

The front and back options in each host application are presented under the “misss_fast_sim-

ple” section earlier, illustrated in Figures 14.14 to 14.16.

nonphysical subsurface scattering ■ 657

08547c14.qxd 10/24/07 4:42 PM Page 657

Once these layers have been calculated, they are added to the color from the diffuse

layer based on each layer’s weight and whether screen compositing is enabled. A layer with

higher weight values will show more of its color. Thus, by balancing their weights, you also

balance how much of the layer’s color appears in the render. This should not be confused

with balancing how much light can transmit through the surface, a topic discussed shortly

in the “Back SSS Depth” section.

Aesthetics

The front layer acts as a shallow scattering layer that enhances standard shading models by

providing you with a means to render much more natural-looking surfaces. The back

layer adds to that effect by allowing you to simulate translucency. That is, the back layer

allows you to reveal light and surfaces that are placed behind the SSS surface, showing

through scattering. With surfaces that need to exhibit deep scattering with multiple reflec-

tions in a dense medium, the only solution is the physical shader.

The color section includes various examples of subsurface scattering. In “SSS Displace-

ment Mapping,” the displaced surfaces show a nice level of shallow scattering in a matte

surface. This sort of render is impossible if you don’t use SSS effects or have a BSSRDF

shader as discussed at the beginning of the chapter. Another practical example is with

marble tiles, discussed later (“The Marble Shader Tree”).

Using Lights to Control Transmission

Lights in the scene can be used as multipliers of the shader values for both internal layers;

hence, a stronger light will greatly increase the scattering influence for the side to which

it’s applied. This means you can achieve a more “through” scattering either by adjusting

the shader values, such as increasing the back layer’s weight value, or by increasing the

backlight intensity.

As discussed later in this chapter, you can select which lights affect the shader. In that

context, aside from the mental ray shader option (Mode) that is used to specify which

lights influence a shader, in each host there are host-specific tools that can be used to

select which lights affect a surface. By doing so, you can manually adjust the effect of sub-

surface scattering using a light that affects only the SSS surface. In this way, you can increase

its intensity significantly to show more through scattering without influencing other sur-

faces in the scene, such as the floor.

Even the simplest surfaces gain a great deal of realism when using SSS effects.

For front and back layers you can use weight values that exceed 1, providing more intense

subsurface scattering.

658 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 658

F R O N T A N D B A C K R A D I U S

The Radius option for both front and back layers defines the distance light will scatter

from each point of contact, as illustrated in Figure 14.20. For each sample point, light

values from the light map are sampled within that given radius. Higher sample values

will acquire more color values and provide better sample results, as illustrated with the

sampling example in Figure 14.19. With surfaces that exhibit a lot of curvature and back

scattering, such as a sphere, increasing the radius will push the back layer’s scattering color

forward, literally wrapping around the sphere. Thus, lower radius values can provide for a

finer effect, and higher values can be used to exaggerate the effect.

In Figure 14.21 you can see the same sphere rendered three times. The diffuse and front

layer color and weights are set to zero, so they have no effect. The back layer color is set to

white, and the weight is set to 1. In this way, you can examine the effect of radius with

back scattering only.

In image A the radius value is set to 50. As you can see, the white color from the back

covers most of the front side of the sphere. In image B the radius value is 25, and you can

see that the center of the sphere is darker, because the back scattering doesn’t spread as far.

In C the radius is set to 10, in this case demonstrating the other characteristic of radius,

which is the “sharpness” of the effect. You can see that from images A to C the effect not

only spreads less but also increase its sharpness along the sphere (the radius outline), and

thus, with a smaller radius you will see more detail when using highly detailed models.

Why didn’t the white color recede farther back toward the top of the sphere? That’s

because of the back depth value. Basically in label C you can see how far light penetrates

through the sphere based on the depth, as discussed next. Thus, at the max transmission

depth, lower radius values will not pull the color back; it will just further sharpen the effect.

With large radius values, you will need to increase the samples to remove grain. For example,

in Figure 14.21 image A, I used 256 samples for rendering; in images B and C, which have

smaller radii, I set Samples to 64.

A B C

Figure 14.21

Controlling the
spread and sharp-
ness of the scatter
effect using the
Radius options

nonphysical subsurface scattering ■ 659

08547c14.qxd 10/24/07 4:42 PM Page 659

The Falloff Option

The Falloff option, presented earlier for the host applications, defines how light transitions

from the sample point outward within the radius region of effect. Thus, it is a radius sub-

component that affects only the front layer. The higher the value, the sharper the falloff

will appear along the outer edge of the radius. Lower falloff values, such as 1, provide a

more linear gradation from the center of the radius to its outer edge. In Figure 14.22 you

can see a sphere that is set up to show only front scattering. In this case it’s a top-down

view that examines the transition from the front to the back (bottom to top of the figure)

using a large radius. In image A you can see that the transition is linear, because I set the

falloff option to 1, and in image B the falloff is set to 15, where you see more light fill the

radius region before it begins to transition toward the edge of the radius. Thus, this value

sets a rate of falloff for the front layer’s scattering along the radius distance.

B A C K S S S D E P T H

The Depth option (back depth) refers to a distance in scene units to which “through” scat-

tering will be visible, as illustrated earlier in Figure 14.20. This means it defines the maxi-

mum distance scattered light from the back layer will appear through the front layer (facing

the camera). Any distance beyond the depth value will not show “through” scattering. In

Figure 14.23 you can see two renders of spheres, where the depth in image A is 10 and the

depth in image B is 150. As you can see, in image B the spheres in the back penetrate

The falloff option affects only the front layer’s radius falloff.

A B

Figure 14.22

Examining the effect
falloff has on the

front radius color
transition from the

center toward the
outer edge. In image

A the value is set
to 1, and in image B

the value is set to 15.

660 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 660

through the frontmost sphere. However, in A they are not seen, because the depth distance

is too low for them to transmit through the back. All we see is the front scattering influence,

which appears as a darker color in the grayscale image.

As these effects are more pronounced in color, if you look in the color gallery at the

image “Back Scatter Transmission,” you will see the same figure with an additional in-

between step. In the color version, image A has a depth of 10, image B has a depth of 50

(the additional step), and image C has a depth of 150. The spheres share the same SSS

shader, in which the front layer’s color is set to green with a weight of 0.8, and the back

layer’s color is set to red with a weight of 1.

As you can see in image A, all the spheres appear green, showing only front-layer scat-

tering. In image B you can see how the green and red colors begin to blend based on the

front and back layer colors. In C you will notice that the spheres predominantly exhibit

back scattering, showing much more orange. The higher the depth, the more pronounced

the back scattering effect; however, it also depends on the weights set for each color.

A

B

Figure 14.23

The effects on
“through” scattering
when changing the
back SSS depth
option

nonphysical subsurface scattering ■ 661

08547c14.qxd 10/24/07 4:42 PM Page 661

Notice that the two back spheres occlude some of the backlight from reaching the front

sphere. You can tell by looking at the areas along the front sphere, where you see the back

spheres’ shapes transmit through the front sphere. Those areas appear green because those

back spheres are blocking the backlighting from passing through them and reaching the

front sphere, essentially outlining their shapes through the front sphere. Thus, you can see

how the front layer color is more predominant in those areas where backlighting is occluded.

B A L A N C I N G T H E O P T I O N S

Tweaking these values is a balancing act. Consider first that a weight of zero will force a

color to be negligible. For example, a Diffuse weight of zero and Overall weight of 1 will

show only the scattered light effect, assuming ambient and specularity are set to black.

Also consider the following points when fine-tuning SSS effects:

• Fine-tuning SSS is a trial-and-error process with each surface. There is no “magic”

value that always works; you need to experiment by first finding the right values and

then enhancing the shader. You should start by setting the diffuse and front layer

weights to zero and then work solely on the back layer. This process has the following

advantages:

• It provides a means to verify that the back light and back layer are providing

“through” scattering. In the same context, Maya light maps may fail based on a

poor setup; working in this way enables you to verify that the shader is operational.

• By first working on the back layer, you can find the right settings for depth and

radius, which become harder to fine-tune after you’ve texture-mapped the differ-

ent components. Thus, first find the right values and then continue to enhance

the shader.

• Follow the same process described earlier with the front layer after reducing the back

layer weight to 0.

• More weight on the back layer instead of the front will make the back layer more pro-

nounced (depending on the back light’s intensity); as you increase the light’s inten-

sity, you will see more transmission through the surface.

• Increasing the sampling values will remove grain and enhance the subsurface effect by

using more data from the light map.

• Final Gather (Chapter 13) works well with SSS effects; remember to enable the option

in the SSS shader, as discussed in the following section.

• As discussed earlier, the scale conversion changes the way measurements are handled

for SSS effects. Clearly it has a significant effect on the front and back radius and back

depth options. If the values are not sensitive enough, you can increase the scale con-

version to mimic a smaller volume that will show more “through” scattering.

662 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 662

The Misss_Fast_Skin Phenomenon Shader
The misss_fast_skin phenomenon shader is an extension of the misss_fast_simple shader.

It provides an additional layer of front scattering to simulate light that scatters within

deeper layers of flesh, as illustrated in Figure 14.24. This shader handles three front-based

layers:

• The skin’s external diffuse and specular character, such as oily in nature.

• A shallow layer of scattering within the skin (epidermis).

• A deeper scattering within the flesh (dermis).

Back light

Camera/viewer
direction (font)

Front light

Front external layer
(diffuse and specular)

Epidermis
Layer

Dermis
Layer

Back
Layer

Subdermal
layers

Epidermal
scatter radius

Subdermal
scatter radius

Back
scatter radius

Back
scatter depth

Figure 14.24

The misss_fast_skin
shading compo-
nents for skin
shading

In host applications, particularly 3ds Max, the default settings may not suffice to show any

subsurface scattering at all. You should significantly increase the radius and depth values

until you see the SSS effect; then work your way down. In 3ds Max I had to increase the

default radius and depth values significantly to around a value of 50 before I saw the effect

appear while testing a scene.

nonphysical subsurface scattering ■ 663

08547c14.qxd 10/24/07 4:42 PM Page 663

These layers account for front lighting only and are not affected by backlighting. In

addition, as with the misss_fast_simple shader, you have the same back layer that provides

through scattering. As you can see in the figure, the front external layer (diffuse and spec-

ular) handles external shading characteristics using diffuse color and weight, as well as the

misss_skin_specular component shader options discussed earlier in this chapter.

The Epidermis and Dermis layers, which are subdermal layers, provide the appearance

of internal scattering based on the front light’s color and intensity, as discussed with the

front layer in the previous section. Both have a radius

option that depicts a 2D radius along the surface front.

Thus, the radius does not expand vertically; it expands

only horizontally along the surface. Remember, these

shaders don’t physically simulate internal scattering;

instead, they use light map values to blend color values

across a surface using, in this case, the epidermis, der-

mis, and back layer scatter color, radius, and weight

options.

As you can see, the back scatter depth defines the

distance required to transmit backlighting through the

surface. Note that backlighting does not affect the

epidermis and dermis (deep flesh) layers as with the

simple shader.

Figure 14.25 shows the misss_fast_skin shader options in 3ds Max; they are the same in

each host. As you can see, they look similar to the simple shader’s options with the differ-

ence that you don’t see any reference to a “front.” The equivalent in this case consists of

two layers (epidermis and dermis) that are labeled Epidermal (Top) Layer and Subdermal

Layer Color, Weight, and Radius options. You also see the Back Surface (Through) Scatter

layer options, which provide the “through” scattering. As noted earlier, all these options

function exactly as with the front and back layers with the simple shader.

You can also see in the figure a rollout labeled 2-Layer Specularity and Reflections. It

provides all the settings you need to control two layers of specular highlights and environ-

mental/scene reflections, as discussed earlier in this chapter with the misss_skin_specular

component shader, where you looked in detail at the characteristics of skin specularity.

The topic of preparing textures for skin is beyond the scope of this book and is covered in

several online resources. Note that the Ballistic Publishing Character Modeling book has some

great examples for different types of skin textures, how to prepare them, and for what pur-

pose they are used. Such textures should be incorporated with all the color and weight

options in the misss_fast_skin shader.

664 ■ chapter 14: Subsurface Scattering

Figure 14.25

The misss_fast_skin
shader options seen

in 3ds Max

08547c14.qxd 10/24/07 4:42 PM Page 664

The next section shows how to control all the options associated with light map and

gamma shaders.

Light Maps and the Light Map Phenomenon Shader
The misss_fast_lmap shader, shown in Figure 14.26, is used for light

baking light maps using a mental ray texture node. The misss_fast_

lmap shader is a combination of the misss_lightmap_write and

misss_lambert_gamma component shaders discussed earlier. With

the misss_fast_lmap shader, both depth and irradiance values are ren-

dered into a single light map file, labeled mentalrayTexture1 in Figure

14.26 (connected to the Lightmap attribute), utilizing the RGB chan-

nels for irradiance and the alpha channel for depth. The light map

stored with the mental ray texture shader (an image file) is connected

to the SSS shaders for rendering SSS effects as shown in Figure 14.27,

which is a subsurface shader tree in Maya.

In Figure 14.27 you can see that the mental ray texture labeled B connects to the

misss_fast_lmap shader’s Lightmap input labeled A. You also see that the same mental ray

texture connects to the misss_fast_simple shader (C) Lightmap attribute (shown con-

nected in Figure 14.14). The misss_fast_simple shader is connected to a mental ray mate-

rial as an illumination shader, as shown in Figure 14.27 and Figure 14.28, which is a

mental ray material. You also see the misss_fast_lmap shader connected to the Light Map

Shader input of the material. Thus, both shaders are connected as independent compo-

nents of a mental ray material, just as with volume shaders, environment maps, and pho-

ton shaders.

A

B D

C

Figure 14.27

A SSS shader tree
shown in Maya

nonphysical subsurface scattering ■ 665

Figure 14.26

The misss_fast_lmap
phenomenon light
map shader

08547c14.qxd 10/24/07 4:42 PM Page 665

Therefore, when rendering SSS effects, you are actually baking light maps before the

rendering process can commence. Notice that the light map shader does not connect

directly to the SSS shader; instead, the result of baking a light map (the mental ray texture)

is connected to the SSS shader. Hence, both SSS and light map shaders are independent of

each other. Essentially, you can divide the process of using light maps with SSS shaders

into two stages:

1. The first stage is accomplished with a light map phenomenon shader or by using a

combination of the light map write and gamma shaders that sample the light contri-

bution across the surfaces, front and back.

2. The second stage uses the image generated (Figure 14.27 image B) with the light map

shader as a texture file assigned to the SSS shader.

With XSI and 3ds Max you don’t need to concern yourself with this setup because the

component light map and gamma shaders are applied internally within the SSS mono-

lithic shaders, as discussed earlier. With Maya, you must apply these connections as illus-

trated in Figures 14.27 and 14.28 and further discussed in the sidebar “Creating SSS

Shaders in Maya.” Let’s review the misss_fast_lmap shader options shown in Maya and

then identify those options (from the component shaders) in XSI and 3ds Max SSS

shaders.

SSS light maps do not require a surface to have unwrapped UVs, and thus light mapping (in

this case) does not depend on surface UVs. By contrast, baking light maps such as those for

indirect illumination require unwrapped UVs so that you can use them as textures. See the

mental ray with Maya texture baking article on the CD. It covers techniques and concepts

true to any host application.

Figure 14.28

The Maya mental ray
material shows the
SSS and light map

phenomenon
shader connections.

666 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 666

T H E M I S S S _ F A S T _ L M A P S H A D E R O P T I O N S

The misss_lambert_gamma contribution to the misss_fast_lmap shader is shown in the

Lightmap Sample rollout in Figure 14.26. It provides control over additional light contri-

bution, light map gamma, and light linking (shown in the Light Linking rollout).

The Ambient color attribute adds ambient light to the light map itself (when generating

light maps); note that this is different from the ambient color option discussed earlier

with the misss_fast_simple shader, which is added with the diffuse color, determining the

external light influence across the surface. In the same context, the Include Indirect Light-

ing attribute will account for the effect of Final Gather (if enabled) in light maps.

Gamma Correction

The Diffuse Gamma Curve attribute will apply a gamma correction to the light map. See

the section “Gamma Correction” in Chapter 3 for an explanation on gamma. Creatively

speaking, it has the effect of flattening the light when using values less than 1, and values

greater than 1 will increase contrast, as with gamma correction, which is applied globally

to a render. Hence, gamma correction with light maps is used in the same way as with ren-

dering to help tweak the gamma curve used while storing light values in a light map file.

Note that these values typically should not exceed a range between 0.4 and 1.6.

Light Modes

mental ray light linking is applied with a Mode option. You typically find the “raw” mode

option with custom mental ray shaders, mostly from online resources. Shaders imple-

mented in host applications either offer more user-friendly options to link or detach lights

from a surface or omit the option altogether.

With mental ray shaders, when you do see the Mode (or similar) option, a value of 0

uses all the lights in the scene, a value of 1 will use only the lights in the light list, and a

value of 2 will use only lights that are not in the light list. Thus, if you select 1 or 2, you

need to connect lights to the shader light list. With SSS shaders, XSI and 3ds Max handle

it internally, linking all the lights that are assigned to affect the SSS surface based on the

lights you added to the light list.

In some previous versions of Maya, you can simply drag and drop the lights onto the Lights

rollout ➔ lights[0] attribute, which is a light list array.

You should choose to apply Final Gathering influence when enabled; it improves the quality

of SSS effects.

nonphysical subsurface scattering ■ 667

08547c14.qxd 10/24/07 4:42 PM Page 667

The misss_lightmap_write Options

The misss_lightmap_write attributes are implemented on the Lightmap Write tab shown

earlier in Figure 14.26. They provide an input for the light map file as well as control over

a Scatter Bias attribute. The shader also handles another option derived from

misss_lightmap_write, namely, the scatter group, which is not shown in Figure 14.26

because it is generated automatically with this light map phenomenon shader. The scatter

group is particularly important and discussed in more detail for each host; it is available in

the XSI and 3ds Max SSS monolithic shaders.

Scatter Bias is used to depict whether the light map will favor front or back scattering.

Values less than zero favor back scattering (“through” scattering), and values greater

than zero favor front scattering. Thus, the Scatter Bias attribute will affect how the

misss_fast_simple front and back layers are balanced based on values that range from –1

to 1, where values closer to zero are recommended. It applies its effect while generating the

light map file, not during the render stage, and hence is a light map-related feature.

In Figure 14.29 (available on the CD as “Subsurface Bias”), you can see the difference

of using a negative bias value of -0.5 (B) and a positive value of 0.5 (A), where a stronger

light is present behind the cylinders, displaying more through scattering. As you can see in

image A, they appear darker and not as translucent as with B.

A

B

Figure 14.29

The effect bias
has on subsurface

scattering

668 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 668

XSI and 3ds Max Light Map Options

In the next sections, I’ll briefly point out the light map options in XSI and 3ds Max and

then cover how you use them in the following section. In Maya you have already seen

these attributes in the figures presented earlier.

X S I

In XSI under the SSS_Fast_Simple material or the skin

material you can find the light map and gamma shader

properties on the Advanced Settings tab, as shown in

Figure 14.30.

The Indirect Illumination ➔ Radiance property

defines the effect Final Gather (FG) will have on the

surface when FG is enabled. It’s a simple color multi-

plier so that as you decrease the color value from

white, the Final Gather effect will decrease across the

SSS surface. In the Lightmap section you can see the

Group Name property text box, which is used to specify a scatter group name, as discussed

further in the following section. The Size as % of Output property defines the ratio between

the render resolution and the light map file; you should use values that range from 50 per-

cent to 80 percent. The Sampling Gamma property refers to the gamma correction dis-

cussed earlier. Note that the Scale property refers to scale conversion as discussed earlier; it

is part of the misss_fast_simple shader properties, not the light map properties.

On the Scattering tab you will find the Bias property, which implements the light map’s

scatter bias, as discussed earlier.

3 D S M A X

In 3ds Max under the SSS Fast Material shader or the skin materials you can find the light

map and gamma shader parameters in the SSS Fast Material (mi) Parameters and

Advanced options rollouts, as shown in Figure 14.31.

Under SSS Fast Material (mi) Parameters, the Lightmap Size [in % of Render Size]

parameter defines the ratio between the render resolution and the light map file; use values that

range from 50 percent to 80 percent. The Scatter group

parameter text box is used to specify a scatter group

name, as further discussed in the following section.

In the Advanced Options rollout, the Lightmap

Gamma Curve parameter implements gamma cor-

rection as discussed earlier. The Scatter Indirect Illu-

mination parameter checkbox is used to enable Final

Gather effects with the SSS shader as discussed ear-

lier. The Scatter Bias [+/- 1.0] parameter refers to the

light map’s scatter bias, also discussed earlier.

nonphysical subsurface scattering ■ 669

Figure 14.30

The light map
and gamma
properties for the
SSS_Fast_Simple
material in XSI

Figure 14.31

The light map and
gamma parameters
in the SSS Fast
Material shader
in 3ds max

08547c14.qxd 10/24/07 4:42 PM Page 669

Light Occluding Surfaces

Figure 14.32 shows an example of a sphere that contains additional primitive shapes that

occlude light passing through the sphere. In such cases you may not want to use the SSS

shader for internal surfaces, only the external SSS surface. For example, in this case I don’t

want to calculate SSS effects for the primitive shapes inside the sphere; I instead apply a

Lambert shading model to them. To guarantee that internal surfaces influence the SSS

effect, regardless of their shader, those surfaces must affect the light map. To clarify, the

light map must consider all the surfaces that influence light scattering, and thus the inter-

nal surfaces must be connected to the light map shader so they are “seen” during the light

map generation phase. Again, the illumination shaders for these additional surfaces are

irrelevant. We are not interested in showing their SSS character; they are used only to

block light from passing through the surface.

Internal surfaces need to conform to one of the following conditions, depending on the

host application, so that the light map considers them during the generation phase:

• They are assigned with the same SSS (and light map shader in Maya) used for the

external surface (less desirable).

• They are connected with the same misss_fast_lmap shader while using different illu-

mination shaders (available only in Maya, as shown in Figure 14.33).

• They are assigned to the same scatter group in XSI and 3ds Max but are assigned with

different SSS shaders. The same is true when using the light map and gamma compo-

nent shaders in Maya, which have the scatter group attribute.

Figure 14.32

Using internal sur-
faces to occlude

light from transmit-
ting through the SSS

surface

You can use this technique, for example, to render an X-ray image using internal surfaces that

represent bones.

670 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 670

Consider the steps in the following sections with each host application when you want

to create internal occluding surfaces.

M A Y A

With Maya you need to connect the same misss_fast_lmap light map shader (used with

the subsurface shader) to the occluding surface’s shading group’s Light Map input. Follow

the same workflow for creating and assigning light map shaders presented earlier (and fur-

ther discussed in the “Creating SSS Shaders in Maya” sidebar). Thus, the only relevant fac-

tor is that the phenomenon light map shader is connected to their individual or shared

shading group nodes as well as to the SSS shading group node, as shown in Figure 14.33.

As you can see in the figure, the misss_fast_lmap light map shader (A) connects to

both shading groups B and C. The shading group B is connected with a Lambert shader

(D) and thus used for the occluding surfaces. The shading group C is connected with the

misss_fast_simple SSS shader (E), which is used for the external SSS surface and thus also

assigned with the mental ray texture shown connected to both the miss_fast_lmap and

misss_fast_simple shaders (A and E).

A

D

E

B

C

Figure 14.33

Connecting the
misss_fast_lmap
light map shader to
different shading
groups

Specifying scatter groups enables mental ray to use several light map shaders (light map tex-

ture files) to provide adequate resolution and coverage for complex surfaces. Thus, the scat-

ter group links the surfaces that influence each other together so that the surfaces influence

light map files assigned to different surfaces.

nonphysical subsurface scattering ■ 671

08547c14.qxd 10/24/07 4:42 PM Page 671

X S I A N D 3 D S M A X

Both XSI and 3ds Max have the same scatter group name option presented earlier and

shown in Figures 14.30 and 14.31. You may assign an SSS shader (the misss_fast_simple or

skin phenomenon shaders) to the external surface and a different SSS shader to the inter-

nal surfaces. For the internal surfaces, you can set the front layer and back layer weights to

zero so they don’t receive any internal shading. However, for them to influence the light

map, you need to set both SSS shaders’ scatter group names with the same name. Thus,

the scatter group defines which group of surfaces influences the light map or several light

map files as noted earlier. If you set both scatter groups with the name A, then the internal

surfaces will affect the SSS effect. However, if you assign the external surface the name A

and the internal surfaces the name B, those internal surfaces will not occlude any light

from passing through the external SSS surface.

Note that you must use the SSS shader for the internal surfaces since you don’t have

access to the light map shader. Therefore, you can’t choose to connect it to a material

along with a simple shading model as with the Maya example earlier. You can apply the

light map connection manually if you import the “raw” SSS shaders into your host appli-

cation; however, the approach presented here accomplishes the same purpose. The only

time it may not be adequate is if internal surfaces themselves have a custom shader that is

aimed at showing specific external shading characteristics through the SSS surfaces, which

becomes harder to accomplish when using the SSS shaders for internal surfaces.

C R E A T I N G S S S S H A D E R S I N M A Y A

Maya connections for SSS are more complex than with XSI and 3ds Max. Basically you need to generate

a simple shader tree that includes a SSS shader and a light map shader. You have already seen the

shader tree and its connections in Maya in Figures 14.27 and 14.28. In Maya 2008, when you assign a

surface with one of the SSS shaders, it automatically generates a shader tree with the SSS lightmap

shader and lightmap texture for you. It also will ask you which lightmap shader you want to use when

more than one exist in the scene. This process only simplifies the creation process as well as removes

some of the problems of using mental ray textures in previous versions of Maya as discussed below.

However, you should still know how to manually create and manage these shader trees for more con-

trol over your scene. Let’s briefly go over a few steps that are required for building the shader, referring

to those figures:

1. Create a simple scene that consists of a front light and a back light, a plane, and a simple primitive

such as a sphere for SSS.

2. In the Hypershade window, create a misss_fast_simple_maya shader, and assign it to the SSS sur-

face. Then select the SSS surface, and graph its network in the Hypershade window by choosing

Graph ➔ Graph Materials on Selected Objects. If you are using Maya 2008, delete the additional

nodes (lightmap and texture) aside from the SSS shader.

3. In the Hypershade’s Light Maps rollout, create a misss_fast_lmap_maya shader.

672 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 672

4. Connect the light map shader to the misss_fast_simple_maya shading engine (SG) in the mental

ray rollout ➔ Light Map Shader input, as shown in Figure 14.28.

5. Under the misss_fast_lmap_maya shader, click the Lightmap attribute’s checkered box to automati-

cally map it with a mental ray texture shader, as shown mapped in Figure 14.26 and Figure 14.27.

6. Next drag the mental ray texture node into the misss_fast_simple_maya ➔ Lightmap Write rollout

➔ Lightmap attribute, as shown connected in Figure 14.27. Note that you are not connecting the

light map shader, just the mental ray texture node. The light map shader connects only into the

shading group node, as discussed earlier.

You have now finalized all the crucial connections for the SSS shader tree. The following sidebar

section deals with setting the mental ray texture shader attributes.

T h e m e n t a l r a y T e x t u r e S h a d e r A t t r i b u t e s

The mental ray texture shader needs to be set so that it can write a light map file to disk when you ren-

der. It is important you select a directory that has file write permissions. Usually in Windows it’s not a

problem, but with Mac OS X or Linux it is more likely you may select a directory that does not have

write permissions.

You must apply the settings shown in this sidebar for subsurface scattering to work. If these attrib-

utes are not set appropriately, the shader will not render back layer scattering. Note that you will see

front layer scattering render without a light map; however, it is not as effective as when you have a light

map. Thus, the only guarantee the shader is functional is when you see the back layer’s color appear.

In the mental ray texture shader attributes shown

here, you must set the Texture Type attribute to Color,

enable the Writable attribute, and under the File Size

Depth attribute select 32 bits. The File Size Width and

Height attributes are based on your render settings.

Light maps are generated to account for both front

and back sides of the surface. The light map wraps

around the scene horizontally; hence, the width should

be set to the size of the rendered width, and the height

should be set to about half of the rendered height.

These are not values that are set in stone; using larger

light maps may improve quality, and lower values will

improve render times.

Finally, let’s talk about the bug that gets us all, the light map filename. The best workflow is to

leave the Local attribute disabled. Local will look for the file in the local project directory. In my expe-

rience, it is better to enter the root directory for the light map file without specifying a file extension;

just specify the filename. You can copy and paste the path from a file browser for accuracy. Note that

once you paste the path in the Image Name text box, continue to type a light map filename before you

press Enter.

nonphysical subsurface scattering ■ 673

continued

08547c14.qxd 10/24/07 4:42 PM Page 673

Here is an example for a path on Linux or Mac OS X:

//users/yourUser/documents/maya/projects/myProject/mentalRay/lightMap/LightmapName

Here is an example for a path on Windows:

\Documents and Settings\user name\My Documents\maya\projects\project name\

renderData\mentalRay\lightMap\lightmapName

If you are using the default drive, for example the C drive on a PC, the best workflow is to leave the

Local attribute disabled. If you use another drive such as D, however, you should copy and paste the

path as shown earlier; after you enter the path, enable the Local attribute. You should see that the local

path only remains in the text box with the filename you specified. I store Maya projects on an S drive

and not in the standard C project directory, which has always worked for me.

Test-render your scene. You should see subsurface scattering. If you don’t see the SSS effect,

review the notes in “Balancing the Options.” If you still see no effect, delete the texture file node and

create another. Sometimes if this node fails, it is best to create a new one (it’s just one of those trou-

bleshooting things). Most likely there is a problem with the path and mental ray can’t access or navi-

gate that path.

R e u s i n g L i g h t M a p F i l e s

Once a light map is calculated, you don’t need to reevaluate it with each render. Thus, if the light inten-

sity and camera angles don’t change, you can disconnect the light map from the shading group and

disable the Writable attribute under the mental ray texture (the texture is still assigned to the SSS shader).

By doing so, you will use the existing light map with each render and save time by not recalculating

light maps every time you render. You can do that while tweaking the SSS weight, radius and depth

values; however, if you are going to render an animation, you should reconnect the light map and

enable the Writable attribute, because the relationship between the camera, lights, and surface will

change with each frame.

W h e n U s i n g t h e C o m p o n e n t S h a d e r

If you use the misss_fast_shader component shader for designing your own subsurface shader, you

should still use the misss_fast_lmap light map shader instead of the misss_lightmap_write and gamma

component shaders. In this case, follow the steps shown in this sidebar for creating the misss_fast_lmap

light map shader and mental ray texture shader, and then connect the mental ray texture to the

misss_fast_shader➔ Data Storage rollout ➔ Lightmap and Depthmap attributes shown here, applying

the same mental ray texture to both inputs.

674 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 674

An Advanced Shader Tree
This example should give you some insight into the importance of color mapping as well

as value mapping (weight option) for controlling the appearance of SSS shaders. It also

demonstrates how you can expand on SSS shaders with other shaders, and thus you’ll see

that you are not limited to simple SSS networks. The example is a shader tree for marble,

such as for tiled floors.

In most cases, marble is better simulated with the physical shader since it’s a thick and

dense surface. However, with surface tiles (such as floors, bathrooms, and so on) most of

the scattering can be simulated using a shallow layer and not a deep level of internal scat-

tering. You definitely don’t see “through” scattering from the back to the front.

In the color gallery, look at “Marble SSS Plate,” where the same misss_fast_simple

shader was used for both images. In image A, the front and back layers are set so they have

no influence (weight of zero), which is the same as using a standard shader, such as the

architectural material. In image B, the front layer is set to have influence. The back layer is

irrelevant because the surface is a floor and doesn’t receive any backlighting. (Also, light

cast through the back layer would give the appearance of a translucent surface and lose the

feel of a thick heavy tile.) For deep scattering, I could use only the physical shader, as cited

earlier. Notice that the bump is softer and you see more light from a warmer texture reflect-

ing through the external layer, particularly along the side of the tile.

To generate the feel of a surface that shows more scattering in certain areas as well as

bump and the very glossy reflections, I use several shaders in a shader tree.

The Marble Shader Tree
The shader tree shown in Figure 14.34 is an example of the approach you can take when

designing SSS shaders. It is based on mental ray and host-specific shaders that are discussed

in Chapters 9 through 12 in detail. Instead of using letters to label the nodes, I used

shorthand names so it will be easier for you to examine the tree. Each label indicates the

purpose of the shader.

The SSS Connections

The misss label refers to the misss_fast_simple phenomenon shader, which is at the

heart of this shader tree. You can see that the misss_fast_lmap phenomenon light map

shader (labeled Lmap) connects to the material’s light map input (not required in XSI

and 3ds Max). The lmap shader is responsible for producing the light map file, labeled

Lmap file. The lamp file is then connected to the SSS (misss) shader light map input. I

discussed all of these connections earlier in the chapter with light maps and SSS shaders

on a host basis.

an advanced shader tree ■ 675

08547c14.qxd 10/24/07 4:42 PM Page 675

The diffuse color, front layer color, and front layer weight on the SSS shader are

mapped with color textures of marble using mental ray lookup shaders (image loaders),

each connected with a mental ray texture file that loads the relevant texture file (mental

ray texture files are labeled T). You can also see that all the lookup shaders and bump

pass-through shader share the same texture vector node, labeled Vector. Thus, they all

share the same UV mapping properties.

The front color is mapped with a darker version of the diffuse color image, and its color

is somewhat warmer for the purpose of internal scattering. You can see cutout sections of

the textures in Figure 14.35. Note that because you can’t see color, only the diffuse texture

(labeled A) is displayed without including the front color texture.

At the top of Figure 14.34 you can see the lookup shader labeled Front Weight, which is

a grayscale version of the diffuse color texture that has been adjusted in Adobe Photoshop,

shown in Figure 14.35 image B. This texture is passed through a set range shader (labeled

A) to adjust the maximum and minimum value for the front layer weight so that the

A B C

Figure 14.35

A portion of the tex-
ture maps used for

the shader tree

T

Front weight A B

Lmap file Lmap

Vector

T

T

T

Front color

Diffuse color

misss Glossy

Mix 1

Material

Bump

Cook-Torrance

Mix 2

Figure 14.34

The shader tree used
to generate the

marble illustrated
in the color gallery

as “Marble SSS”
image B

676 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 676

weight is not entirely dependent on the texture’s color values. I set the low and high ranges

to 0.1 and 0.45. Thus, the front layer weight will not exceed those values. Also, because the

weight is a scalar value, the set range is passed through a luminance shader (labeled B in

Figure 14.34) that outputs a single value, much like an alpha channel. That value is then

mapped to the SSS shader’s front weight value. In Chapter 10, “mental ray Shaders and

Shader Trees,” the brushed metal example demonstrated using these types of host-specific

support shaders with XSI and 3ds Max; you should be familiar with the equivalent shaders

in XSI and 3ds Max.

Specular Highlights and Bump Mapping Connections

The last texture, shown in Figure 14.35 image C, is used for the external bump mapping

shown in the lower portion of the figure. In the shader tree, you can see that the bump

texture (lowest T) connects to the mib_passthrough_bump shader labeled Bump, which is

also connected with the mib_bump_basis (below the bump texture T) shader and the tex-

ture vector shader, which is a typical bump map tree with mental ray shaders.

I connected the bump shader to the SSS shader’s bump option, providing external bump

mapping. Since it’s a mental ray bump shader that produces perturbed normal outputs

(see the “misss_set_normal and Bump Mapping” section) and the misss_set_normal is

integrated within the SSS phenomenon shader, as discussed earlier, the bump shader can

connect directly to the SSS phenomenon shader. I also use the bump map with a Cook-

Torrance shader to provide better specular highlights for the surface, rather than relying

on the SSS shader specular option, which is a Phong model. To apply it, I connected the

Cook-Torrance shader to the Color_0 input of a mib_color_mix shader (labeled Mix 2)

and connected the pass-through bump shader to the Color_base input of the color mixer

with the mode set to blend. In this way, the Cook-Torrance highlights will also be affected

by bump mapping.

Only Maya requires these complex mental ray shader trees for bump mapping; other

hosts offer alternative means that are easier to use for bump mapping. In XSI you simply

connect to the SSS shader’s bump input shown earlier in Figure 14.5, and in 3ds Max you

apply the bump mapping internally using the Bump shader parameter shown in Figure 14.31.

The example is aimed at helping you design your own shader.

The front weight is one of the most important shaders in the tree. It maps various intensities that

are used to define how much SSS we see through the marble. Areas on the marble that are

brighter will show more scattering than areas that are darker. Thus, grayscale values passed with

the weight texture map will control the internal scatter intensity (weight) based on the marble’s

brightness. It provides a richer mix between the external and internal scattering values. This

type of mapping benefits from using 3D textures, such as the mental ray turbulence shader,

that apply random texture values across the surface using a 3D projection.

an advanced shader tree ■ 677

08547c14.qxd 10/24/07 4:42 PM Page 677

Glossy Reflections and the Material Connection

I connected the misss shader to the mib_glossy_reflection shader labeled “Glossy” to

obtain glossy environmental reflections. Thus, the SSS (misss) shader connects to the

Base_material input of the glossy shader (see Chapter 10, “mental ray Shaders and Shader

Trees,” for glossy shaders). I then connected the glossy shader to Color_base input of

another mib_color_mix shader, labeled Mix 1. The other color mix shader (Mix 2) is then

connected to the Color_0 input (in the Mix 1 shader), and the mode is set to add the two

colors together. Finally, the color mix shader (Mix 1) connects to the material as an illu-

mination shader.

In this way, I layered the Cook-Torrance highlights with glossy reflections and subsur-

face scattering, where all the significant color components have been mapped with appro-

priate shaders. You can see the result in the color gallery as “Marble SSS” image B.

Physical Subsurface Scattering
In Chapter 12’s “Participating Media (PM) Effects” section, I discussed how light that

passes through a turbid medium exhibits different levels of absorption and scattering as

well as anisotropic or isotropic transmission. Realistic characteristics of light transmission

through turbid media such as in liquids or through highly translucent surfaces (such as

marble or jade) are simulated using the physical shader. The difference between participat-

ing media (PM) effects and the physical shader is that the physical shader is better geared

(optimized) toward addressing internal scattering within a medium such as a drink (milk,

beer, grape juice, and so on) or through a more solid surface (such as jade, opals, wax, and

so on). Both shaders deal with simulating realistic light transmission through a given

medium, accounting for internal isotropic or anisotropic scattering, in or out scattering,

and absorption levels.

See “The Water Bottle,” “Candle Physical SSS,” and “Jade Physical SSS” in the color gallery for

example renders using the physical shader and caustics.

With Maya the mib_bump_basis U and V attribute outputs connect to the mib_passthrough_

bump_map shader’s U and V attribute inputs; use the Connection Editor window to apply

these connections. The mib_texture_vector output connects to the mib_passthrough_bump_

map shader’s coord input. The mental ray texture is then mapped to the mib_passthrough_

bump_map tex attribute. See Chapter 11, “mental ray Textures and Projections,” for more

details and example files.

678 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 678

Essentially, all the previous discussions about light characteristics (reflection and trans-

mission), shading models (BSSRDF vs. BSDF), ray marching, and rendering volume effects

using PM effects can be thought of as an ongoing introduction to the physical SSS shader.

The physical SSS shader, which is a wavelength-dependent shader (see Chapter 9, “The

Fundamentals of Light and Shading Models”), is the most accurate shader available within

host applications for simulating realistic subsurface scattering with mental ray, but it

should be used only when you require rendering highly realistic (accurate) translucent

surfaces that exhibit deep scattering such as with liquids.

Overview of the mental ray Physical Shader
This section presents a general overview of using the physical shader, along with scene

setup considerations. The following sections will then present a detailed review of the

physical shader’s options and approximation algorithms.

The mental ray physical shader uses photons to record the transmission of light through

a surface, and thus it requires enabling one of the indirect illumination techniques (GI or

caustics) that generate photons in the scene. As with indirect illumination PM effects, a

ray marching technique is used to determine the influence of light at each photon inter-

section. To clarify, photons are scattered within the surface volume relying on certain

user defined parameters, and ray marching is used to evaluate the photon’s contribution

to light along the path it takes from the point of entering the surface.

The physical shader also casts GI and caustic photons back into the scene just as with

other surfaces that participate in indirect light simulations, with the difference that several

photons are also stored internally within the surface. Thus, the purpose of photons is

divided between two tasks:

• Photons are stored within the volume and are not affected by GI or caustics global

scene options, only by the options set with the physical shader.

• Photons that are reflected from or refracted through the surface into the scene are

handled with their corresponding indirect illumination method (GI or caustics).

These photons carry energy that has been influenced by the volume back into the scene.

Typically you should use caustics if you want to render an image that displays the effect

of light transmitting through a liquid in addition to the caustic effect generated through

the liquid’s container (the glass itself). Otherwise, it does not really matter which method

you select (GI or caustics) for the physical shader, just that it receives a decent amount of

photons from a photon emitting source light.

The physical SSS shader is not an easy to use shader; you will need to base values on empiri-

cal data more so than “guesstimating” ad hoc values.

physical subsurface scattering ■ 679

08547c14.qxd 10/24/07 4:42 PM Page 679

In the color image “Candle Physical SSS,” you can see the increase in irradiance along

the walls in areas that are in shadow (from the candle top and down). The warm light

patterns are a direct result of caustic photons that are emitted from the candle after

transmitting through the candle’s volume. As you can see, caustic photons have acquired

color properties (photon energy) from the candle, realistically mimicking the visual effect

of a candle as a source for illumination after light transmits through it. In addition,

global illumination was used, which provides the diffused indirect lighting in those areas

that are then enhanced with the caustic photons.

Scene Setup

Because the physical shader is based on casting photons into a volume that represents the

turbid medium, the volume should be a closed surface with normals aimed outward, as

with a default cube or cylinder in each host. As cited earlier, you should enable either

global illumination or caustics. You may decide to enable both features, using GI to apply

indirect lighting globally in the scene and caustics for controlling the photon distribution

within the physical shader’s individual surface. In this way you can provide a general dis-

tribution of photons in the scene with GI in addition to a more focused distribution of

photons in the turbid medium with caustics. Ideally you will cast caustic photons through

a spot light that encompasses within its perspective the SSS surface, similar to the approach

with caustic scene setups discussed in Chapter 12, “Indirect Illumination.” You will guar-

antee a high distribution of photons within the SSS surface.

If you look at Figure 14.36, also available in color on the CD as “Milk and Ketchup,”

many photons are required to simulate light within a liquid (milk) that possesses a lot of

deep scattering. The ketchup, however, absorbs more light and shows less internal scatter-

ing so that fewer photons are required.

In the figure, a dielectric shader is used for the outer glass surfaces, and the physical SSS

shader is used for the milk and ketchup surfaces. In Figure 14.37 you can see the outlines

used for the glass and milk surfaces. Notice how the milk surface is placed near the glass

outline, but it does not overlap with the glass surface (inner) outline. It’s important that

the physical shader’s surface does not overlap with other surfaces, such as the glass surface

in this case, or you will see artifacts appear in the rendered image. The same is true when

using transmat shaders with PM effects. For the color render, the liquid’s outline was

much closer to the glass than illustrated in Figure 14.37, maintaining a minimal gap

between both surfaces. You can also see the normal direction marked with the letter N for

both surfaces.

You should first gain some experience with managing indirect illumination scenes before

attempting to use them with this shader; see Chapter 12, “Indirect Illumination.”

680 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 680

Host Application SSS Physical Shaders
Before we examine all the physical shader options, let’s first locate the shader in each host

application. As with other examples, these options are labeled in a similar way in each

host. Maya and 3ds Max use the mental ray naming conventions, and XSI has renamed

some of the options. I’ll review the physical shader using the mental ray shader options in

Maya and refer to other host specific comments (naming conventions) when necessary.

You can find the shaders in each host application as follows:

Maya In Maya, in the Hypershade window, you can find the physical shader in the Create

mental ray Nodes rollout ➔ Materials ➔ misss_physical shader. Figure 14.38 shows the

shader attributes.

Figure 14.37

Surface outlines for a glass surface and its
liquid content (physical SSS surface)

Figure 14.36

Physical shader renderings of milk and ketchup using empirical data

Surface normals direction (N)

Dielectric glass

Physical SSS
surface

N N
N

N

N

physical subsurface scattering ■ 681

08547c14.qxd 10/24/07 4:42 PM Page 681

XSI XSI provides two preset physical shaders (the same shader in both cases) where one is

preset for rendering a liquid (milk) and the other set for rendering jade. You can find both

preset shaders by navigating from the Render Tree window and choosing Nodes ➔ Illumi-

nation ➔ More, which opens the file browser. In the Subsurface directory you will find

both shaders (Jade and Skim_Milk). Basically, both shaders provide a good starting point

for rendering but are not constrained in any way to a

particular material type. Thus, you can change the val-

ues to represent any material type. Figure 14.39 shows

the physical shader properties (Skim_Milk shader).

One difference between the skim milk and jade shaders,

apart from their shader values, is that the jade also is

created with an additional Phong specular shading

model that is connected to the material input, as dis-

cussed in the following sections.

3ds Max In 3ds Max you can find the physical (mono-

lithic) shader in the Material Editor ➔ Get Material ➔ SSS

Physical Material (mi). You can see the mental ray

physical shader parameters in Figure 14.40.

Figure 14.38

The mental ray
physical SSS shader

options in Maya

682 ■ chapter 14: Subsurface Scattering

Figure 14.39

The mental ray
physical SSS shader

properties in XSI
with the Skim_Milk

preset shader

08547c14.qxd 10/24/07 4:42 PM Page 682

In all host applications the mental ray physical shader needs to be connected to the

illumination and photon shader inputs of a mental ray material, as illustrated in XSI in

Figure 14.41. In XSI and 3ds Max this connection is applied automatically (by default),

and in Maya you need to drag and drop the misss_phyiscal shader onto the Shading

Engine’s Photon shader attribute, as with other GI shader setups.

Scattering Approximations and Photons
In the section “The BSSRDF Light Transport model” earlier in this chapter, I introduced

some of the concepts for simulating physically correct subsurface-scattering effects, such

as single and multiple scattering. The physical shader uses these concepts internally for

simulating subsurface scattering and also divides multiple scattering into two separate

components—multiple scattering and diffusion approximation. Thus, the physical shader

uses three separate approximations to calculate the internal transmission of light—single

scattering, multiple scattering, and a diffusion approximation, as illustrated in Figure 14.42.

Each focuses on a different aspect of light transmission, and collectively they provide for

robust subsurface-scattering effects.

As you can see in the figure, single scattering deals with direct refractions through the

material, and multiple scattering deals with simulating internal scattering within the tur-

bid medium using photons (bouncing light around) until the photons are either fully

absorbed, exit the surface, or penetrate the deep layer. If a photon penetrates the deep

layer, the diffusion approximation is used to calculate isotropic scattering without simu-

lating any additional light scattering (no additional bounces). I’ll discuss each approxima-

tion in detail in the following sections.

Figure 14.41

The physical shader needs to be connected to
both illumination (material) and photon
shader inputs in host applications.

Figure 14.40

The mental ray physical SSS shader
parameters in 3ds Max

physical subsurface scattering ■ 683

08547c14.qxd 10/24/07 4:42 PM Page 683

It’s important to note that different materials display different levels of multiple or sin-

gle scattering. For example, a surface that exhibits a lot of internal scattering, such as skin,

pasta, or ketchup, will make more use of the multiple and diffusion scattering approxima-

tions than the single-scattering approximation. The single scattering term is for more

translucent materials that refract a lot of light through the surface while maintaining a

more glossy to specular appearance than a fully glossy appearance, such as with plants

(leaves), dirty water, oil, or paper. I’ll first show how these approximations are enabled or

disabled in host applications and then review each approximation as well as other related

options.

Enabling Scatter Algorithms

You can enable any of the three algorithms in Maya and XSI using the check-

box options labeled Approx Diffusion, Approx Single Scattering, and Approx

Multiple Scattering, which refer to diffusion, single, and multiple scattering

algorithms, respectively. Figure 14.37 showed these attributes for Maya, and

Figure 14.43 shows them enabled in XSI (on the physical shader’s Algorithm

Control tab). 3ds Max uses a phenomenon shader that omits these options;

all three are always enabled.

I recommend you read the entire section on physical SSS while identifying the shader

options in your host, before using it for rendering.

Deep
Layer

Camera / viewer

Backward raytracing
(eye rays)

Single scattering
(ray marching)

Source light

Forward raytracing
(photons)

Single scattering
Multiple
scatter events

Diffusion
(isotropic) scattering

External layer
(diffuse and specular)

Shallow
Layer

Figure 14.42

The three different
approximation algo-

rithms used to ren-
der subsurface

effects with the
physical shader

684 ■ chapter 14: Subsurface Scattering

Figure 14.43

XSI physics shader
Algorithm Control
tab where you can

enable the different
internal scattering

algorithms

08547c14.qxd 10/24/07 4:42 PM Page 684

By enabling or disabling either algorithm, you can isolate the effect in a way that allows

you to better fine-tune each component without being distracted by the overall effect of

using all three approximations at once.

Single-Scattering Approximation

Single-scattering approximation deals with the refraction of light through a turbid medium,

where the path of light remains constant, as illustrated in Figure 14.42. In other words,

light doesn’t bounce around; it only transmits through the surface. Thus, with single scat-

tering, light perturbs (changes direction) only once as it refracts into the surface. Consider

that when single scattering is predominant, multiple scattering and diffusion are naturally

less predominant, allowing a more focused beam of light to transmit through the surface.

Figure 14.44 shows a rendered example of the single approximation algorithm. As you

can see, a spot light with a small cone angle is focusing light through the candle from the

top (image A; the arrow represents the spot light direction). You can then see the light

reappear on the opposite side of the surface (B) as it exits the surface. (Note that an addi-

tional light source with some ambient light from the shader is used so that you can see the

entire surface.) Since the single-scattering approximation does use photons, it can’t simu-

late a “beam” of light transmitting through the surface (illuminating particles suspended

within a volume); it can only draw the light intensity along the surfaces’ (inner or outer)

geometry, as shown in Figure 14.44. In other words, single scattering applies its effect

across the geometry, whereas the multiple and diffusion approximations apply their

effects using photons anywhere internally within a volume area (the geometry), illuminat-

ing suspended particles within matter. Since Figure 14.44 is used for demonstrating only

single scattering, the other two approximations and photon casting (caustics or GI) are

disabled.

S I N G L E - S C A T T E R I N G S A M P L I N G

As noted earlier, the single-scattering approximation is a raytracing technique that does

not utilize photons. It acts like standard refractions with an additional ability to draw the

attenuation of light through the surface using ray marching to determine irradiance over a

given distance. In this way, it can calculate the intensity of light on the other side of the

Photon casting is irrelevant with single scattering just as direct lighting is irrelevant with the

multiple and diffusion approximations.

There are some slight differences when you enable or disable the diffusion or multiple scat-

tering approximations. For example, when multiple scattering is enabled, if you disable just

the diffusion approximation and render again, the result will appear slightly different.

physical subsurface scattering ■ 685

08547c14.qxd 10/24/07 4:42 PM Page 685

surface, based on the distance it passes through the surface. Segmented shadows use a

similar approach to evaluate the effect of shadows through volumes, as discussed in Chap-

ter 7, “Shadow Algorithms.” In Figure 14.44 you don’t really see a decay of light through

the surface because I used a strong source light to exaggerate the effect for illustrative pur-

poses; otherwise, the light intensity would appear much lower on the opposite side.

The Max samples option, shown in each host (Figures 14.38, 14.39, and 14.43), affects

both single scattering and multiple scattering. With single scattering, it defines the num-

ber of samples taken (ray marching) per eye ray. It improves the quality (appearance) of

light attenuation on the surface. The higher the value, the more samples are taken; typical

values range from 5 to 30. You’ll look at this option in more detail with multiple scattering.

Multiple Scattering and the Diffusion Approximation

The multiple and diffusion approximations are tied closely together both in the physical

shader’s options and in how they share (pass) photons. The following section examines

multiple scattering and the diffusion approximation characteristics with the physical shader

options that define the surface’s optical properties and control photonic distributions.

Since Max samples is used with both single and multiple scattering, you should prioritize the

value for multiple scattering because its effect on single scattering is rather subtle.

A B

Figure 14.44

The single-scattering
approximation

focuses light on a
candle (A) and trans-
mitting through the

candle (B).

686 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 686

The multiple-scattering approximation deals with bouncing photons internally within

a given depth, referred to as the shallow layer in Figure 14.42. Eventually, the photon will

be completely absorbed internally, penetrate the deep layer, or exit the surface where the

photon may continue to affect the scene. Again, the color image “Candle Physical SSS”

demonstrates how caustic photons emit into the scene from the candle (photons that exit

the volume area) and affect the walls.

The significant technical difference between single scattering, multiple scattering, and

the diffusion approximation is that the multiple-scattering and diffusion approximations

rely solely on photons to determine irradiance within the volume. Thus, you tweak pho-

tons as with global illumination and caustics using the following physical shader options,

shown in Figures 14.38, 14.39, and 14.43 (as well as the photon-emitting light’s photon

energy and count):

• Max samples (in this context it defines the amount of bounces in the surface)

• Max Photons

• Max Radius (Maximum Photon Search Radius in XSI)

Once photons enter the surface’s volume, they reflect internally (bounce around) based

on the following physical shader options (labeled the same in Maya and 3ds Max), shown

in Figures 14.38, 14.39, 14.40, and 14.43.

• Scattering coeff. (Scattering ➔ Red, Green, and Blue in XSI)

• Absorption coeff. (Absorption ➔ Red, Green, and Blue in XSI)

• Scatter anisotropy (ScatteringDir in XSI)

• Depth (Deep Layer Depth in XSI)

• Scale conversion (Millimeters to unit in XSI)

• Max samples (in this context it defines the appearance

of internal scattering)

All these options contribute to internal scattering,

defining the material’s substance. However, the most sig-

nificant options that define the probability of a photon

being absorbed or scattered within the material are wave-

length dependent (RGB) absorption and scattering coeffi-

cients (discussed shortly); they define the material’s optical

properties, particularly its translucency level (amount).

Controlling optical properties is covered in the “Optical

Properties” section later in this chapter.

In Figure 14.45 you can see a box placed on a floor; this

scene is used with the physical shader in several of the fol-

lowing examples. A spot light is placed on top of the box

physical subsurface scattering ■ 687

Figure 14.45

The scene used for
several of the fol-
lowing examples, as
it appears in the
workspace

08547c14.qxd 10/24/07 4:42 PM Page 687

and focuses light onto a small portion of the box. Note that although the floor appears

bright, it’s affected by a separate point light that doesn’t influence the box (and is not used

with the physical shader).

Figure 14.46 displays three renders of the scene (color version available on the CD). In

image A you see solely the diffusion approximation, and in image B you see solely the

multiple-scattering approximation. In image C you see the combination of both approxi-

mations. Notice that the diffusion approximation’s irradiance appears darker than the

multiple-scattering irradiance, because it deals with photons that have already lost energy

and are located deep within the material. In many cases, the diffusion contribution to the

overall effect appears as small subtleties that extend the irradiance internally, providing

more coverage within the surface. These differences between multiple scattering and the

diffusion approximation will become clearer after you’ve reviewed the following examples.

S C A T T E R D E P T H

First I need to define exactly how depth influences the transition from multiple scattering

to the diffusion approximation. In other words, how exactly does it work, and why even

bother using a diffusion approximation?

A

B

C

Figure 14.46

The multiple scatter-
ing (A), diffusion (B)
approximation, and

the total of both
approximations (C)

688 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 688

If you’re using a diffusion approximation, the assumption is that after a given number

of internal reflections and past a given transmission depth, you can calculate more effi-

ciently (in render time and thus processor efficiency) the subsurface effect using a diffu-

sion approximation. This approximation provides solely isotropic light scattering,

enhancing the feel of irradiance deep within the material while benefiting from the fact

that the diffusion approximation is a faster more efficient rendering approximation than

multiple scattering. With respect to isotropic scattering, I’ll further discuss isotropic and

anisotropic scattering with single and multiple scattering in the “Optical Properties”

section later in this chapter.

The Depth option, shown within each host in Figures 14.38, 14.39, and 14.43, defines

a critical depth; past that depth, photons are handled solely with the diffusion approxima-

tion. This distance reflects the total depth a photon may travel into the surface before the

diffusion approximation is used. In Figure 14.47, you can see the same scene used for the

earlier example, this time displaying solely the diffusion approximation. The figure is

rendered so you are looking at the box from a frontal view, and thus it appears flat; the

purpose is for you to see how photons scatter from a frontal perspective. In image A depth

is set to 2, and in image B depth is set to 5. As you can see, there is a clear line along the

top that defines where the diffusion approximation initiates, controlling photons from

that point and downward to the bottom of the box.

M U L T I P L E - S C A T T E R I N G D E P T H V S . D I F F U S I O N D E P T H

If you render the same image used in the previous example solely with multiple scattering

(diffusion approximation disabled), you may see an image like Figure 14.48 (the color

version is available on the CD). Notice that in image A, multiple-scattering photons

reach the lower portion of the box. In image B you see a higher-quality version, where

Depth is a scale-dependent option; see the discussion on scale conversion in the “Optical

Properties” section later in this chapter.

A B

Figure 14.47

Changing depth
from a value of 2 (A)
to 5 (B) pushes the
diffusion approxi-
mation deeper into
the surface.

physical subsurface scattering ■ 689

08547c14.qxd 10/24/07 4:42 PM Page 689

the multiple-scattering photons have been smoothed out (interpolated) making the light

appear to wrap around the box like a table cloth. When you render solely multiple-scattering

effects and see this sort of result, you may ask yourself two similar questions:

• Why do multiple-scattering photons reach the bottom of the box past the depth level?

• Isn’t the diffusion approximation supposed to handle photons only from a depth of 5

(in this case) and lower (as shown in Figure 14.47 image B)?

When you first use the physical shader, this sort of result may leave room for confusion.

For example, when trying to push multiple-scattering photons deeper into the surface (a

greater depth distance), you may notice that increasing the depth doesn’t really appear to

make the photons go any deeper into the volume; it merely increases their spread.

In the photon path shown in Figure 14.49 (A), you can see why multiple-scattering

photons reach the bottom of the box in Figure 14.48. As you can see in the illustration, for

multiple scattering the scatter depth defines a distance from the surface’s exterior (into the

surface) regardless of the location of the source light. Thus, depth is not the depth into

the surface based solely on the light’s physical placement but rather a volume container at

A

B

Figure 14.48

Multiple-scattering
photons with a low

photon radius (A)
and a high photon

radius (B) that reach
the bottom of the

box, past the
depth level

690 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 690

more stored photon locations in the photon map, similar to the photon trace options used

with indirect illumination simulations, only in this case it is more common to use high

sample values so that the photons scatter multiple times.

In image A, you can see the basic distribution of photons without any photon blending.

Since the Max Samples option is set to 1, the photons don’t bounce around; they only

store at their initial location as they hit the surface. Notice how the photons are stored

externally only on the surface, not exhibiting any internal reflections.

In image B the Max Samples value is increased to 30, and you see several additional

photons appear in the image, representing additional sites within the geometry where

photons are stored. A visual cue that photons are storing internally is the blurred photons.

The deeper the photons are stored, the more blurred (faded) they appear. Comparing

images A, B, and C, you can clearly see that in image A all the photons are stored solely on

the surface exterior. This is unlike B and C, which both have a Max Samples value of 30,

which adds several internally stored photons. If you look at the color version on the CD,

you can see the increased variation in color within the surface.

The higher the Max Samples value, the more irradiance you will see from within the

surface, as well as increased influence from the material’s substance. In other words, the

more photons interact within the material, the more they are influenced by the wavelength-

dependent (RGB) transmission color, absorption, and scattering coefficients, producing

variation in color (all discussed shortly).

The Max Samples option works hand in hand with the Depth option, because the

depth defines the total distance a photon may travel within the surface before entering the

deep layer, and the Max Samples option defines how many times along that distance men-

tal ray can sample its location (perturbing the photon’s path) defining more locations for

storing photons before they enter the deep layer.

Max Photons and Max Radius

Similar to the GI (and caustics) Accuracy and Radius options, the physical shader’s Max

Photons and Max Radius options define the number of photons sampled for color within

a given radius (search area) to interpolate color. Thus, in Figure 14.50 images A and B,

one photon is sampled within a search radius of 2 units with each eye ray cast into the

scene. In image C, the Max Radius was increased to 10, and everything else remains as

with image B (Max Samples at 30, Max Photons at 1). You can see that the increased

search area provides more irradiance coverage across the surface; there is more color

across the surface, yet the photons don’t appear to blend well.

A Max Samples range of 15 to 30 samples is typically sufficient.

694 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 694

The Max Photons option increases the number of photons used within a given search

radius to blend photons together. It has the effect of increasing the light intensity and

quality while using more photons with both approximations (multiple and diffusion). In

image D, the Max Photons value is increased from 1 to 100, and you can see how photons

within the 10-unit search radius blend together, covering most of the surface.

As with indirect illumination, when blending photons together, if the results appear

splotchy, you can always increase the radius, forcing a larger interpolation region, or you

can increase the number of photons used with that radius using the Max Photons option.

In image E, the Max Radius is increased to 20, doubling the search radius area. As you

can see, the result appears somewhat smoother, particularly on the shark’s fins and stand.

However, it’s not enough to provide a visually pleasing SSS effect. In image F, the Max

Photons value is increased from 100 to 1,000. As you can see, the result is smoother, pro-

viding a smoother gradation in color and intensity based on the shark’s surface thickness

across most of the surface.

Fine-tuning the result is thus a balance between using the right radius with a sufficient

number of photons. In image G, the radius was increased to 50 and the result appears

much better, without any significant spottiness. The image now demonstrates a lot of

variation in color and intensity based on the shark’s surface thickness. It appears better

because there are enough photons for interpolation within a relatively large area (radius)

across the surface.

Photon Count

Finally, as with indirect illumination, there comes a point where it is not enough to fine-

tune the Max Radius and Photon values, and you need to increase the overall photon

count on the photon-emitting light. In image H, the light’s caustic photon count was

increased from 4,500 to 100,000, and the Max Radius was decreased from 50 to 30. As you

can see, the result improves on image G, where using a smaller radius with more photons

provides better detail—notice the variation in intensity shown in the mouth and on the

fins, as well as the smooth gradation along the body. You may have to look at the color

image cited earlier (on the CD) to see these subtleties.

Balancing the Option Values

As rules of thumb, consider the following:

• When increasing the Max Photons option (how many photons are used), there will

come a point where an increase in value does not provide any change in the rendered

result. At that point, you can increase either the radius or the overall photon count

emitted into the surface.

physical subsurface scattering ■ 695

08547c14.qxd 10/24/07 4:42 PM Page 695

• While increasing the radius, if you find you need to use very high values that cover the

entire surface, then clearly you lose detail and variation. You should first increase the

Max Photons, and if that doesn’t suffice, you can increase the photon count emitted

into the scene.

• When Max Photons is set to 1, each radius will use only one photon for color. You

can use this approach to measure the radius size visually while testing the result. For

example, a radius of 100 appears to blend all the photons together, but if you reduce

the Max Photons to 1, you will clearly see the radius outlined, visually determining

the scale of the search radius in comparison to the surface’s size.

D I F F U S I O N A P P R O X I M A T I O N P H O T O N C O N T R O L

Controlling the diffusion approximation is not the same as with the multiple-scattering

approximations, even though they share the same options. Furthermore, the mental ray

support (help) files indicate that the Max Radius option doesn’t influence the diffusion

approximation; however, it does influence the rendered result. Let’s first look at how the

Max Radius option influences SSS effects with the diffusion approximation; you’ll also

learn more about the diffusion approximation characteristics.

Diffusion Radius of Influence

You can think of the deep layer (the diffusion approximation) as a point volume light that

emits diffused (isotropic) light within a given area (radius), attenuating with distance.

This theoretical point light is located internally within the surface in an opposite location

(direct line of sight) from the actual source light and within a given depth distance, as

illustrated in Figure 14.51. In the illustration you can see two source lights, each creating a

radius of influence within the surface at the depth level defined with the Depth option;

this is the depth distance from the surface top to the deep layer. Each light’s influence is

based on the surface material properties (its optical properties) balanced against the light’s

photon energy.

The approach for using a theoretical source light internally as a diffusion light source is

applied within the BSSRDF multiple-scattering term, introduced with Jensen’s shading

model (discussed earlier in the chapter). I base the following discussions on that approach

to the physical shader’s diffusion approximation, which functions in the same way (aside

from the ability to use photons as a source for energy).

In Figure 14.52 image A you can see a screen grab with the same scene used to illustrate

multiple scattering earlier in the chapter, only in this case two spot lights are located

directly above the box with small influence areas (cones). In image B you can see the ren-

dered result using only the diffusion approximation. You can see that each light has a cor-

responding (opposite) area of influence within the volume (box) that displays bright light

within a given radius. This area of influence (the radius) is defined by the Max Radius

option and has the effect of decreasing the light intensity from the center (directly oppo-

site the source light’s location) and outward along a given radius, as in Figure 14.51.

696 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 696

Thus, with respect to diffusion approximation, the Max Radius defines the light inten-

sity from the diffusion center (where more photons are located) outward so that as you

increase the radius it blends over and utilizes more photons, which are located within the

deep layer, creating a larger diffused area. The diffusion center is located exactly at the

specified depth opposite the light’s location; however, diffusion approximation photons

are located anywhere within the deep layer.

As an additional example of the Max Radius influence on the diffusion approximation,

you can also look at Figure 14.53, where you can see the effect of the Max Radius using one

spot light. The Max Radius value is set to 2, 10, and 50 in images A, B and C, respectively. As

Unlike other global illumination techniques, as well as the multiple-scattering approximation,

the Max Radius in this case is not a per-sample search radius that looks up photons; instead, it

is a search area based on the source light’s location and its corresponding location within a

volume at the specified depth.

A B

Figure 14.52

Source lights create
local regions of
influence directly
opposite their loca-
tion within the sur-
face and at the
specified depth
distance.

Isotropic
radius

Source lights

Depth distance

Depth level

External layer

Shallow layer

Deep layer

Figure 14.51

The diffusion
approximation’s
radius of influence

physical subsurface scattering ■ 697

08547c14.qxd 10/24/07 4:42 PM Page 697

you can see, it increases the search radius for photons, only in this case forming an increased

radius light region from the center of the isotropic source outward (not around each sample

point, as with multiple scattering). It is located directly beneath the spot light location

(which is not seen in the figure) and at a Depth value of 5 (as with Figure 14.47 image B).

A

B

C

Figure 14.53

Increasing the radius
creates a bright
isotropic region

from the center of
influence.

698 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 698

Diffusion Photons Artifacts

Notice the colorful dots (diffusion approximation photons) that appear within the radius

closer to its outer rim and even beyond that distance. The Max Radius doesn’t influence

photons themselves; it just defines an area of increased influence from the isotropic source.

This point has two significant implications for fine-tuning the render. One deals with

removing these dots, since you don’t want spotty renders. The other deals with where you

can see the diffusion approximation (deep scattering).

To remove these dots (diffusion photons) that appear in the render, you should reduce

the overall radiance or just the amount of internal scattering within the material. You can

do so in a number of ways:

• Decreasing the light’s photon energy value

• Reducing the Max Photons count (as discussed with multiple scattering)

• Increasing the Depth value

• Decreasing the Transmission color value (discussed shortly)

• Increasing the Absorption coefficient (discussed shortly)

• Decreasing the Scattering coefficient (discussed shortly)

Deep Scattering Distance

The visual appearance of diffusion photons through the surface (deep scattering) is signif-

icantly affected by the depth level and the surface thickness. The Max Radius defines to

what extent diffusion photons can influence the visual perception of the surface. That is, it

defines how far diffusion photons’ color influence will reach from within the deep layer.

In Figure 14.54 you see the same scene as in the previous example, where in image A

the Max Radius is set to 2 and in image B it’s set to 50. As you can see in image A, diffu-

sion photons are not seen through the top of the surface, but in image B you can clearly

see their influence also from the top of the surface. Thus, the Max Radius option has the

effect of defining the distance that diffusion photons can be seen from within the deep

layer on the surface exterior.

From the discussion of the Depth setting and Figure 14.49 earlier in this chapter, recall

that the diffusion approximation handles any photons that pass a given depth. However,

once the photon passes that depth, it may land close to the surface exterior on another side

(other than the side from which it entered). If you compare images A and B in Figure 14.54,

you can see that the diffusion photons are seen in image A along the side of the surface

In most cases, with all the different influences that come to play, the “dots” blend in well with

the multiple scattering and the material’s color.

physical subsurface scattering ■ 699

08547c14.qxd 10/24/07 4:42 PM Page 699

because they landed close to that side of the surface after entering from the top. However,

the same photons are not seen through the top side until you increase the radius enough

so that they can be seen through the surface top in the deep layer.

Essentially, you don’t fine-tune the Max Radius based on the diffusion approximation

but on the multiple-scattering approximation. Because the two are tied together, a larger

radius for multiple-scattering will also increase the size of the isotropic source within the

surface. Also, consider that when multiple scattering is enabled, photons in the deep layer

blend with multiple-scattering photons when those areas are searched for irradiance. For

that reason, the diffusion approximation is mostly used to enhance (help) multiple scat-

tering by blending deep scattering with multiple scattering and providing additional subtle

irradiance from deep within a surface.

Basic Material Properties
Aside from internal scattering, the physical shader also accounts for external color and

Fresnel (raytrace) reflections, as shown in the color gallery candle and shark images (cited

earlier) that demonstrate Fresnel reflections. It also provides bump mapped diffuse and

specular highlights, as shown on the ketchup’s surface in Figure 14.36 (and on the com-

panion CD). In Figures 14.38, 14.39, and 14.40 you saw that the first two physical shader

options are the Material (Color property in XSI) and Transmission RGB color options.

The Material option defines the material’s external properties, and the Transmission

option defines the transmission color and intensity through the surface.

Note that the single, multiple, and diffusion approximations are not affected by the Material

color; their colors are defined by the Transmission, Absorption, and Scattering coefficient

options. Thus, the Material option solely affects the external color properties of the surface. It

does, however, blend with the subsurface colors when all the different components are com-

bined, but not as part of their color-sampling phase.

A B

Figure 14.54

The distance to
which diffusion pho-

tons can be seen
through the surface

depends on the Max
Radius option.

700 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 700

The Material Option and Reflections

The Material option is used as an overall ambient color when left unmapped (at default).

It is not affected by lighting in any way, enabling you to specify an overall ambient color as

with the milk and candle examples cited earlier. In each case I specified a base color that

represents the material’s natural color, as shown in Figure 14.55. Images A, C, and D

demonstrate solely the effect of the Material option and Fresnel reflections, and thus all

three approximations (single, multiple, and diffusion) are disabled. Image B has all three

approximations enabled and is the same as Figure 14.36 presented earlier.

In these examples, the material colors for the candle and shark are set with dark values

(Figure 14.55 images C and D), and then the subsurface-scattering effect added color

and brightness to the surface, making it appear brighter (see the color versions). The

milk surface had an overall brighter material color, as shown in image A; then the

subsurface-scattering effect added the translucency color and additional brightness to the

A B

C D

Figure 14.55

The material color
defines an ambient
color that can also
be mapped with a
shading model.

physical subsurface scattering ■ 701

08547c14.qxd 10/24/07 4:42 PM Page 701

surface, as shown in image B (using all three approximations). In color the SSS effect also

adds a color shift through the material based on the material’s scattering properties (its

absorption and scattering coefficients).

With respect to Fresnel reflections, notice the reflections in Figure 14.55 images C and

D, particularly with the shark in image D. The darker the material color and SSS scattering

effect appear, the stronger the reflection color (think energy conservation). You can see

with both color images (shark and candle) how the reflections blend in well with the SSS

effect. With images A and B, the material is initially very bright, providing more diffusion

and less Fresnel reflection.

M A P P I N G T H E M A T E R I A L O P T I O N

The Material color option can be mapped with a shading model (or custom shader tree)

that adds the external diffuse and specular reflections (highlights), as shown in Figure 14.56.

In this way, you effectively layer a standard shading model (diffuse color and specular

highlights) along with the subsurface-scattering effect.

For the ketchup’s material, a slightly reddish color would suffice as an ambient base

color (Material option); however, the surface would appear smooth without any diffuse

and specular bumpiness, unlike the subtle roughness shown in Figure 14.55 images A and B.

To generate a diffused bump mapped surface with the ketchup material, I used a custom

tree that blends bump mapping (using the texture file labeled A and the mib_passthrough_

A

B

C

D E

Figure 14.56

The shader tree for
the ketchup exam-

ple using the physi-
cal shader with

additional bump
mapped Lambert

shader

When you use the material color in this way (as an ambient color), typically the initial material

color should be set to a low value, or else it will overpower the scattering color and reflections

using a bright ambient color.

702 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 702

bump shader labeled B) with a reddish Lambert shader labeled C using the mib_color_

mix shader labeled D. The color mix shader connects to the physical shader’s (labeled E)

Material color option.

You should use specular shading model instead of the Lambert shader so that specular

highlights would also be considered with bump mapping. However, in this case the physi-

cal shader’s reflection color (Fresnel reflections) is affected by the material’s bump mapping,

and thus the appearance of broken reflections is present. To clarify, I used a visible area

light; thus, the physical shader renders highlights as raytrace reflections of the source

area light shape (see Chapter 6, “Lights and Soft Shadows”).

M A T E R I A L C O N S I D E R A T I O N S

Based on the earlier discussions, you need to keep a few points in mind with respect using

the Material color option as well as mapping it with a shading model:

• The purpose of the physical shader is to provide the internal subsurface effect. Pro-

viding the Material option as ambient color is an advantage, allowing you to use any

custom shader to define the external properties of the surface. In other words, it’s

good that it does not include all sorts of color options that would constrain you to a

specific BRDF shading model.

• Remember, all ambient color options (the Material color) are not affected by lights,

so once they are mapped with a standard shading model, the diffuse and specular

components from that shading model add in the external influence from the light.

• Not all surfaces require a diffuse component; thus, with some surfaces the color is

mostly handled with the subsurface-scattering effect and Material color option, as

with the milk and candle examples that have some ambient (Material option) color as

a base color for the surface, as shown in Figure 14.55 images A and C.

• The physical shader already provides Fresnel reflections as shown in Figure 14.55 so

that when you map a shading model that adds its own reflections, they double up with

the physical shader reflections. You should consider using a shading model that adds

only specular reflections (highlights), which are not included with the physical shader.

• The only additional consideration with respect to reflections is with visible area lights

that appear in both specular raytrace reflections (the physical shader) and in specular

highlights (the specular shading model; that is Phong, Blinn, and so on). You may

want to use nonvisible area lights, which are not raytraced in reflections, or a Lambert

shading model, as noted earlier in Figure 14.56.

In XSI and 3ds Max you can use a shading model with bump mapping without a need to con-

struct this sort of mental ray–specific custom tree for bump mapping, which is a topic discussed

in Chapter 11, “mental ray Textures and Projections.”

physical subsurface scattering ■ 703

08547c14.qxd 10/24/07 4:42 PM Page 703

The Transmission Option

The Transmission option affects all three scatter approximations, enabling you to tweak

their intensity (brightness). It should not be confused with absorption, a topic discussed

next with the Absorption coefficient. The sole purpose of the Transmission option is to

decrease or increase the overall brightness of the SSS effect, which is a typical color multi-

plier. It can be used creatively with a texture map or 3D procedural texture to tweak the

intensity across the surface.

For the shark color image I utilized the mi architectural material as a shading model

(Figure 14.57 label B). The diffuse color has been mapped with a painted texture (label A)

that defines the base material color. As you can see, the texture file passes through a

multiply/divide shader before connecting to the architectural material, enabling me to

tone down the texture color using multiplication; it was multiplied by a value of 0.2 so

that the material’s brightest color effect does not exceed a value of 0.2.

The architectural material connects to the Material option of the physical shader (D).

The texture file is also used for the physical shader’s Transmission option, passing through

a range setting shader (C) and then connecting to the physical shader. The range setting

shader allows me to compress the texture values, which range from 0 to 1, to a new

min/max range of values.

I use it to decrease the overall brightness of the SSS effect, remapping the output values

to a specified range of 0.1 to 0.6. To clarify, the texture is used for varying the intensity of

transmission through the surface using a black-to-white color range, and thus I need to

remap the initial values to a smaller range so that the transmission is not completely dark

or bright at any point across the surface.

Whenever the SSS effect appears too bright, you can reduce the transmission color, for

which in some cases very low values (0.1 to 0.01) can help produce compelling results. As

A

B

C

D

Figure 14.57

Mapping the Mater-
ial and Transmission

options on the
Shark’s physical

shader

704 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 704

with correcting overexposure, reducing the transmission color can have the effect of rein-

troducing color variation and detail into the effect.

Index of Refraction

As with all refractive surfaces, the direction of light as it transmits through the surface is

based on the material’s index of refraction (IOR). As you can see, the physical shader has

an IOR option that defines how light refracts through the surface with the SSS approxima-

tions. You can see examples of refraction through a shark’s fin in Figures 14.58, 14.59, and

14.60 in the following sections.

Optical Properties
The internal scattering options define a surface’s optical properties, preferably using real-

istic values that have been acquired by experimentation. These options define the proba-

bility for absorption and scattering of a given photon that transmits internally within the

surface and are controlled with the following four options: Absorption and Scattering

coefficients, Scattering anisotropy, and Scale conversion. The host application options for

these were shown in Figures 14.38, 14.39, and 14.40. Additional options discussed earlier

also have an effect on the rendered appearance of the surface; however, these four options

are the keys to defining the material’s optical character, its absorption, and scattering

characteristics.

Absorption and Scattering Coefficients

The Absorption and Scattering coefficient options define wavelength-dependent (RGB)

characteristics for a given photon through a surface. With respect to the distance a photon

transmits through a surface and its rendered appearance, consider that a mean free path

length represents an average distance a photon will travel within a surface without exhibit-

ing any absorption or scattering. The greater the distance, the more translucent the surface

appears, whereas shorter distances exhibit more absorption and scattering, depending on

the values used for each coefficient.

The mean free path length for absorption (a) and scattering (s) is dependent on their

combined coefficient values for each RGB color (Ra+Rs, Ga + Gs, Ba + Bs = mean free

path length for R, G, and B). It is equal to the reciprocal of their combined coefficient

values (1 ÷ coeff.)

The distance measurement (units through the medium) and the actual size of the

object become very significant when specifying values for these coefficients. In other

words, real-world values will represent a real-world mean free length, and thus the CG

scene should be based on the same real-world units. Setting the units (discussed further

shortly) is accomplished with the Scale Conversion option.

physical subsurface scattering ■ 705

08547c14.qxd 10/24/07 4:42 PM Page 705

T H E A B S O R P T I O N C O E F F I C I E N T

The Absorption coefficient defines the attenuation rate of light through the turbid medium,

where higher values provide for more absorption. With high absorption rates, photons are

affected at shorter distances, meaning they lose energy more frequently where the mean

free path length is shorter. In Figure 14.58, you can see two images that are set as follows:

for both images the Scattering coeff. Option is set to 0.01 so that its effect is fairly negligi-

ble, and the Absorption coeff. is set to 0.1 in image A and 0.5 in image B. As you can see,

image B appears much darker as more light is absorbed through the medium. Also note

that decreasing the absorption to a lower value (from B to A) will show more transparency

through the surface.

A

B

Figure 14.58

Comparing an
Absorption coeffi-

cient value of 0.1 in
image A with a value

of 0.5 in image B

You can examine the absorption coefficient without casting photons in the scene, similar to

examining the absorption with the dielectric shader.

706 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:42 PM Page 706

To examine the effect of absorption without using photons as well as learn more about

the role the Material option plays, use the following steps:

1. Create a sphere and stretch it a bit so that it’s oval with some variation in volume.

Place it over a floor surface that has a texture, such as a checker. Place a source light

above the sphere.

2. You can disable all three approximations, although that’s irrelevant; as long as photon

casting is disabled, you will see quick rendered results.

3. Apply the physical shader to the sphere, and set the material color to black. The

Transmission color is irrelevant in this case; you are examining absorption of the

material without using the approximations that are affected by the Transmission

color.

4. Set the R, G, and B Scatter coefficient values to 0.001.

5. Set the Absorption coefficient to 0.01 and render. Then change the value to 0.1 and

render and then to 0.5 and render. Make note of the transparency you see with each

image.

After executing these renders, you will see how the surface mimics absorption, based

on the Beer-Lambert law discussed in Chapter 10, “mental ray Shaders and Shader Trees,”

with the dielectric shader. Higher absorption values will show more of the material color

in the surface, at a more frequent rate. Note that if the material color is initially set to white,

then the surface reflects all the light and doesn’t show any transparency. That happens

because it acts as an overall ambient light. Therefore, the brighter the material color, the

less transparent the surface. If you set the material to a dark green, you will see a greenish

tint appear as you increase the absorption rate, as with step 5 cited earlier.

T H E S C A T T E R C O E F F I C I E N T

The Scattering coefficient defines the frequency for scattered light in a turbid medium;

higher values provide for more frequent scattering. More frequent scattering produces

shorter mean free path lengths (as with absorption) and increased intensity (brightness).

In Figure 14.59 the Absorption coefficient is set to 0.01 in all cases so that its effect is fairly

negligible. In image A the Scattering coefficient is set to 0.001, in image B the Scattering

coefficient is set to 0.1, and in image C the Scattering coefficient is set to 0.8. As you see,

the increased value has two noticeable effects: less transparency and more out-scattering

(increased radiance).

Use the earlier tutorial for examining absorption to examine scattering. Set the Absorption

coefficient to 0.01 and then change the Scatter coefficient in the same way as with the

Absorption coefficient noted in step 5.

physical subsurface scattering ■ 707

08547c14.qxd 10/24/07 4:42 PM Page 707

As the scatter coefficient value increases, you can see less transparency through the sur-

face as more light is scattered internally. Notice how in images A and B the fins are fairly

transparent; however, in image C they too exhibit subsurface scattering. Thus, the higher

the value, the more frequent light scatters, and in other words, the probability of a photon

scattering within a given distance increases. With surfaces that exhibit a lot of internal

A

B

C

Figure 14.59

Comparing Scatter-
ing coefficient val-
ues where image A

is set with a value of
0.001, image B 0.1,

and image C 0.8

708 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:43 PM Page 708

scattering such as marble, the scattering coefficient is typically set high (I further discuss

values shortly). Also, since the scattering is more frequent, more light is reflected inter-

nally resulting in increased radiance in thicker areas of the surface. As you can see, the

body of the shark, which is the thickest area in the surface, shows the brightest radiance

through that region because there are several more instances of light-scattering events.

S C A T T E R I N G A N D A B S O R P T I O N C O E F F I C I E N T S I N P R A C T I C E

When setting RGB values for each coefficient, you can use empirical data or try to

“guesstimate” ad hoc values. If you look at the values for empirical data provided in the

mental ray help files (on the misss_Phyiscal shader Optical properties page), such as for

skim milk, marble, and ketchup while comparing their numerical values, you will notice

that values are significantly different and some are significantly low values (several values

past the decimal point). For example, Marble is set with these coefficients: 0.0021, 0.0041,

and 0.0071 for R, G, and B, respectively.

Clearly, it’s not practical to guess these sorts of values. You can, however, get more

acquainted through trial-and-error experimentation with the effect that higher vs. lower

values have on the visual appearance, as shown in Figures 14.58 and 14.59. While doing

so, you should consider the effect of absorption and scattering on each wavelength of

light. For example, ketchup has a distinct red color that scatters and absorbs a lot of light.

Thus, the red component has a very low absorption coefficient in comparison to the green

and blue coefficients. Also, the red scatter coefficient is significantly higher than the green

and blue scatter coefficients. Thus, most of the red wavelengths of light scatter with little

absorption compared to the blue and green wavelengths of light that possess the opposite

character.

When guessing values, your approach to controlling the appearance is based on visually

attempting to match the optical properties (visual appearance) of the surface with the

visual cues of real-world surfaces. It is recommended that you have the actual surface and

can examine it under different light conditions such as under a strong light, near a win-

dow, in more ambient light conditions, and so forth.

You can find empirical values derived by experimentation (using the same unit meas-

urements) in the mental ray help files for milk, jade, ketchup, and other materials, as well

as rather extensive lists of material optical properties in the online PDF documentation cited

earlier in this chapter. See the BSSRDF PDF file titled “A Practical Model for Subsurface

Notice that without using the shader to its full abilities (photonic scattering), you can still

hack into subsurface scattering by simulating scattering and absorption within the surface;

however, it will not handle realistic transport of light and glossy refractions through the sur-

face. It’s more like the dielectric shader’s ability to mimic absorption through the surface,

without the added ability to increase irradiance using the Scatter coefficient.

physical subsurface scattering ■ 709

08547c14.qxd 10/24/07 4:43 PM Page 709

Light Transport” (http://graphics.stanford.edu/papers/bssrdf/). These online data

lists typically provide RGB (wavelength dependent) scattering coefficients (�s) and RGB

absorption coefficients (�a). They also may include indices of refraction and anisotropic

scattering values such as with the Henyey-Greenstein g parameter discussed in Chapter 12,

“Indirect illumination,” for anisotropic scattering.

Units and Scale Conversion

The units for absorption and scattering coefficients with the physical shader, as well as

those provided in various online resources such as those cited earlier, are set using inverse

measurements of millimeter units (mm–1). When specifying values for coefficients, you

need to convert the current units you use in the scene to millimeters. Thus, if you model

in inches or centimeters, you then need to convert those units to millimeters by specifying

a conversion factor with the physical shader’s Scale Conversion option. Consider that the

model should be modeled to real scale so that when you convert, you get the real transport

properties of light in inverse millimeters. In a way, it’s similar to the Scale Conversion

option discussed earlier in this chapter with the nonphysical shaders, where in that case

you want to convert from scene units to the object’s real size, for example from inches to

feet or any other unit of measurement. In this case, you always want to convert from the

scene units (assuming it’s modeled to scale in those units) to millimeter units, as described

earlier. Table 14.1 shows some common values that may help you.

S C A L E C O N V E R S I O N V A L U E S C E N E U N I T T Y P E (1 U N I T)

10 Centimeter

304.8 Feet

25.4 Inch

1000 Meter

All the physical shader options discussed throughout these sections are affected by scale

conversion, such as the search area radius size and the depth a photon passes before enter-

ing the deep layer (diffusion approximation). If you look at Figure 14.60, you can see the

effect that Scale conversion has on the Absorption and Scattering coefficient options. In

the examples shown earlier, as well as in Figure 14.60 image B, the scale conversion is set

to 10. Thus, the shark was modeled in centimeters and converted to millimeters with a

value of 10. In image A the Scale conversion value is set to a lower value of 5, which

Table 14.1

Unit Conversions for
the Physical Shader

Both coefficient options together define the optical properties (appearance) of the surface,

based on the distance a photon travels through the medium and the effect each coefficient

has on that photon’s appearance.

710 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:43 PM Page 710

means the shark’s body is smaller. As a result, you can see there is less absorption and scat-

tering because a smaller surface provides less volume for scattering and absorption events.

Isotropic and Anisotropic Scattering

For anisotropic vs. isotropic scattering, the same g parameter (the Henyey-Greenstein

phase function discussed in Chapter 12, “Indirect Illumination,” in the “Participating

Media (PM) Effects” section) is used. In both cases (PM shader and the physical shader),

I’m simulating the transmission of light as it interacts with particles within a turbid

medium. As discussed in Chapter 12, “Indirect Illumination,” back scattering means that

more light reflects backward toward the source light, forward scattering transmits more

light through the particle, and isotropic scattering refers to a relatively equal (diffused)

amount of light scattering in 360° around a particle.

A

B

Figure 14.60

Comparing a Scale
conversion value of
10 (A) with a value
of 5 (B)

physical subsurface scattering ■ 711

08547c14.qxd 10/24/07 4:43 PM Page 711

With the physical shader, isotropic or anisotropic (forward or backward) scatter set-

tings are defined with the Scattering anisotropy option shown in Figures 14.38 to 14.40

(called the ScatteringDir property in XSI) using values from -1 to 1. Values from 0 to 1 are

used for forward scattering, and negative values between 0 and -1 are used for backward

scattering, just as with the PM shader’s g1 and g2 options. A value of 0 provides isotropic

scattering.

In Figure 14.61 you can see an example of single scattering (only the single-scattering

approximation is enabled). A point area light is located in the center of the candle where

the flame should appear. As you can see, light transmits through the surface where it is

most pronounced at the top of the candle. In image A the Scattering anisotropy is set to

0.65 (forward scattering), and in B it is set to a negative value of -0.65 (backward scatter-

ing). In this case I wanted the candle to appear brighter internally where the light source

appears so that more light reflects back toward the source light than through the candle as

with forward scattering. You can see a more polished example with the candle in the color

gallery that used the same backward scattering value of -0.65.

Scattering Diagnostics

For multiple and diffusion SSS approximation, the mental ray verbosity info messages

provide a lot of insight for diagnosing and troubleshooting the SSS effect. These messages

are divided into the different scatter algorithms covering the shader optical properties,

the raytrace properties from ray marching, photon statistics, and more. They are also

As a general rule of thumb, most turbid materials possess more forward scattering than

isotropic or back scatter characteristics, such as with values that range from 0.6 to 0.95.

A B

Figure 14.61

Single scattering
with an area light
acting as the can-

dle’s flame (illumina-
tion source)

showing forward
scattering under

image A and back-
ward scattering

under image B

712 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:43 PM Page 712

presented on a wavelength basis (RGB) telling you more about the mean free path length

for each component as well as the number of photons used in each instance for each RGB

channel. Here is an example of photon diagnostic output (numbers cropped to fit):

PHEN 0.4 info : “misss_physical1” photon statistics:

PHEN 0.4 info : received: 44499

PHEN 0.4 info : channels: 0 1 2

PHEN 0.4 info : stored: 16874 15382 14511

PHEN 0.4 info : stored: 0 56 211 isotropic

PHEN 0.4 info : propagated: 5127 3117 684

PHEN 0.4 info : scatter depth:

PHEN 0.4 info : minimum: 0.0 0.0 0.0

PHEN 0.4 info : maximum: 7.0 7.0 4.0

PHEN 0.4 info : mean: 0.16 0.060 0.011

PHEN 0.4 info : variance: 0.28 0.096 0.019

If you look at this output, you can learn the following (in the same order as presented

earlier):

• The title tells you that these are photon statistics, informing you on how they inter-

acted with the surface.

• received is the total number of photons that hit the surface.

• channels tabulates the data to RGB channels as 0, 1, and 2 so that anything listed—for

example, under 1—refers to the green channel.

• stored lists the per-channel number of photons stored within the volume and used

with the multiscatter approximation.

• scatter is the same for the diffusion approximation. You can tell because it’s post-

fixed with the word isotropic (after 211 earlier), which indicates it’s the diffusion

approximation.

• propagated is the number of photons that exit the volume back into the scene. As with

the candle example presented earlier, it indicates how many caustic photons illumi-

nated the walls below the source light after passing through the candle.

• The scatter depth title indicates that the following information relates to how pho-

tons behave within the volume. That information includes the following:

• minimum and maximum depth photons penetrate for the RGB channels.

• The average mean free path length (mean) of each photon before absorbing or

scattering.

• variance indicates the difference for the mean free path length showing the max-

imum mean free path length for each channel.

physical subsurface scattering ■ 713

08547c14.qxd 10/24/07 4:43 PM Page 713

Once you are comfortable with the physical shader options, I recommend you experi-

ment with the shader while looking at different diagnostic messages output in the log. If

you use the tutorial noted earlier for testing absorption and scatter coefficients (when the

approximations and photon casting are off), you will see only the optical properties’ out-

put data update as you test different values, showing the RGB values for the mean free path

length and the extinction coefficients through the material. It’s an easy and fast approach

for experimenting with this shader and its output. With the photon output shown earlier,

it can help identify problems such as too few photons being absorbed or scattered, as well

as the distances they pass before a scatter or absorption event takes place.

714 ■ chapter 14: Subsurface Scattering

08547c14.qxd 10/24/07 4:43 PM Page 714

About the Companion CD

In this appendix:

■ What you’ll find on the CD

■ Customer care

A P P E N D I X

08547bapp01.qxd 10/24/07 4:44 PM Page 715

What You’ll Find on the CD
The following sections are arranged by category and provide a summary of the software and

other goodies you’ll find on the CD. If you need help with installing the items provided on

the CD, refer to the installation instructions in the “Using the CD” section of this appendix.

Some programs on the CD might fall into one of these categories:

Chapter Files
All the files provided in this book for completing the tutorials and understanding concepts

are located in the ChapterFiles directory and work with Maya 8.5, XSI 6, and 3ds Max 9

and later (some files will also work with other versions, depending on the program’s own

forward- and backward-compatibility).

Because this book is focused on using mental ray and the mental ray options, most of the

chapters don’t require tutorial files. In the case that a complex shader network is presented,

appropriate scene files and textures are provided for each host applications in the relevant

chapter folder. Note that some of these files are only provided for the host applications that

support that type of shader tree. In addition, some figures that require viewing in color are

made available in their relevant chapter folder. The additional content on the CD includes

custom shaders, HDR images, and articles that are aimed at assisting you to explore mental

ray and learn more about rendering and compositing 3D images.

Remember you need to load scene and texture files from the CD into the project folder

of the software application you are using.

Custom Shaders
In the Custom Shaders directory you will find a collection of custom shaders as ZIP files

that are kindly provided by their creators. These shaders are also distributed freely over

the internet from their web pages. The usage of these shaders is unrestricted; in the ZIP

files you will find additional licensing information from the authors of these shaders, par-

ticularly when the source code is included. These authors do not provide technical sup-

port nor any guarantee that the shader will function correctly on your system; it is up to

you to properly install and use these shaders. In these files you will also find help files,

where provided. Some of these shaders, including installing shaders, are covered in the

book, particularly in Chapters 1 and 10. Note that most of these shaders are provided

solely for Windows 32-bit systems. Some are also provided for 64-bit systems, as noted

below and in the relevant folders on the CD.

The Custom Shaders folder includes the following folders:

Binary Alchemy

The Binary Alchemy shaders (www.binaryalchemy.de) are provided by Holger Schön-

berger. The folder includes Maya and XSI folders that include shaders for each application.

716 ■ appendix: About the Companion CD

08547bapp01.qxd 10/24/07 4:44 PM Page 716

3ds Max users, see Chapter 10 for installing these shaders in 3ds Max. The help files for

these shaders are also included; open the help_BA_Shader_Collection_essential.html file

found in this folder. These shaders support both 32-bit and 64-bit Windows systems.

Puppet Shaders

The Puppet shaders (http://puppet.cgtalk.ru/index_e.shtml) are provided by Pavel

Ledin. The folder includes Maya, 3ds Max, and XSI ZIP files with shaders and source

code. The help files are in the docs folder, open the index.html file. These shaders support

both 32-bit and 64-bit Windows systems as indicated with the ZIP file titles.

Pixero

The Pixero shaders (www.pixero.com) are provided by Jan Sandström. The folder includes

Maya and 3ds Max, and Maya (only) folders that include shaders for both applications.

The Maya and 3ds Max folder includes shaders authored by Jan Sandström with appropri-

ate install files for each host. The Maya folder includes shaders from Jan Sandström and

AETemplate files for Maya. They do not include the complied shader (DLL). You will need

to get the DLL file from the shader authors and then use these additional files to install the

shaders. For a complete listing of web pages see Chapter 10 Table 10.1. Note that for the

T2S_Illumination_1.1.ZIP file, the DLL can be found in the TEK2SHOOT folder. Some of

these shaders support both 32-bit and 64-bit Windows systems as indicated with the info

text files included within the ZIP files.

LMV

This folder has the Maya and AETemplate files provided by Horvátth Szabolcs

(www.impresszio.hu/szabolcs) that are required for installing the lm2DMV shader

discussed in Chapter 8. The DLL file for Maya and XSI can be downloaded from La

Maison at www.alamaison.fr/3d/lm_2DMV/lm_2DMV_ref.htm.

Horvátth

These shaders are provided by Horvátth Szabolcs (www.impresszio.hu/szabolcs). The folder

includes Maya shaders for all platforms that can also be installed in XSI and 3ds Max. 3ds

Max users can find appropriate include files at www.maxplugins.de or www.mymentalray.com.

The ForMax folder includes the file required for installing the reflection utility shader in

3ds Max.

TEK2SHOOT

The shaders provided by TEK2SHOOT (www.tek2shoot.com) include Maya and XSI folders

with shaders for each application. They support 32-bit and 64-bit systems, as indicated with

the ZIP file titles. XSI users will find the unexposed mental ray shaders required for the

what you’ll find on the cd ■ 717

08547bapp01.qxd 10/24/07 4:44 PM Page 717

tutorials in Chapter 10 in this folder. The T2S illumination shader (32-bit systems only)

is also included; Maya users can get the DLL here and the include files are in the Pixero

folder. The T2s_illum_files&presets folder includes Fresnel files and presets for the T2S

illumination shader.

HDR Images
In this folder you will find HDR images that are discussed in Chapter 13. There is also an

LDR (low dynamic range) folder that contains standard image files that you can view while

reading Chapter 13. It’s there so you won’t have to open \ HDR images in Photoshop or

HDRSHOP to view them. These images have been created by the author and you may use

them for any purpose. If you distribute them please credit the author, Boaz Livny.

HDRI Articles
This folder includes articles written by Boaz Livny for the HDRI 3D magazine, kindly pro-

vided with permission by DMG publishing. You will find two PDF files that include an

article on compositing OpenEXR images with Nuke, and mental ray texture baking with

Maya. Even though the article is specific to Maya, XSI and 3ds Max users can gain a lot of

insight on special-purpose mental ray shaders and texture baking.

Surface Approximation Methods
A bonus chapter, SurfaceApproxMethods.pdf introduces you to the tessellation process

that converts 3D surfaces into polygons during rendering.

Customer Care
If you have trouble with the book’s companion CD-ROM, please call the Wiley Product

Technical Support phone number at (800) 762-2974. Outside the United States, call

+1(317) 572-3994. You can also contact Wiley Product Technical Support at http://sybex

.custhelp.com. John Wiley & Sons will provide technical support only for installation and

other general quality control items. For technical support on the applications themselves,

consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please

call (877) 762-2974.

718 ■ appendix: About the Companion CD

08547bapp01.qxd 10/24/07 4:44 PM Page 718

#
2D motion vectors, 280–282,

281–282
2D panorama images, 616
3.4 mode, 575
3D

gamma correction, 87–89
geometric optics, 300–301
HDR images, 307
HDR panoramas, 617–620,

618–620
photon maps, 474–475
polarization effects, 301–302, 301
position vectors, 424
shadow algorithms, 227
texture projections, 411–412, 412
virtual cameras, 104

3ds Max
ambient occlusion, 623, 623,

627–630
binary alchemy shaders, 349–350
brushed metals, 402–407,

402–403, 405
BSP rendering, 194
bump maps, 417
camera settings, 159

clipping, 123
depth of field, 161–162, 162
Parameters, 159–161, 159

camera shaders, 120–121,
120–121

colored glass effects, 363, 363
command line, 24
compositing light passes, 498
DGS and dielectric shaders,

369–370
exporting from, 16–17
FG, 581, 592–594, 592

environments, 594–595, 595
HDR image exposure,

595–596, 595
physical shaders, 608–610,

608–609
points diagnostics, 564–565

filter settings, 180
frame buffer settings, 99–101,

100–101
Fresnel shader trees, 373–374
gamma correction, 87, 99–100
glossy shaders, 376
HDR images, 307, 595–596,

595, 615
indirect illumination, 522–523,

522–523
initialization files, 20
integration with, 14–15
light maps, 669, 669
light occluding surfaces, 672
light profiles, 225–226, 226
light settings, 219–221, 219–221
mia materials, 407
monolithic materials, 328, 328
motion blur, 278–280, 279
multipass rendering,

129–130, 130
Oren-Nayar diffuse shading, 333
output shaders, 107
panoramas, 617
phenomenon shaders, 330
photon-emitting lights, 494
photon shaders, 487–488
rasterizer sampling, 183, 183
raytracing settings, 51, 51,

188, 189
sampling settings, 169–170
scanline rendering, 41, 41
shadows

global settings, 251–253, 252
local host settings, 255–257,

255, 257
shadow map, 239

specular shading reflection
color, 334

subsurface scattering, 640
misss_fast_lmap, 666–667
misss_fast_simple, 655
misss_set_normal,

651–652, 651

misss_skin_specular, 643
physical shaders,

682–683, 683
task size, 43
textures, 457, 457
verbosity level, 10, 11

3dsmaxcmd command, 24
32-bit compositing, 81–83, 82
32-bit floating-point data types, 67

A
absorption

dielectric shaders, 359
light scattering, 526
materials, 700
photon shaders, 483–484, 484
physical subsurface scattering,

687, 692, 705–707, 706,
709–710

accelerated shadows, 251
acceleration raytrace settings,

188–190, 189
accuracy

caustics, 511–514, 512–513
detail shadow maps, 250
FG, 571–573, 572
global illumination, 500–502,

501–502
Maya FG, 582
mia material for, 407–409
photon shaders, 543
shadows, 258
XSI, 588–589

adaptive sampling, 169–173, 169
Adobe RGB color space, 299
aerial perspectives, 602–603, 603
aesthetics in internal scattering, 658
aether, 285
After Effects program, 81
Algorithm Control attributes, 642
all command in hardware

rendering, 60
alpha gradients, 79, 79

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a topic.
Italicized page numbers indicate illustrations.

08547bindex.qxd 10/24/07 4:45 PM Page 719

alpha mode
color clipping, 79–82, 79
Maya FG, 586

Alt attributes, 437
ambient color

compositing light passes, 498
misss_fast_lmap, 667
misss_fast_simple, 652
shaders, 331
subsurface scattering, 701, 701
XSI FG, 587, 587

ambient occlusion, 549, 622
bent normals, 632
compositing, 628–629, 629
environmental sampling,

630–631, 630–631
FG, 550, 551
global illumination, 505
networks, 626–628, 627–628
options, 623–625, 624–625
reflective, 625–626, 626,

629–630, 629
texture, 622–623, 623

amplitude, wave, 289, 289
Angle attribute for brushed metals

highlights, 391
angle of view, 141, 147
angular panorama images, 620, 620
animations

FG, 561
light scatter, 534–535, 534

anisotropic reflection and scattering,
340–341, 340
brushed metals. See brushed

metals
BSDF, 313, 317–319, 318
DGS shaders, 355–356, 356
glossy shaders, 381
orientation and scale, 340–341,

391, 398
physical subsurface, 711–712,

712
PM effects, 525–528, 526, 528,

535–536, 535
Ward shaders, 393–394, 393–394

anti-aliasing, 163
BSP, 193
frame buffers, 76
motion artifacts, 463
purpose, 165–166, 165–166

apertures, 141
3ds Max, 160–161
f-stops, 134–135

settings, 134
XSI, 154–155

Appel, Arthur, 41
application files, 18
approximation, diffusion

photon control, 696–700,
697–698, 700

physical subsurface scattering,
686–688, 687–688

architectural CAD rendering, 4
architectural material, 404–407
Architectural shader library, 323
area lights, 201

3ds Max, 221, 221
characteristics, 201–202, 202
distance-based shadows,

204–206, 204–205
point and spot area, 206, 207
sampling, 210–213, 210–212
settings, 207–208
shapes, 208–209, 209
visibility, 209
wrapping, 203–204, 203
XSI, 218–219, 218

arrays of area lights, 202
artifacts

diffusion photons, 699
flickering, 172, 561, 572,

579–580
frame buffers, 68
motion blur, 273, 273
point sampling, 463
self-shadowing, 242–243, 243
shimmering, 615
speckles, 612–614, 612–614, 621

ASCII export options, 18
aspect ratios

3ds Max, 160–161
film, 133, 135, 145–146, 145
image, 135
Maya, 149–150, 149
pixel, 136–137, 136–137
XSI, 153–155

Attribute Editor window, 146, 146
Auto Render Clip Plane option, 147
automatic mode

FG rendering, 567, 572–573
XSI lens shader, 158

autovolume option, 544
Available Channels tab, 96–97, 97
AverageDepth message, 191–192
AverageLeafSize message, 191–193

B
back features in internal scattering

depth, 660–662, 661
layers, 656–658, 656
radius, 659, 659

back material, 387–389, 387–388
back scattering, 641
background

FG, 551, 551
physical sky shaders, 602
XSI, 590–591

backward raytracing technique, 555
baking

light, 5
light maps, 666
normal maps, 72

balance
light

indirect illumination,
478–479, 479

light transport, 342–343
sampling, 177–178, 177

banding, 163, 172, 172
barrel distortion lenses, 104
Base Color attribute, 363
Base_material attribute, 379
base shaders

library, 323–325
math, 330–341, 333, 335,

338–340
basis vectors, 424
BAT (.bat) executable files, 25, 25
batch rendering, 9, 23–25
Beer-Lambert law, 319, 321, 707
bent normals, 632
Bias algorithm, 242–243, 246–247,

247–248, 258
Bias attribute, 373
bidirectional reflectance distribution

function (BRDF), characteristics,
311–312, 311

bidirectional scattering distribution
function (BSDF), 309
anisotropic vs. isotropic

reflections, 317–319, 318
bidirectionality, 312
diffuse, glossy, and specular

surfaces and reflections,
312–317, 314–317

diffuse, specular, and glossy
transmittance, 319–321, 320

distribution, 312–313

720 ■ alpha mode–bidirectional scattering distribution function (bsdf)

08547bindex.qxd 10/24/07 4:45 PM Page 720

Fresnel equations, 321–322, 322
functions, 311–312, 311
isotropic and anisotropic

dispersion, 319
overview, 309–310

Bidirectional Surface Scattering
Distribution Function (BSSRDF)
model, 634–636, 635

bidirectional transmittance
distribution function (BTDF),
311, 311

bilinear interpolation option, 467
binary alchemy shaders, 348–350
binary export options, 18
Binary Space Partition (BSP)

algorithm, 185–186, 186, 188
fine-tuning, 191–194
rendering, 194–195, 194
size, 189
voxel depth, 190
XSI, 193–194

birefringence effects, 301
bit depth, 62

and data types, 64–65
and file size, 65
images, 67–68, 308

bits, 64
black color in bump mapping, 415
blackbody radiation, 291
bleeding, 27, 475, 481, 483
Blinn shaders, 310, 337–338, 340
Blinn-Phong shaders, 337
blockexcerpt declaration, 110
blocks, sampling, 167–168, 168
blur. See motion blur
Blur All Objects option, 279
blurriness, 354
Box filters, 180–181, 181
BRDF (bidirectional reflectance

distribution function),
characteristics, 311–312, 311

brightness in HDR images, 308
brushed metals, 390–391, 391

3ds Max, 402–407, 402–403, 405
highlight orientation, 391–392,

391–392
Maya, 393–396, 393–394
texture maps, 392, 392
XSI, 397–402, 397, 400

BSDF. See bidirectional scattering
distribution function (BSDF)

BSP. See Binary Space Partition
(BSP) algorithm

BSSRDF (Bidirectional Surface
Scattering Distribution Function)
model, 634–636, 635

BTDF (bidirectional transmittance
distribution function), 311, 311

buffers. See frame buffers
bump factors, 647
bump mapping

marble shader tree, 677–678
normal maps, 72, 416–417
standard, 415–416
subsurface scattering, 646–650,

647–649
textures, 415–417

bytes, 64

C
cache, geometry, 7–8
CAD applications, 4
Camera Aperture attribute, 147
camera shaders

3ds Max, 120–121, 120–121
Maya, 112–117, 112–116
XSI, 117–119, 117–119

cameras, 131
3ds Max settings, 159

clipping, 123
depth of field, 161–162, 162
parameters, 159–161, 159

aperture, 135, 147
declaration blocks, 106–107
depth of field and f-stops,

141–143, 142
depth sorting, 122–123, 122–123
environment shaders, 109–110
exposure levels, 142–143
field of view, 140–141, 141
film aspect ratios, 145–146, 145
film back, 137–138, 138
focal depth and perspective,

138–140, 139
lens shaders, 108–109, 109
lenses, 138–141, 139
Maya settings, 146, 146

aspect ratios, 149–150, 149
Camera Attributes rollout,

146–147
clipping, 123
depth of field, 150–152, 150

Film Back rollout, 147–148
resolutions, 148–149, 148

motion blur, 260
output shaders, 107–108
panoramas, 618, 618
shutter speed, 133–134
transport mechanism, 132, 133
transport speed, 132–133
virtual, 104–105, 105
volume shaders, 110–111, 111
XSI settings, 152

clipping, 123
depth of field, 156–159,

156–157, 159
Primitive tab, 153, 153
Projection Plane tab,

153–155, 153
render, 155–156, 155–156

capability parameters in hardware
rendering, 58–59

Caster property, 565
caustics, 27, 519

accuracy and radius, 511–514,
512–513

fine-tuning, 547–548, 548
global illumination, 515–516
indirect illumination, 476,

509–516, 510, 512–515, 520
irradiance, 514–515, 514–515
photon-emitting lights, 490–491,

493–494
physical shaders, 679
PM effects, 541–542, 542,

546–548, 546–548
shadows and stained glass,

510–511, 510
Cg shading language, 52, 54–55

advantages, 55, 56
hardware rendering, 60

channels
and color values, 62–63
frame buffers, 96–97, 97
HDR images, 308

chdir command, 23, 25
chmod command, 25
chromatic aberrations, 104, 284, 302
chromatic adaptation, 292
chromaticity, 297–299
chromaticity diagrams, 299, 299
CIE 1924 photopic luminosity

function, 297
circle of confusion, 157–158

bidirectional surface scattering distribution function (bssrdf) model–circle of confusion ■ 721

08547bindex.qxd 10/24/07 4:45 PM Page 721

claws, camera, 132
clipping planes

3ds Max, 159
camera, 122, 122

CMY colors, 431
CMYK color model, 63
coating shaders, 319
Col_out attribute, 357–359
color

ambient. See ambient color
bleeding, 27, 475, 481, 483
brushed metals, 395–399,

404–405
and channels, 62–63
clipping, 79–83, 79, 82
frame buffers, 68, 76
fringing, 285–286
internal scattering, 657–658
interpolation, 559
light, 290–291
light scattering, 534
mapping, 404–405
marble shader tree, 676–677
materials, 703
Maya light settings, 214
numerical values, 66–67
photon shaders, 483–484
remapping, 395–397
with shaders, 331
shadows, 257, 257
specular shading model

reflection, 334
subsurface scattering, 701, 701

misss_fast_simple, 652
misss_set_normal, 649

texture vector shaders, 431
Color_base attribute, 649
Color chooser parameter, 593
color-coded normals, 430–431
Color Gain attribute, 586
color-matching function, 298
Color_Math_Basic shader, 629
color spaces, 298–299, 299
color temperature, 290–292

3ds Max, 219–220
Maya, settings, 213

Colorclip attribute, 75, 78–83, 79,
82, 115

colored glass effects, 360–364,
360–361, 363

Combined attribute, 50, 589

command-line rendering, 21–25,
25, 60

Common tab, 17, 90–92
compilation

dynamic, 54
HDR images, 304–305, 304
static, 53

components, 18
compositing

32-bit images, 82–83, 82
ambient occlusion, 628–629, 629
layers, 654–655
light passes, 498
and premultiplication, 77–78

Compression option, 605–606, 605
Cone attribute, 214
cones, light, 291
Connect Attribute command, 152
Contour shaders, 323, 326
contrast ratios, 66, 142
contrast threshold, 164, 169–171,

177–178, 177
control shaders, 615
Cook-Torrance shaders, 292,

309–310, 312
brushed metals, 393, 393, 395
marble shader tree, 677–678
photon shaders, 484–486
specular shaders, 336–338, 339

coordinate space, 6
coordinates

brushed metals, 392–395,
397–400, 400

explicit and implicit, 426–427,
427, 457–458, 457

filtering, 464
remapping shaders, 419–420
texture projections, 410–411,

411, 413–415, 413
texture vector shaders,

426–428, 427
textures, 454

Cornell box scheme, 500–501, 501
Cosine Exponent attribute, 214
cosine rule, 447–448
coverage frame buffers, 73
critical refraction angles, 319
Cube2Cross tool, 618–619
cubic images, 109
Cubic_mapping_6 shader, 119
current energy of light, 291
current pass networks, 119, 119

Current Pass option, 11
custom mode for XSI lens

shader, 158
custom passes, 101–103, 102
custom shader installation,
346–351, 351
cylinder shape in area lights, 208

D
data types, 62, 64–65
daylight system, 608
decay over distance, 200
declaration blocks, 106–107
declaration files, 18–20
deep scattering, 636, 699–700
Default Max setting, 169
Default Min setting, 169
default scanline renderers, 37
defaults, sampling, 173
Deformation Blur option, 277
deformation motion, 267–269,

269, 274
delays, shutter, 261
depth

3ds Max, 593
internal scattering, 660–662, 661
photon control, 698–699
physical subsurface scattering,

687–692, 689–691
voxels, 187, 190

depth-based shadows, 228, 235, 237
algorithm overview,

242–243, 243
Bias algorithm, 246–247,

247–248
shadow map shadows, 236–241,

236–239
soft shadow maps, 241–242,

241–242
Woo algorithm, 244–246,

244–246
depth fade effect, 126
depth of field, 133

3ds Max, 161–162, 162
cameras, 141–142, 142
lens shaders, 143–144
Maya, 150–152, 150
XSI, 156–159, 156–157, 159

depth sorting in cameras, 122–123,
122–123

Depthmap attribute, 674

722 ■ claws–depthmap attribute

08547bindex.qxd 10/24/07 4:45 PM Page 722

dermis, 663–664, 663
Desaturate option, 75, 83–84, 83
Detail Samples attribute, 258
detail shadow maps, 248–251,

249–250, 253, 270, 271
device aspect ratios, 149–150, 149
device-referred images, 304
DGS shaders. See diffuse, glossy, and

specular (DGS) shaders
diagnostics

BSP rendering, 194–195, 194
FG points, 563–565
photons, 497, 499, 519, 521,

523, 523
physical subsurface scattering,

712–714
sampling, 173–177, 174–176

dielectric films, 285
dielectric shaders, 352, 356–357

absorption in, 359
colored glass effects, 360–364,

360–361, 363
glass rendering with,

358–359, 358
options, 357–358, 357

dielectric substances, 284
diffraction, 284, 285, 286
diffuse, glossy, and specular (DGS)

shaders, 352, 352
glossy anisotropic scattering,

355–356, 356
glossy component, 354–355
vs. glossy shaders, 383–384, 384
specular component, 352–354,

353–354
diffuse bounces

3ds Max, 593
single and multiple,

558–559, 558
diffuse color

brushed metals, 398–399,
403–405, 403

misss_fast_shader, 641–642
photon shaders, 483

Diffuse Gamma Curve attribute, 667
Diffuse Input attribute, 641
Diffuse option

internal scattering, 662
photon shaders, 482
XSI FG, 589

diffuse shading, 200, 331–333,
333, 641

diffuse surfaces and reflections,
312–315, 315

diffuse transmittance, 319–321, 320
Diffuse Weight attribute, 641–642
diffused shadows, 202
diffusion approximation

photon control, 696–700,
697–698, 700

physical subsurface scattering,
686–688, 687–688

diffusion depth, 689–692, 690–691
digital perception, 303–304
digital sensors, 132
digital video recording (DV)

devices, 136
direct light energy and falloff,

489–490
direct light participating media,

531, 531
ray marching sample level, 539
scatter and extinction options,

531–535, 532–534
scene and shader setup, 540–543,

540, 542
uniform vs. nonuniform

scattering, 538–539, 538
Direct3D shaders, 55, 56
direction

lights, 198
vectors, 422–424, 423

DirectX, 52–53
disabling scanline rendering, 39
Disc_r attribute, 467
disc shape for area lights, 208
dispersion

isotropic and anisotropic, 319
light, 300

Displacement shaders, 326
display, HDR, 304–307, 304–306
Display Film Gate attribute, 148
Display Options attribute,

148–149, 148
Display Resolution attribute, 148
Distance attribute, 152
distance-based shadows, 197, 202,

202, 204–206, 204–205
Distance from Camera attribute, 151
Distance to Output Camera

attribute, 156, 156
distribution in BSDF, 312–313
dithered frame buffers, 74, 84
dollying vs. zooming, 140

dot products
matrix multiplication, 425
shaders, 332
texture vector shaders, 432–435

double slit experiment, 284, 286
Draft Mode (No Precomputation)

parameter, 593
DV (digital video recording)

devices, 136
DVD formats, 145–146
dynamic compilation, 54

E
Eccmax attribute, 467
Edge_factor attribute, 379
edge following, 178
Edge Weight attribute, 643–645
Effects tab, 121
efficiency, mia material for, 407
Einstein, Albert, 288
electromagnetic radiation, 284,

287–290, 290
elliptical filtering, 465–467, 466–467
emission in light scattering, 525
empirical BSDF models, 312
empirical shaders, 310
empty space in raytracing rendering,

47–48
Enable Effects property, 119
Enable Final Gather parameter, 592
Enable Gamma/LUT Correction

parameter, 99
Enable Map Visualizer attribute,

517–518, 518, 583
Enable Motion Blur option, 276
enabling

hardware rendering, 60
raytracing rendering, 48
scanline rendering, 39
scatter algorithms, 684–685, 684
shadow maps, 255–256, 255

energy
light, 288, 294–295
photon-emitting lights, 489–490

Energy color property, 493
entertainment applications, 4–5
Env Sphere shader, 372
Environment and Effects window,

121, 121
Environment_color attribute, 378
Environment Mode property, 590

dermis–environment mode property ■ 723

08547bindex.qxd 10/24/07 4:45 PM Page 723

environments
FG

3ds Max, 594–595, 595
Maya, 585–586
XSI, 590–591, 590

HDR images. See High Dynamic
Range (HDR) images

raytracing reflections, 47–48
sampling

ambient occlusion, 630–631,
630–631

glossy shaders, 381
shaders

3ds Max, 121, 121
cameras, 109–110, 113
materials, 326
XSI, 118–119, 118

epidermis, 663–664, 663
Eulumdat profiles, 221
Exact motion blur setting, 274
Expert attribute, 588
explicit coordinates, 426–427, 427,

457–458, 457
Explicit Map Channel option, 458
explicit projections, 410, 414
explicit properties, 456–457, 456
explicit UVW mapping and UV sets,

458–459, 459
exponential notation, 67, 308
exponents

photon-emitting lights,
489–490, 493

XSI lighting, 217–218
Export on Render option, 17
Export Selected Items Only

option, 15
exporting

custom passes, 101–103, 102
frame buffers, 101, 101
.mi files, 15–18, 16–17

exposure
camera levels, 134–135, 142–143
HDR images, 621

3ds Max, 595–596, 595
XSI, 591–592, 591

external scattering, 656–657, 656
external shading, 651–652, 652
extinction options

direct light participating media,
531–535, 532–534

photon shaders, 544
eyes, 291

F
f-stops, 134–135, 141–143, 142, 151

3ds Max, 162
HDR images, 303
XSI, 157

Facing Ratio attribute, 372
factor option in light shaders, 199
falloff

FG, 569–571, 569, 593
glossy shaders, 378, 386
internal scattering, 660, 660
misss_fast_simple shader,

653–654
photon-emitting lights, 489–490
XSI, 589

Falloff Start attribute, 583
Falloff Stop attribute, 583
Far Clip Plane attribute, 147
Faraday, Michael, 287
fast lookup option, 567
fast motion blur, 264, 266–267, 267
Fast Skin Material shaders, 640
FG. See Final Gather (FG)
fg_copy utility, 581
FG Diffuse Bounces attribute, 584
fg_map utility, 581
FG maps, 559
field of view (fov), 32, 137,

140–141, 141
3ds Max, 159–161
virtual cameras, 104
XSI, 153–154

Field of View Angle option, 153–154
File Mode attribute, 92
File Name Postfix attribute, 92
file size and bit depth, 65
File Size Depth attribute, 673
File Size Width attribute, 673
film, 132. See also cameras
Film Aperture option, 154–155
film aspect ratios, 133, 135,

145–146, 145
film back, 132, 133, 135, 137–138,

138, 140, 141, 147–148
film gate, 132, 133, 147
film gate ratio, 135
filter lookup shaders, 420–421
filtering, 31–33, 32, 463–464, 464

elliptical, 465–467, 466–467
FG, 568–569
Maya, 583
options, 464–465

process, 178–180, 178
settings, 164, 164, 180
speckles, 613, 613
types, 181, 181
XSI, 589

Final Gather (FG), 28, 549
3ds Max, 592–594, 592

environments, 594–595, 595
HDR image exposure,

595–596, 595
physical shaders, 608–610,

608–609
points diagnostics, 564–565

accuracy, 571–573, 572
advanced techniques, 596
ambient occlusion. See ambient

occlusion
basics, 555–556, 556
falloff distances, 569–571, 569
fundamentals, 550
and global illumination, 505,

550, 565–566, 566
HDR. See High Dynamic Range

(HDR) images
light-emitting surfaces, 551–554,

552–554
maps, 576–581, 577–578, 580
Maya, 582–584, 582, 584

mode setting, 584–586, 584
physical shaders,

606–607, 607
points diagnostics, 564–565

mia_exposure_simple, 603–606,
604–605

modes, 573–576
options and techniques, 567–569
paths, 556–559
physical shaders

sky, 601–603, 601, 603
sun, 596–601, 597–598

points, 555–559
diagnostics, 563–565
diffuse bounces, 558, 558
generating, 557, 557
interpolation, 562, 562
precomputed and render-

time, 563, 563
in sampling, 560–561, 560

rendering, 550–554, 551–554
sampling, 559–561, 560–561
shimmering artifacts, 615
specular highlights, 554, 554

724 ■ environments–final gather (fg)

08547bindex.qxd 10/24/07 4:45 PM Page 724

statistics, 564
studio lighting, 553–554, 553
XSI, 587–589, 587–588

environments, 590–591, 590
HDR image exposure,

591–592, 591
physical shaders,

607–608, 608
points diagnostics, 564–565

Final Gather Override attribute, 565
Final Gather Receive attribute, 565
Final Gathering attribute, 582
fish-eye lenses, 105, 617, 620
flags, command line, 22
Flength attribute, 157
flickering, 172, 561, 572, 579–580
floating-point channel frame

buffers, 70
floating-point data types, 64
floors, 383, 384
flowcharts

hardware rendering, 57–58, 57
premultiplication, 78

flux density, 294–295, 295
focal depth, 138–140, 139, 142
Focal Distance in Inches option, 158
focal length

cameras, 137–138, 140–141, 141
Maya, 147
XSI, 153–154, 158

focus distance, 151–152
focus planes, 151, 162
Focus Region Scale attribute, 151
force command, 60
forward raytracing, 477, 555
fov (field of view), 32, 137,

140–141, 141
3ds Max, 159–161
virtual cameras, 104
XSI, 153–154

Fpoint attribute, 157
fps (frames per second), 132
fractional numbers, 64
fragment stage in hardware

rendering, 56–57, 57
frame buffers, 6, 33, 65–66

color values and sampling, 68
coverage, 73
exporting, 101, 101
exporting custom passes,

101–103, 102
HDR images, 67–68

motion vectors, 71
normal vectors, 71–72, 71
normalized values, 66
object labels, 73
outputting, 124–125
primary and user, 69, 74
sampling, 68, 129, 167
settings, 74–75, 89–90

3ds Max, 99–101, 100–101
color clipping, 78–83, 79, 82
desaturation, 83–84, 83
dithering, 74, 84
gamma correction, 74–75,

84–89, 86
interpolation vs. padding, 75
Maya, 90–93, 90, 92
premultiplication, 75–78, 77
XSI, 93–99, 93, 95–97, 99

super-whites, 66–67
Z depth, 70, 70

frame time for shutters, 261–262
frames, incremental, 17–18
frames per second (fps), 132
freeze rebuild value, 578–579
frequency, waves, 288–289, 289
Fresnel, Augustin Jean, 286–287, 321
Fresnel equations and reflections,

321–322, 322, 365
glossy shaders, 379–381, 380
light, 287
materials, 702–703
shader trees, 370–375, 370–371
specular shading models, 338
texture vector shaders, 432

front features in internal scattering
layers, 656, 657–658
radius, 659, 659

front scattering, 641
Front Weight attribute, 676–677
Fusion software, 305

G
Gain settings

color, 586
Fresnel shader trees, 373
mia_exposure_simple, 605, 605

game applications, 5–6
gamma correction

3D, 87–89
3ds Max, 99–100
frame buffers, 74–75, 84–89, 86

indirect illumination, 506–508,
507–508

mia_exposure_simple, 605–606
misss_fast_lmap, 667
texture files, 87–88
workflow considerations, 88–89
XSI, 94

GAPM module, 13
Gauss filters, 180–181, 181
Generate Caustic option, 523
geometric optics, 289, 300

chromatic aberration, 302
light dispersion, 300

geometry cache, 7–8
GI. See global illumination (GI)
glare effect, 108, 108
glass

colored, 360–364, 360–361, 363
dielectric shaders for,

358–359, 358
Glassner, Andrew, 537
global illumination (GI), 5, 27

and FG, 550, 565–566, 566
in indirect illumination, 476, 520
options, 499–500

accuracy and radius,
500–504, 501–503

caustics workflow, 515–516
FG and ambient

occlusion, 505
photon counts, 504
photon-emitting lights,

493–494
physical shaders, 679
PM indirect effects,

545–546, 545
setup, 541–542, 542

global shadow settings, 251–254,
252, 254

globillum options
in indirect illumination, 519
overview, 499–500
photon-emitting lights, 490–491

glossiness, 316
anisotropic scattering,

355–356, 356
brushed metals, 406
BSDF refractions, 321
BSDF surfaces and reflections,

312–314, 316–317, 317
DGS shaders, 341, 354–355

final gather override attribute–glossiness ■ 725

08547bindex.qxd 10/24/07 4:45 PM Page 725

HDR image reflections, 614–615,
614–615

marble shader tree
reflections, 678

in transmittance, 319–321, 320
glossy shaders, 375–376

for brushed metals. See brushed
metals

vs. DGS shaders, 383–384, 384
Fresnel reflections, 379–381, 380
multisampling, 381–382, 382
overview, 376–377, 377
reflection, 378–379, 379
refraction, 384–390, 384–387, 389
sampling, 364–365, 381–382, 382
XSI, 369, 369

Gnomon Workshop, 617
GPUs. See graphics processing

units (GPUs)
Gradient Ramp Parameters, 374
gradient shaders, 397–398, 403, 403
graphics processing units (GPUs),

52–53
advantages, 53
communication, 53–54
programmable, 55–56

grayscale, 64
for normal vectors, 72
in standard bump mapping, 415

Grid algorithm, 185–186, 186,
188, 190

grids
resolution, 189
size, 189

H
halfway vectors, 337
Hardware Exposure attribute, 586
hardware rendering, 52–53

capabilities, 58–59
Cg, 54–55
enabling, 60
flowchart, 57–58, 57
limitations, 59
programmable GPUs and shader

trees, 55–56
setup, 59–60
shaders, 54
vertex and fragment stages,

56–57, 57
hardware shaders, 54

haze, 602–603, 603
hazy Mie scattering, 537
HD format, 145–146
HDR. See High Dynamic Range

(HDR) images
HDR Shop program, 616,

618–619, 619
Height attribute

direct light participating
media, 539

texture shaders, 673
Henyey-Greenstein (HG) phase

function, 527–530, 528–529, 536
hertz, 289, 289
Hertz, Heinrich Rudolf, 287–288
heuristic BSDF models, 312
HG (Henyey-Greenstein) phase

function, 527–530, 528–529, 536
Hierarchical Grid algorithm,

185–186, 186, 188, 190
High Dynamic Range (HDR)

images, 30, 67–68, 303
3D rendering, 307
bit-depth, 67–68
common production

practices, 616
exposure, 621

3ds Max FG, 595–596, 595
XSI FG, 591–592, 591

glossy reflections, 614–615,
614–615

human vs. digital perception,
303–304

imaging and display, 304–307,
304–306

vs. LDR, 308, 610–615, 612–615
mia_exposure_simple, 604, 604
panoramas, 616–620, 618–620
for photography, 616
physical sky shaders, 602
shimmering, 615
speckles, 612–614, 612–614, 621

high-level shading language
(HLSL), 54

higher-resolution soft shadow
maps, 242

highlights
brushed metals, 391–392,

391–392, 402–404, 406–407
specular. See specular color and

highlights
hither and yon planes, 122, 122

HLSL (high-level shading
language), 54

homogeneous coordinates, 438–439
homogeneous scaling, 441
Hooke, Robert, 284–285
host-specific shaders, 229
host translators, 3–4
hotspots in HDR images, 621
human perception for HDR images,

303–304
Huygens, Christiaan, 285–286
Hyper-Threading feature, 14

I
IBL (image based lighting)

FG, 556
Maya, 113–115, 114–115, 585
XSI, 217

identity matrices, 424–425, 425,
442–443

IES viewers, 222, 223
illuminance units, 600
Illuminating Engineering Society

(IES) photometric files, 221
illumination

global. See global
illumination (GI)

indirect. See indirect
illumination

reflection color, 334
illumination shaders, 26, 326
image aspect ratio, 135

3ds Max, 160–161
XSI, 153–155

Image attribute, 591
image-based lighting, (IBL)

FG, 556
Maya, 113–115, 114–115, 585
XSI, 217

image filtering. See filtering
Image Format attribute, 92
imf_copy utility, 6, 470–471
IMG modules, 6–7
implicit coordinates, 427–428,

457–458, 457
implicit projections, 410, 414–415
implicit properties, 456–457, 456
In Focus Limits attribute, 162
in-scattering

BSSRDF model, 635, 635
indirect illumination, 526

726 ■ glossy shaders–in-scattering

08547bindex.qxd 10/24/07 4:45 PM Page 726

incremental frames, 17–18
independent rendering passes, 103
index of refraction (IOR), 300–301

DGS shaders, 353
dielectric shaders, 357–359
materials, 705
photon shaders, 482
shader settings, 339
Snell’s law of refraction, 320

indirect illumination, 4, 27–28, 473
3ds Max, 522–523, 522–523
area lights, 204
caustics, 509–516, 510,

512–515, 520
compositing light passes, 498
features, 476
FG and ambient occlusion, 505
gamma, 506–508, 507–508
global illumination options,

499–508, 515–516
light paths, 477–481, 477,

479–480
Maya, 517–519, 517–519
option overview, 494–495
overview, 474–476
photon diagnostics, 497, 499
photon-emitting lights. See

photon-emitting lights
photon maps, 477–481, 477,

479–480, 496–497
photon reflections and

refractions, 495–496
photon shaders. See photon

shaders
physical shaders, 506
PM effects. See participating

media (PM) effects
in profiles, 221
rendering, 479–481, 480
tone mapping, 506
XSI, 520–521, 520–521

indirect PM effects, 543
caustic, 546–548, 546–548
global illumination, 545–546, 545
options and photon shaders,

543–545
rendering, 548

industrial CAD rendering, 4
Infinite attribute, 586
infrasampling, 32, 167, 168
Inherit from Sky option, 609
Initial FG Point Density

parameter, 592

initialization files, 20–21
installing custom shaders,

346–351, 351
integer data types, 64
intensity settings

physical sun shaders, 600
shadows, 257

interface, light, 284
interference patterns, 284–286,

286–287
internal scattering, 657

back depth, 660–662, 661
balancing options, 662
falloff, 660, 660
radius, 659, 659

internal space, 429
Interpolate Over Num. FG Points

parameter, 592
interpolation

color, 559
FG points, 562, 562
frame buffers, 74–75
pixel values, 32

inverse lights, 240–241
inverse shadow casting, 240
inverse square law, 296
IOR. See index of refraction (IOR)
iris, 141
iris diaphragms, 135
irradiance, 44

area lights, 203
caustic, 514–515, 514–515
light, 294–295, 295
photon shaders, 485–486, 485
sampling, 550, 551
shaders, 519, 519, 521
XSI, 588

isotropic reflections
BSDF, 317–319, 318
glossy shaders, 381

isotropic scattering, 319
BSDF, 313
physical subsurface scattering,

711–712, 712
PM effects, 525–528, 526, 528,

535–536, 535

J
Jade shader, 682
Jensen, Henrik Wann, 634
Jitter setting, 164, 169–170, 172, 172
Jones, Alan, 347

K
kaleidoscope shaders, 399–400
Kd-trees, 474–475
Kelvin (K) scale, 213, 220, 291–292
Knee option, 605, 605

L
labels

colored glass effects, 362
frame buffers, 73
rasterizer sampling, 182

LaFortune shading model, 310
Lambert shaders, 331, 641
Lambert shading model, 309
Lambert’s cosine law, 315–316, 316
Lanczos filters, 180–181, 181
Large BSP algorithm, 185–186
layers

compositing, 654–655
hardware rendering, 35, 58
shaders, 642

LDR (low dynamic range) image
files, 308, 596, 610–615, 612–615

leaf nodes, 186, 186
LeafNodes message, 191–192
Ledin, Pavel, 102, 347
Legacy attribute, 588
Legotin, Andrey, 222, 223
lens shaders, 104, 108–109, 109

depth of field, 143–144
Maya, 112
physical sky shaders, 602–603
XSI, 117, 117, 157–158, 157–158

Lens Squeeze Ratio attribute, 148
lenses, 132, 138

3ds Max, 159–160
depth of field and f-stops,

141–142
field of view, 140–141, 141
focal depth and perspective,

138–140, 139
virtual cameras, 104–105, 105

letterboxing, 145, 145
libraries, shader, 7, 28

base, 323–325
files in, 18–20, 25–26
Lume, 107–111, 108, 323
physics, 323, 350, 368

light and lighting, 197–198, 283
3ds Max settings, 219–221,

219–221
area lights. See area lights

incremental frames–light and lighting ■ 727

08547bindex.qxd 10/24/07 4:45 PM Page 727

baking, 5
chromatic aberration, 302
color temperature, 292
compositing, 498
dispersion, 300
electromagnetic radiation,

287–290, 290
geometric optics, 300–301
HDR imaging. See High

Dynamic Range (HDR)
images

illumination. See global
illumination (GI); indirect
illumination

internal scattering, 658
light shaders, 198–200
Maya settings, 213–217, 215–216
perception, 293–299, 295,

297, 299
photometric measurements,

297–298, 297
photon mapping, 477–481, 477,

479–480
polarization effects,

301–302, 301
profiles, 4, 221–226, 223–225
quantum mechanics, 288–289
radiance, 295–296
radiometric measurements,

293–296, 295
resources, 309
scattering. See scattering
shaders. See shaders and

shader trees
shading models, 308–309,

341–342
theory, 284–287, 285–287
transport balancing, 342–343
umbra and penumbra, 200, 201
visible spectrum, 290–292, 290
wavelength, 289, 289
wavelength dependencies,

292–293
wrapping, 202, 202
XSI settings, 217–219, 217–218

Light_distance attribute
3ds Max shaders, 370
direct light PM, 539–540
photon shaders, 545

light emission theory, 285
light-emitting surfaces, 551–554,

552–554

light energy, 293
Light Falloff attribute

photon-emitting lights, 493
XSI, 218

light maps, 28, 326
component shaders, 674
phenomenon shaders, 665–672
shader creation, 674

light occluding surfaces, 670–672,
670–671

light probes, 232, 619
lights. See light and lighting
Linear motion blur setting, 274
LMV Shader, 280–281
lobes, BSDF, 313, 313
local settings

shadows, 255–258, 255, 257–258
texture shaders, 673–674

Lock Aspect Ratio option, 155
logging messages, 8–10, 9–10
lookup shaders, 418, 420–421
low dynamic range (LDR) image

files, 308, 596, 610–615, 612–615
low level and low sampling area

lights, 211–212, 212
low-resolution maps, 242, 242
Lume shader library, 107–111,

108, 323
luminance, 293, 297–298, 297
luminance power, 291
luminosity curves, 297–298

M
magnitude of vectors, 422–424, 423
Map Channel parameter, 458–459
Map File Settings menu, 589
maps and mapping

bump. See bump mapping
FG, 559, 576–581, 577–578
light, 28, 326

component shaders, 674
phenomenon shaders,

665–672
shader creation, 674

materials, 702–703, 702
Maya, 585
normal

bump mapping, 416–417
subsurface scattering, 647,

647–649
photon. See photon maps

shadow. See shadow maps
texture

brushed metals, 392, 392
hardware rendering, 58
marble shader tree, 676, 676

texture projections,
412–414, 413

marble shader tree, 675
connections, 675–677, 676
glossy reflections and

materials, 678
specular highlights and bump

mapping, 677–678
masking channels, 63
materials, 326–330

3ds Max lighting, 220, 221
brushed metals, 404–407
colored glass effects, 363
mapping, 702–703, 702
marble shader tree, 678
mia, 404–407
monolithic, 328–330, 328–330
reflections, 701–703, 702
subsurface scattering, 700–705,

701–702, 704
transmission, 704–705, 704

math
misss_fast_simple, 655–656
sampling, 171
shaders, 330–341, 333, 335,

338–340
texture vector shaders, 435

matrices, 422–424, 423
identity, 424–425, 425, 442–443
rotations, 446–449, 446
transform, 268, 425–426
translation. See translations and

Translation matrix
matter, 294
Max attribute

sampling, 169, 171, 173, 175–177
texture remap shaders, 437

Max Displace attribute, 281
Max Distance attribute

ambient occlusion, 624
glossy shaders, 378, 386–387

Max Photons option
photon control, 692, 694–696
physical subsurface

scattering, 687
Max Radius attribute

FG, 571–572, 572

728 ■ light_distance attribute–max radius attribute

08547bindex.qxd 10/24/07 4:45 PM Page 728

materials, 700
Maya, 583
photon control, 692, 694–699,

697, 700
physical subsurface

scattering, 687
XSI, 588

Max. Reflection attribute, 593
Max Samples attribute

photon control, 692–694
physical subsurface scattering,

686–687
Max_step_len attribute

photon shaders, 544
ray marching sample level, 539

Max Trace Depth attribute
Maya, 49, 584
raytracing rendering, 47

MaxDepth message, 191–192
Maximum Eccentricity

attribute, 467
MaxLeafSize message, 191–192
Maxminor attribute, 467
Maxwell, James Clerk, 287
Maya

ambient occlusion, 623, 623,
627–629

binary alchemy shaders, 349–350
brushed metals, 393–396,

393–394
BSP rendering, 194
bump mapping, 416
camera settings, 146, 146

aspect ratios, 149–150, 149
Camera Attributes rollout,

146–147
clipping, 123
depth of field, 150–152, 150
Film Back rollout, 147–148
resolutions, 148–149, 148

camera shaders, 112–117,
112–116

colored glass effects, 362
command line render utility,

23–24
compositing light passes, 498
DGS and dielectric shaders,

366–368, 366–367
exporting from, 15, 16
FG, 582–584, 582, 584

mode setting, 584–586, 584

physical shaders,
606–607, 607

points diagnostics, 564–565
filters, 180, 465
frame buffer settings, 90–93,

90, 92
Fresnel shader trees, 371–372
gamma correction, 87
HDR images, 307, 615
indirect illumination, 517–519,

517–519
initialization files, 20
integration with, 14–15
light occluding surfaces, 671, 671
light profiles, 224–225, 225
light settings, 213–217, 215–216
materials, 327, 327, 407
motion blur

settings, 274–276, 274
vectors, 280–281

multipass rendering, 129
Oren-Nayar diffuse shading, 333
output shaders, 107
panoramas, 617
phenomenon shaders, 330, 330
photon-emitting lights,

492–493, 493
photon shaders, 486–487, 486
rasterizer sampling,

182–183, 183
raytracing

acceleration settings, 188, 189
rendering, 48–49, 48–49

sampling, 169–170, 173–174
scanline rendering, 40, 40
shadow map shadows, 239
shadow settings

global, 251–253, 252
local, 255–257, 255

specular shading reflection
color, 334

subsurface scattering,
639–640, 639
misss_fast_lmap, 666
misss_fast_simple, 655
misss_set_normal,

650–651, 651
misss_skin_specular, 643
physical shaders, 681, 682

task size, 42–43
texture vector shaders,

430–431, 435

textures, 452–453, 453
user frame buffers, 92–93
verbosity level, 9, 9, 23

Maya MapViz node, 517–518, 518
Mead, Syd, 43
memory-dump behavior, 13
memory limits, BSP, 190
memory mapped images, 6–7,

468–471, 468–469
mental images architectural (mia)

material, 404–407
mental images file, 2
merge shaders, 129
merging

photons, 514–515, 514–515, 518
shadow maps, 254

messages
BSP, 191–193
logging, 8–10, 9–10

metals
brushed. See brushed metals
surface specular color, 335

.mi files, 1–3
exporting, 3, 15–18, 16–17
sampling and filtering, 164
in shader files, 19

mia (mental images architectural)
material, 404–407

mia_exposure_simple shader, 600,
603–606, 604–605, 610

mia_physicalsky shader, 214
mia_physicalsun shader, 214
mib_amb_occlusion shader, 623
mib_bent_normals shader, 632
mib_blackbody shader, 213
mib_bump_basis shader, 677–678
mib_cie_d shader, 213
mib_color_mix shader

brushed metals, 396
bump mapping, 649, 677
colored glass effects,

360–363, 360
nonuniformity, 534

mib_fg_occlusion shader, 622
mib_glossy_reflection shader, 375

anisotropic reflections, 341, 395
brushed metals, 393, 396
connections, 376–377, 377
glossy environments, 678

mib_glossy_refraction shader, 301,
376, 384

mib_illum_lambert shader, 649

max. reflection attribute–mib_illum_lambert shader ■ 729

08547bindex.qxd 10/24/07 4:45 PM Page 729

mib_light_photometric shader, 213
mib_passthrough_bump shader,

677–678
mib_photon_basic shader, 482, 486
mib_texture_filter_lookup shader,

418, 466
mib_texture_lookup shader, 418
mib_texture_remap shader, 417
mib_texture_rotate shader

anisotropic reflections, 341
brushed metals, 391, 391,

393–395
refractions, 301

mib_texture_vector shader, 417
brushed metals, 393–394
bump mapping, 678
options, 426, 426

mib_volume shader, 110–112, 111
microfacet reflectors, 337–338, 338
mid-distance shadow mapping, 242,

244, 246
miDefaultOptions node, 518
Mie scattering, 527–528,

528–529, 537
migl_base.dll library, 54
Min attribute

sampling, 169, 171, 173, 175–177
texture remap shaders, 437

Min_level attribute, 544
Min Radius settings

FG, 571–572, 572
Maya, 583
XSI, 588

Min_step_len attribute
photon shaders, 544
ray marching sample level, 539

mip-map textures, 468
mirage effects, 300
mirrored ball images, 616,

619–620, 620
misss_call_shader shader, 646
misss_fast_lmap shader, 639, 646,

665–666, 665–666
connections, 671, 671, 675
creating, 674
gamma correction, 667
light maps, 665–666, 665–666
light occluding surfaces,

670–672, 670–671
write attributes, 668, 668
XSI and 3ds Max options,

669, 669

misss_fast_shader shader, 641–642,
641, 647–648, 650, 674

misss_fast_simple shader, 639–640,
650–651
ambient color, 652
compositing layers, 654–655
connections, 671, 675
external shading, 651–652, 652
light maps, 665
math, 655–656
sampling, 654, 654
scale and falloff, 653–654, 653

misss_fast_skin_d shader, 639–640
misss_fast_skin shader, 639–640,

650, 663–664, 663–664
misss_lambert_gamma shader,

646, 667
misss_lightmap_write shader,

642–643, 668, 674
misss_set_normal shader, 646–656,

647–649, 651–654
misss_skin_specular shader,

643–646, 643–645
Mitchell filters, 180–181, 181
Mix_2colors shader, 363
Mix_8colors shader, 363
mixed surfaces, 312
modes

ambient occlusion, 624
color clipping, 79–82, 79
FG, 573–576

Maya, 584, 584, 586
rendering, 567, 572–573
XSI, 588

misss_fast_lmap, 667
misss_set_normal, 649
XSI lens shader, 158

modularity, 6–7
moire patterns, 163, 166, 166,

172, 172
monitor gamma correction,

84–89, 86
monolithic materials, 328–330,

328–330
motion artifacts, 463
motion blur, 259–260, 260

2D motion vectors, 280–282,
281–282

3ds Max settings, 278–280, 279
BSP settings, 193
command line options, 260

Maya
settings, 274–276, 274
vectors, 280–281

motion steps, 263–264, 263–264
rasterizer, 270–273, 272
render algorithms, 269–270, 271
sampling, 264–267, 265–267,

270–273, 275
shutter options, 260–263,

261–262
transformation vs. deformation

motion, 267–269, 269
XSI settings, 276–278, 278

Motion Blur By attribute, 275
motion-blurred shadows, 248, 249
motion option, 260
Motion Samples option, 183
Motion Segments option, 278
Motion Steps attributes, 275
motion transform matrices, 268
motion vectors frame buffers, 71
multi-channel output, 128, 128
multichannel images, 63
multiframe mode, 567, 572–574
multipass rendering feature, 14, 124

3ds Max, 99
overview, 129–130, 129–130

multiple diffuse bounces,
558–559, 558

multiple scattering, 545
BSSRDF model, 634–635, 635
photon control, 692–696, 693
physical subsurface scattering,

686–692, 687–688, 690–691
multiplication, matrix, 425, 425
Multiplier parameter, 593
multisampling

glossy shaders, 381–382, 382
hardware rendering, 59

murky Mie scattering, 537

N
Naperture attribute, 157
natural surfaces, 638
Near Clip Plane attribute, 147
network parallelism, 14
Newton, Isaac, 285–287
Noise Filtering parameter, 593
nonphysical subsurface scattering,

638–640, 639–640
nonuniform scaling, 441–442, 442

730 ■ mib_light_photometric shader–nonuniform scaling

08547bindex.qxd 10/24/07 4:45 PM Page 730

nonuniform scattering, 538–539, 538
normal lenses, 138–141, 139
normal maps

bump mapping, 416–417
subsurface scattering, 647,

647–649
normal vectors frame buffers,

71–72, 71
normalized frame buffer values, 66
normalized vectors, 433–434
normalizing color output, 431
normals

bent, 632
color-coded, 430–431

normals bump map texture, 72
NTSC video, 136–137, 137
Nuke compositing application, 63
Number of Rays property, 588
numeric data types, 64
NURBS spheres, 413, 413
NURBS surfaces, 210

O
object aliasing, 165, 165
Object Details attribute, 151
object labels, 73
object shape for area lights, 208
occlusion, ambient. See ambient

occlusion
ocean shader, 389–390, 389
on command, 60
on-demand execution, 7–14, 9–12
only FG option, 567, 579, 581
Opacity setting, 257
OpenEXR images, 63, 128
OpenGL, 52–53

rendering, 37–39
shadow maps, 251

OpenGL 2.0, 54–55, 56
Optimization tab, 50, 50
Optimize for Animations

attribute, 584
Optimize for Final Gather (Slower

GI) attribute, 594
options block in .mi file, 3, 34
order

output, 125–126
tiling, 42–43

Oren-Nayar effect
diffuse shading, 332–333, 333
misss_fast_shader, 641–642

orientation
anisotropic, 340–341
brushed metals highlights,

391–392, 391–392
origin light setting, 198
out-scattering

BSSRDF model, 635, 635
indirect illumination, 526

output, 61
cameras. See cameras
data types, 61, 64–65
depth sorting, 122–123
frame buffers. See frame buffers
multi-channel, 128, 128
multipass rendering, 129–131,

129–131
order, 125–126
process, 123–124

Output Format window, 156, 156
Output Passes tab, 116–117, 116
output shaders, 69, 125–126

cameras, 107–108
tags for, 73
XSI, 157, 157

Output Size settings, 160–161
over operation, 77
Overall Weight attribute

internal scattering, 662
misss_skin_specular, 645

overexposure, 483
Override Scene Render Options

setting, 155
Overscan attribute, 148

P
p_MegaTK shader tools, 102,

102, 124
padding in frame buffers, 75
Paint shader library, 18, 323
PAL video, 136–137
panoramas, 48, 616–617

construction techniques,
617–620, 618–620

spherical, 109, 109
Parameters setting, 159–160, 159
parti_volume shader, 524, 531, 542,

544, 547–548
parti_volume_photon shader, 524,

531, 542–543, 547–548
participating media (PM) effects, 28,

523–525

direct light, 531, 531
ray marching sample

level, 539
scatter and extinction

options, 531–535, 532–534
scene and shader setup,

540–543, 540, 542
uniform vs. nonuniform

scattering, 538–539, 538
indirect effects, 476, 543

caustic, 546–548, 546–548
global illumination,

545–546, 545
options and photon shaders,

543–545
rendering, 548

ray marching and light
scattering, 525–531, 526,
528–530

particles on PM effects, 524
Pass Output Resolution option, 155
Pass Shaders tab, 157
paths

FG, 556–559, 557–558
light, 477–481, 477, 479–480

pause command, 25
Pedestal option, 605
penumbra, 200, 201
penumbra falloff, 199
per-channel bit depth, 62
per-object attributes

FG, 564–565
sampling, 173

per-pixel bit depth, 62
per-surface attributes

3ds Max, 523, 523
Maya, 519, 519
XSI, 521, 521

perception
for HDR, 303–304
light, 293–299, 295, 297, 299

Persistence Distance parameter, 370
persistence of vision, 133
perspective

cameras, 138–140, 139
depth of field, 162, 162

phase functions, 527–530, 528–529,
536–537

phenomenon shaders, 26–27, 375,
650–651
ambient color, 652
compositing layers, 654–655

nonuniform scattering–phenomenon shaders ■ 731

08547bindex.qxd 10/24/07 4:45 PM Page 731

external shading, 651–652, 652
math, 655–656
misss_fast_lmap. See

misss_fast_lmap shader
misss_fast_skin, 663–664,

663–664
vs. monolithic, 329, 329
sampling, 654, 654
scale and falloff, 653–654, 653
subsurface scattering, 639–640

Phong-based specular
highlights, 357

Phong_coef attribute, 357
Phong shaders, 229, 309

Fresnel reflections, 379, 380
glossy refraction, 386, 386
specular model, 336–337
XSI, 329, 329, 368, 369

photoelectric effect, 2, 284, 287–288
photography, 131

color temperature, 292
HDR for, 616

photometric lights, 219–220, 220
photometric luminance units, 220
photometric measurements, 293,

297–298, 297
photon collector surfaces, 541–542
photon counts, 504
photon-emitting lights, 488–489

3ds Max, 494
energy and exponent options,

489–490
globillum and caustic options,

490–491
Maya, 492–493, 493
XSI, 493–494, 493

photon maps, 27, 295
3D, 474–475
file names, 496
indirect illumination, 517, 522
light paths, 477–481, 477,

479–480
rebuilding, 496–497

photon shaders, 326, 481–482
3ds Max, 487–488
absorption, 483–484, 484
diffuse colors, 483
Maya, 486–487, 486
overview, 482–483, 482
physical shaders, 679
PM effects, 525, 543–545
surface irradiance, 485–486, 485

trace depth, 495
volume, 326
XSI, 484–487, 485

photons
diagnosing, 497, 499

3ds Max, 523, 523
Maya, 519
XSI, 521

indirect illumination, 495–496
light, 288
merging, 514–515, 514–515, 518
physical subsurface

scattering, 692
diffusion approximation,

696–700, 697–698, 700
multiple-scattering,

692–696, 693
photopic vision measurements, 297
physical accuracy, mia material for,

407–409
physical lights and PM density,

533–534
physical shaders, 233, 341–342

3ds Max, 608–610, 608–609
indirect illumination, 506
installing, 350–351, 351
lens, 112, 143
light, 214
Maya, 606–607, 607
photon, 679
sky, 601–603, 601, 603
sun, 596–601, 597–598
XSI, 607–608, 608

physical subsurface scattering,
678–679
3ds max, 682–683, 683
absorption coefficients, 705–707,

706, 709–710
anisotropic and isotropic,

711–712, 712
diagnostics, 712–714
material properties, 700–705,

701–702, 704
Maya, 681, 682
overview, 679–680
photon control, 692

diffusion approximation,
696–700, 697–698, 700

multiple-scattering,
692–696, 693

scattering approximations,
683–684, 684

enabling, 684–685, 684
multiple scattering and

diffusion approximation,
686–688, 687–688

multiple scattering and
diffusion depth, 689–692,
690–691

scatter depth, 688–689, 689
single-scattering

approximation,
685–686, 686

scattering coefficient,
707–709, 708

scene setup, 680, 681
units and scale conversion,

710–711, 711
XSI, 682, 682

Physics shader library, 323
Picture Ratio property, 155
pillar boxing, 145–146, 145
pinhole cameras, 104
pixel aspect ratios, 136–137,

136–137
3ds Max, 160
Maya, 149–150, 149
XSI, 153–155

pixel resolution and file size, 65
plain text files, 18
plane option for shaders, 143
Planetside software, 617
Plank, Max, 288
Plug-in Manager window, 351, 351
PM effects. See participating media

(PM) effects
Point Density attribute, 582
Point Interpolation attribute, 583
point lights, 206, 207, 239
point sampling, 461

motion artifacts, 463
render and texel ratios,

461–463, 462
points, FG. See Final Gather (FG)
polarization

in 3D, 301–302, 301
light, 285

position vectors, 422, 424
power, light, 294
precision of data types, 64
Precompute Photon Lookup

attribute, 583
precomputed FG Points, 563, 563

732 ■ phong-based specular highlights–precomputed fg points

08547bindex.qxd 10/24/07 4:45 PM Page 732

premultiplication
After Effects images, 81
color clipping, 80–81
frame buffers, 74–78, 77

presample density settings
FG, 574–575
XSI, 589

presample FG option, 568
Preview attribute, 606
Preview Final Gather Tiles

attribute, 583
Primary Bounce Color property, 589
primary colors, 62–63
primary eye rays, 167
primary frame buffers, 69

Maya, 91
XSI, 96, 96

primary rays, 35, 44, 555–557, 555
Primary Specular Color

attribute, 646
Primary Weight attribute, 643
primitive assembly and

rasterization, 53
Primitive tab, 153, 153
principal of interference, 286, 286
PRMan renderer, 5
profiles

color, 299
lights, 221–226, 223–225

programmable GPUs and shader
trees, 55–56

progressive formats, 146
Project attribute, 428–430, 429
projection and remapping shaders,

417–418
network connections, 418–421,

418–419
texture vector. See texture vector

shaders
Projection Method property, 457
Projection Plane tab, 153–155, 153
projections, 409

explicit vs. implicit, 414–415
texture

3D, 411–412, 412
basics, 410–411, 411
mapping, 412–414, 413

properties, explicit vs. implicit,
456–457, 456

proportions, aspect ratio, 135
pyramid images, 468–471, 468–469

Q
quality control, 163

BSP. See Binary Space Partition
(BSP) algorithm

filtering, 178–180, 178
raytrace acceleration

raytrace algorithms,
185–187, 186

settings, 188–190, 189
sampling. See sampling and

sample settings
Quality property, 108
quantum mechanics, 288–289

R
radiance

light, 293, 295–296, 298
Maya settings, 214

radiant energy, 294
radiant exitance, 294–295, 295
radiant flux, 294
radiant intensity, 295–296
radiant power, 294
radiation, electromagnetic, 284,

287–290, 290
radiometric measurements,

293–296, 295
radiosity, 294
radius

caustics, 511–514, 512–513
FG, 571–572, 572
global illumination, 500–504,

501–503
internal scattering, 659, 659
materials, 700
Maya FG, 583
photon control, 694–700,

697–698, 700
photon shaders, 543
physical subsurface

scattering, 687
shaders, 143
XSI FG, 588

Rapid Motion rasterizer, 33
raster images, 31
rasterizers, 33

motion blur, 270–273, 272
sampling, 180–184, 183–184
scanline rendering, 37–38

rational numbers, 64
raw mode in color clipping, 81–82

ray casting, 41, 43–44
ray command, 2
Ray Depth Limit attribute, 215
ray marching, 45, 228, 525

anisotropic and isotropic
scattering, 525–528, 526, 528

sample level, 539
Rayleigh scattering, 527,

528–529, 537
.rayrc files, 20–21
rays, light, 35, 44, 290
Rays per FG Point parameter, 592
Raytrace Shadow Attributes rollout,

214–215
raytracing and raytracing rendering,

4, 31, 35, 41
3ds Max, 51, 51, 220
acceleration settings,

188–190, 189
advantages and disadvantages,

35–36
algorithms, 185
backward, 555
BSP and Hierarchical Grid,

185–186, 186
depth and size, 187
empty space, 47–48
enabling and controlling, 48
FG, 555
forward, 477
limits, 46–47
max trace setting, 47
Maya, 48–49, 48–49
motion blur, 269–273, 271–272
overview, 44–45
process, 45
ray casting, 43–44
reflections, 45–48, 46
refractions, 45–46
shaders, 364–365
shadows, 231–235, 232, 234–235
XSI, 50–51, 51

Read/Write File parameter, 593
real estate, shadow map,

238–241, 239
RealSmart motion blur, 281
rebuilding

FG maps, 576–580, 577–578,
580, 583

photon maps, 496–497, 517
shadow maps, 253–254, 254

reciprocity in BSDF, 312

premultiplication–reciprocity in bsdf ■ 733

08547bindex.qxd 10/24/07 4:45 PM Page 733

rectangle shape for area lights, 208
reflected radiation, 291
reflection and reflection settings, 287

3ds Max, 51
anisotropic, 317–319, 318, 341
BSDF, 311–313, 311, 313
data and resources, 537, 537
diffuse, 314–316, 315–316
Fresnel. See Fresnel equations

and reflections
glossy, 316–317, 317
glossy shaders, 378–379, 379
HDR images, 614–615, 614–615
indirect illumination, 495–496
isotropic, 317–319, 318, 381
materials, 701–703, 702
Maya, 49, 367–368, 584
misss_skin_specular shader,

643–644
raytracing rendering, 45–46, 46
specular, 314, 314
specular shading models,

334, 338
XSI, 50, 369, 369, 372, 589, 591

reflective ambient occlusion,
625–626, 626, 629–630, 629

refraction and refraction
settings, 284
3ds Max, 51, 593
Fresnel shader trees, 375
glossy, 369, 369
glossy shaders, 384–390,

384–387, 389
indirect illumination, 495–496
IOR. See index of refraction

(IOR)
Maya, 49, 367–368, 584
mib_glossy_refraction, 301,

376, 384
raytracing rendering, 45–46
Snell’s law of refraction,

319–320, 320
XSI, 50, 589

Regular algorithm, 231–233, 232
remapping color, 395–397
remapping shaders, 417–418

network connections, 418–421,
418–419

texture vector. See texture vector
shaders

render command, 23
Render Current Frame attribute, 9

render equations, 300
render jobs, 7
Render Manager window, 11
render ratios, 461–463, 462
Render Stats tab, 114
render tiles, 179
render-time FG Points, 562–563,

562–563
rendering

3ds Max settings, 160–161
algorithms, 29

frame buffers and output, 33
overview, 33–35
raytrace rendering. See

raytracing and raytracing
rendering

sampling and filtering,
31–33, 32

scanline. See scanline
rendering

synthetic lighting, 30
tiling order and task size,

42–43
batch, 24–25
BSP, 194–195, 194
command-line and stand-alone,

21–25, 25, 60
depth of field, 144
FG, 550–554, 551–554
hardware. See hardware

rendering
independent passes, 103
indirect illumination,

479–481, 480
indirect PM effects, 548
mia material for, 407
motion blur, 269–270, 271
multipass, 129–131, 129–131
OpenGL, 37–39
shadow map shadows,

237–238, 238
subsurface scattering, 636–638,

637–638
XSI settings, 155–156, 155–156

Repeat attribute, 437
resolutions

BSP, 193
camera, 148–149, 148
and file size, 65
grids, 189

resources
custom shaders, 346–347

light, 309
reflectance, 537, 537

retinas, 291
retro-reflections, 313
reusing light map files, 674
Reverse Back Material property, 389
RGB colors, 62–63, 82

color clipping, 79, 79
profiles, 299
texture vector shaders, 431
vectors for, 422

rgb_unit_conversion option, 600
RGBA channels, 6
RGBA frame buffers, 71
rods, 291
rotary disk shutters, 134
rotations

brushed metals, 406
matrix, 440, 440, 446–449, 446
texture remap shaders, 437
textures, 444–445, 445, 449–452,

450–452
XSI lighting, 218

Roughness setting, 339
RSMB vector plug-in, 280
runaway projections, 467

S
Same Sample Pattern on All Frames

property, 173
sample compositing reflection

shaders, 26
Sample Info shader, 372
Sample Lock setting, 164, 169,

172–173
Samples Collect option,

183–184, 184
Samples Motion option, 184
sampling and sample settings,

31–33, 32, 164, 164, 167
3ds Max, 169–170, 279
adaptive, 169–173, 169
ambient occlusion, 623,

630–631, 630–631
area lights, 210–213, 210–212
balance and contrast threshold,

177–178, 177
blocks, 167–168, 168
Contrast Threshold setting,

169–171
default and per-object, 173

734 ■ rectangle shape for area lights–sampling and sample settings

08547bindex.qxd 10/24/07 4:45 PM Page 734

detail shadow maps,
250–251, 250

diagnostic, 173–177, 174–176
FG, 559–561, 560–561
FG points diagnostics, 565
frame buffers, 68, 129, 167
glossy shaders, 364–365,

381–382, 382
hardware rendering, 59
Jitter setting, 172, 172
math, 171
Maya, 169–170, 173–174
misss_fast_simple shader,

654, 654
motion blur, 264–267, 265–267,

270–273, 275–276
physical sun shaders, 600
point, 461–463
rasterizer, 180–184, 183–184
ray marching level, 539
render and texel ratios,

461–463, 462
Sample Lock setting, 172–173
shadows, 258, 258
soft shadow maps, 241
XSI, 169, 218, 589

Sampling Mode setting, 169
Sandstrom, Jan, 107, 346, 348
satellite rendering, 2
scale and scale settings

anisotropic, 340–341
FG, 568, 574–575
homogeneous, 441
Maya, 583
misss_fast_simple shader,

653–654, 653
nonuniform, 441–442, 442
photon shaders, 543
physical subsurface scattering,

687, 710–711, 711
texture remap shaders, 437
textures, 449–452, 450–452
transformations, 442–444,

443–444
translations, 439–441, 440
XSI, 218

scanline rendering, 5, 31, 35
3ds Max, 41, 41
advantages and disadvantages,

35–36
algorithms, 37–38
disabling and enabling, 39
Maya, 40, 40

motion blur, 269–270, 271
OpenGL, 37–39
process, 36–37
XSI, 40–41, 40

Scatter anisotropy option, 687
Scatter Bias attribute, 668, 668
scattering, 525

animating, 534–535, 534
anisotropic and isotropic,

525–528, 526, 528,
535–536, 535

BSDF, 313
direct light PM, 531–535,

532–534, 538–539, 538
glossy refraction shaders,

388–389
material transmission, 704
subsurface. See physical

subsurface scattering;
subsurface scattering

uniform vs. nonuniform,
538–539, 538

scattering coefficients, 687, 700,
707–709, 708

Scene Archiving property, 16
scene databases, 7
scene description language, 2–3
Scene Globals tab, 155
scene-referred images, 304
scene setup

direct light PM, 540–543,
540, 542

physical shaders, 680, 681
Schlick phase function, 528,

536–537
scotopic vision measurements, 297
Script Editor window, 10, 10
Secondary Bounce Color

attribute, 589
Secondary Bounce Scale

attribute, 583
secondary colors, 62–63
Secondary Diffuse Bounces

attribute, 584
secondary rays, 35, 44, 558, 558
secondary scale option, 568,

574–585
Secondary Specular Color

attribute, 646
Secondary Weight attribute, 643
Segment shadow algorithm,

233–235, 234–235
Select attribute, 426–428, 426–427

self-shadowing artifacts,
242–243, 243

Self-Shadowing property, 235, 235
Selspace attribute, 428
shader stacks, 120, 120
shaders and shader trees, 25–26,

323, 345
anisotropic orientation and scale,

340–341
anisotropic reflections, 341
architectural material, 404–407
artifacts, 165–166, 165
binary alchemy, 348–350
camera

3ds Max, 120–121, 120–121
Maya, 112–117, 112–116
XSI, 117–119, 117–119

creating, 672–673
component shaders, 674
light map files, 674
texture shader attributes,

673–674, 673
DGS. See diffuse, glossy, and

specular (DGS) shaders
dielectric. See dielectric shaders
diffuse shading model,

331–333, 333
direct light PM, 540–543,

540, 542
environment

3ds Max, 121, 121
cameras, 109–110, 113
materials, 326
XSI, 118–119, 118

Fresnel, 370–375, 370–371
glossy. See glossy shaders
glossy sampling and raytrace

control, 364–365
hardware, 54
hardware rendering, 55–56
installing, 346–351, 351
irradiance, 519, 519, 521
lens. See lens shaders
libraries. See libraries, shader
light, 198–200
marble, 675

connections, 675–677, 676
glossy reflections and

materials, 678
specular highlights and bump

mapping, 677–678
material, 326–330

sampling mode setting–shaders and shader trees ■ 735

08547bindex.qxd 10/24/07 4:45 PM Page 735

math, 330–341, 333, 335,
338–340

merge, 129
output, 69, 125–126
phenomenon. See phenomenon

shaders
photon. See photon shaders
physical. See physical shaders
projection and remapping,

417–421, 418–419
shadow, 228–231, 229–230
specular shading models,

339–340, 339
texture vector. See texture vector

shaders
volume, 110–111, 111
Ward, 318–319, 340–341, 340,

393–394, 393–394, 396
shading models, 308–309

BSDF. See bidirectional
scattering distribution
function (BSDF)

physical, 341–342
Shading Samples option, 183–184
Shadow Map File Name

attribute, 256
shadow map shadows, 236–237,

236–237
real estate, 238–241, 239
rendering, 237–238, 238

shadow maps, 13, 228
detail, 248–251, 249–250, 253,

270, 271
enabling, 255–256, 255
settings, 252–253, 256–257
soft, 241–242, 241–242

shadow shaders, 326
shadow_softness option, 600
Shadow Trace Depth attribute,

215, 216
shadowmap option, 250, 252–253
shadows. See also shaders and shader

trees
3ds Max, 220–221
algorithms, 227–228

raytrace shadows, 231–235,
232, 234–235

shadow shaders, 228–231,
229–230

BSP, 190
caustics, 510–511, 510
color, 215

depth-based. See depth-based
shadows

distance-based, 202, 202,
204–206, 204–205

global settings, 251–254, 252,
254

HDR images, 611
local settings, 255–258, 255,

257–258
Maya, 49, 214–215

shallow layers in subsurface
scattering, 687

shapes for area lights, 208–209, 209
shimmering artifacts, 615
Shiny settings

brushed metals, 398
DGS shaders, 354–356, 383

Show Icon in Renderer
attribute, 221

shutters, 132, 133
angles, 134, 134
motion blur, 260–263,

261–262, 275
speed and settings, 133–134
XSI motion blur, 276

Simple_Tone_Mapping shader, 607
single diffuse bounces, 558–559, 558
Single_env_sample attribute,

381–382, 382
single scattering

BSSRDF model, 634–635, 635
physical subsurface scattering,

684–686, 684, 686
size

area lights, 203, 203
BSP and grid, 189
file, and bit depth, 65, 673
filters, 179–180
task, 42–43
voxels, 187

Skim_Milk shader, 682, 682
skin

misss_fast_skin, 663–664,
663–664

misss_skin_specular, 645–646
subsurface scattering in, 637

sky shaders, 601–603, 601, 603
slow motion, 133
smudged shadow effect, 248
Snell, Willebrord, 284
Snell’s Law of refraction, 46,

319–320, 320

soft light shaders, 218
soft shadow maps, 241–242,

241–242
soft shadows, 197
softness settings

gamma correction, 86
shadows, 258, 258
soft shadow maps, 241

software-based rendering, 31
Sort algorithm for raytrace shadows,

231–233, 232
Space attribute for elliptical

filtering, 467
Space Transformation property, 429,

436, 456
speckles

FG, 568
HDR images, 612–614,

612–614, 621
specular color and highlights

brushed metals, 398–399,
402–403, 402

BSDF, 312–314, 314, 321
DGS shaders, 352–354, 353–354
FG, 554, 554
HDR images, 611
marble shader tree, 677–678
misss_skin_specular, 646
photon shaders, 482
specular shading models,

334–335, 335, 338
XSI Fresnel shader trees, 372

specular shading models, 333
Fresnel reflections, 338
microfacet reflectors,

337–338, 338
overview, 335
reflection color, 334
shader settings, 339–340, 339
spectral reflections, 338
specular color, 334–335, 335

specular transmittance,
319–321, 320

sphere shape for area lights, 208
spherical panoramic images,

109, 109
spot lights

area lights from, 207–208
Maya, 213, 213
shadow map shadows, 239

spread settings
ambient occlusion, 624, 625
light shaders, 198–199

736 ■ shading models–spread settings

08547bindex.qxd 10/24/07 4:45 PM Page 736

spread surfaces, 312
square pixels, 136
sRGB color space, 299
ST format, 73
stained glass, 510–511, 510
stand-alone rendering, 21–25, 25
standard bump mapping, 415–416
standard frame buffers, 69
static compilation, 53
statistics, FG, 564
steps, motion blur, 263–264,

263–264
Stock Lenses options, 159
stops, 141. See also f-stops
stored photons, 494
structure, mental ray, 6

integration, 14–15
modularity, 6–7
on-demand execution and

geometry cache, 7–14, 9–12
studio lighting, 553–554, 553
subsurface.mi shader library, 28
subsurface scattering, 28, 633–634

BSSRDF model, 634–636, 635
external, 656–657, 656
internal, 657–663, 659–661
marble shader tree, 675

connections, 675–677, 676
glossy reflections and

materials, 678
specular highlights and bump

mapping, 677–678
misss_call_shader, 646
misss_fast_lmap. See

misss_fast_lmap shader
misss_fast_shader, 641–642, 641
misss_fast_skin, 663–664,

663–664
misss_lambert_gamma, 646
misss_lightmap_write, 642–643
misss_set_normal, 646–656,

647–649, 651–654
misss_skin_specular, 643–646,

643–645
nonphysical, 638–640, 639–640
physical. See physical subsurface

scattering
rendering, 636–638, 637–638

Subsurface shader library, 323
Sun Disk Intensity option, 602
Sun Disk Scale option, 602

Sun Glow Intensity option, 602
sun shaders, 596–601, 597–598
super-whites, 66–67
superimposing light waves, 286
supersampling, 32, 59, 167, 168
surface irradiance, 485–486, 485
surfaces

caustics, 511
colored glass effects, 362
DGS shaders, 354

synthetic imaging, 293–299, 295,
297, 299

synthetic lighting, 30
Szabolcs, Horvatth, 347–348, 402,

404, 615

T
tag frame buffers, 73
tangent space normals, 417
Target Distance setting, 161–162
task size in rendering algorithms,

42–43
TEK2SHOOT library

brushed metals, 396
DGS and dielectric shaders, 368
glossy shaders, 376

telephoto lenses, 138–141, 139
television standards, 136–137, 137
temporal sampling, 264–266, 266
terminator lines, 200
Terragen software, 617
tessellation, 7, 13
texel ratios, 461–463, 462
texture maps

brushed metals, 392, 392
hardware rendering, 58
marble shader tree, 676, 676

texture pixels, 461–463
texture projections

3D, 411–412, 412
basics, 410–411, 411
mapping, 412–414, 413
translation matrices, 456

texture remap shaders, 436–438, 437
homogeneous coordinates,

438–439
translations. See translations and

Translation matrix
texture shader attributes,

673–674, 673

texture space, 410, 436
texture vector shaders

basic connections, 430, 431
color-coded normals, 430–431
coordinate systems,

426–428, 427
dot product equation, 432–435
matrices and vectors, 422–426,

423, 425
Maya, 435
normalized vectors, 433–434
normalizing color output, 431
Project attribute, 428–430, 429
remapping, 419–421
Select attribute, 426–428,

426–427
Selspace attribute, 428
shading networks, 434–435, 434
XSI, 435–436

textures, 409
3ds Max, 457, 457
ambient occlusion, 622–623, 623
bump mapping, 415–417
explicit and implicit coordinates,

456–458, 456–457
explicit UVW mapping and UV

sets, 458–459, 459
gamma correction with, 87–88
Maya, 452–453, 453, 586
rotating, 444–445, 445, 449–452,

450–452
XSI, 453–457, 454–456

thermal radiation, 291
thread parallelism, 14
three-channel images, 62
threshold frequency, 288
thresholds

contrast, 164, 169–171,
177–178, 177

Maya light settings, 214
sampling, 277

through scattering
glossy refraction shaders,

388–389
internal scattering, 658

tile borders, 179
tiling

artifacts, 273, 273
order, 42–43

time contrast settings, 264–267, 266,
275, 279

spread surfaces–time contrast settings ■ 737

08547bindex.qxd 10/24/07 4:45 PM Page 737

Time Samples setting, 276, 279
tone mapping, 67

HDR images, 304, 306, 306
indirect illumination, 506

Torus attributes, 437
trace depth settings

FG, 568
indirect illumination, 520, 522
photon shaders, 495
shadows, 215, 216

transform matrices, 268, 425–426
transformations

motion blur, 267–269, 269
scale, 442–444, 443–444
texture remap shaders, 436
vertex, 53, 56–57, 57
XSI FG, 591

transition color in frame buffers, 76
translations and Translation matrix

homogeneous coordinates,
438–439

matrix rotations, 446–449, 446
nonuniform scaling,

441–442, 442
rotating textures, 444–445, 445
scale and rotation, 449–452,

450–452
scale transformations, 442–444,

443–444
scaling, 439–441, 440
texture remapping, 413, 436, 438
XSI, 455–456, 455–456

transmat shaders, 541
Transmission option, 700,

704–705, 704
transmittance, 319–321, 320
transparency

DGS shaders, 353–354
frame buffers, 76
photon shaders, 482
shadow shaders, 229–230

transport in cameras
mechanism, 132, 133
speed, 132–133

trees
Kd-trees, 474–475
shader. See shaders and shader

trees
Triangle filters, 180–181, 181
troubleshooting photon-emitting

lights, 491

True Color, 62
True_lens_emulator shader, 117
Type attribute, 586

U
U and V coordinates

anisotropic, 340–341
area lights, 202, 210–211
brushed metals, 392–395,

397–400, 400
explicit sets, 458–459, 459
filtering, 464
Maya sets, 453, 453
texture projections, 410–411,

411, 413–415, 413
texture vector shaders,

426–428, 427
textures, 454
translations, 439–440

U attribute
area lights, 208
DGS shaders, 355–356
marble shader tree, 678

U_spread attribute, 381, 383
umbra, 200, 201
un-premultiplied images, 76–78, 77
undersampling, 167
uniform scattering, 538–539, 538
unit vectors, 424
units

light, 293
physical subsurface scattering,

710–711, 711
Unwrap UVW modifier, 458–459
unwrapped UVs, 666
Use Background option, 602
Use Falloff (Limit Ray Distance)

parameter, 593
Use Photon Target parameter, 609
Use Radius Interpolation Method

parameter, 594
Use Radius Quality Control

attribute, 584
Use Scene Render Options

attributes, 11
Use Shadow Map option, 256
Use Volumic Shadowmaps

option, 256
user frame buffers, 69, 74

Maya, 92–93

outputting, 126–128, 127
XSI, 96–99, 97, 99

user shapes for area lights, 208
UV Generation property, 436, 456
UV generator shader, 459–460
UVW coordinates

mapping, 458–459, 459
texture projections, 410, 412–413

UVW Map modifier, 458, 459
UVW Transformation property, 456

V
V attribute

area lights, 208
DGS shaders, 355–356
marble shader tree, 678

V coordinates. See U and V
coordinates

V_spread attribute, 381, 383
Vector-Vector shaders, 399
vectors, 422

2D motion, 280–282, 281–282
4D, 438–439
basis, 424
magnitude and direction,

422–424, 423
motion, 71
normal, 71–72, 71
shader math, 332
shading models, 337
texture vector shaders. See

texture vector shaders
verbose command, 9
verbosity

FG statistics, 564
Maya command line, 23
message logging, 8–10, 9–10

vertex transformations, 53,
56–57, 57

Vertical Cross Panorama image, 618
view dependency, 588
view parameter, 573
virtual cameras, 104–105, 105
visibility

area lights, 209, 218
FG, 565, 586
Maya light settings, 216
physical sun shader, 603
XSI, 50, 50

visible spectrum, 290–292, 290
Volume Effects shader, 543

738 ■ time samples setting–volume effects shader

08547bindex.qxd 10/24/07 4:45 PM Page 738

volume light, 611
volume shaders

characteristics, 110–111, 111
physical sky shaders,

602–603, 603
purpose, 326

volumic shadows, 228
voxels, 185–187, 190

W
Ward shaders

anisotropic settings,
340–341, 340

brushed metals, 393–394,
393–394, 396

empirical, 310
specular highlights, 318–319

wave theory, 286
wavelength

characteristics, 289, 289
dependencies, 292–293

weight
internal scattering, 657–658, 662
light scattering, 534
marble shader tree, 676–677
subsurface scattering, 641–645

white balance, 292
white color in bump mapping, 415
white light, 285, 292
Whitted, Turner, 44
wide-angle lenses

characteristics, 138–141, 139
for panoramas, 617
virtual cameras, 104–105, 105

wide-screen formats, 145–146, 145
Woo algorithm, 242, 244–246,

244–246, 258
workflow considerations in gamma

correction, 88–89
world space normals, 417
wrapping light, 203–204, 203
Writable attribute

light maps, 674
texture shaders, 673

write attributes, 668, 668

X
X resolution setting, 136
XPhysics library, 368

XSI
3.4 mode, 575
ambient occlusion, 623, 623,

628–629
anisotropic shaders, 340, 340
binary alchemy shaders, 349, 364
brushed metals, 397–402,

397, 400
BSP, 193–194, 194
bump maps, 417
camera settings, 152

clipping, 123
depth of field, 156–159,

156–157, 159
Primitive tab, 153, 153
Projection Plane tab,

153–155, 153
render, 155–156, 155–156

camera shaders, 117–119,
117–119

colored glass effects, 362–363
command line, 24
compositing light passes, 498
DGS and dielectric shaders,

368–369, 369
exporting from, 16, 16
FG, 587–589, 587–588

environments, 590–591, 591
HDR image exposure,

591–592, 591
physical shaders,

607–608, 608
points diagnostics, 564–565

filter settings, 180, 465, 489
frame buffer settings, 93–99, 93,

95–97, 99
gamma correction, 87, 94
glossy shaders, 369, 376,

384–385, 384–385
HDR images, 307, 591–592,

591, 614
indirect illumination, 520–521,

520–521
initialization files, 20
integration with, 14–15
lens shaders, 157–158, 157–158
light maps, 669, 669
light occluding surfaces, 672
light settings, 217–219, 217–218
materials, 327, 327, 407
Maya Fresnel shader trees,

372–373

message logging, 9–10, 10
motion blur settings,

276–278, 278
motion blur vectors, 280–281
multipass rendering, 129
Oren-Nayar diffuse shading, 333
panoramas, 617
Phong shaders, 329, 329,

368, 369
photon-emitting lights,

493–494, 493
photon shaders, 482,

484–487, 485
physical shaders

creating, 607–608
installing, 350–351, 351
sky, 601–603, 601, 603
subsurface scattering,

682, 682
PM shaders, 543
projection and remapping

shaders, 419, 419
rasterizer sampling, 183, 183
raytracing

acceleration settings, 188, 189
rendering, 50–51, 51
shadows, 235, 235

reflectance data and
resources, 537

Render Manager window, 11
sampling settings, 169, 174,

218, 589
scanline rendering, 40–41, 40
scattering algorithms, 684, 684
shadows

global settings, 251–253, 252
local settings, 255–257, 255
shadow map, 239

specular shading reflection
color, 334

subsurface scattering,
639–640, 640
misss_fast_lmap, 666–667
misss_fast_simple, 655
misss_set_normal, 651–652,

651–652
misss_skin_specular, 643
physical shaders, 682, 682

task size, 43
texture vector shaders, 430, 432,

435–436
textures, 453–457, 454–456
translations, 455–456, 455–456

volume light–xsi ■ 739

08547bindex.qxd 10/24/07 4:45 PM Page 739

XY coordinates in texture
projections, 410

XYZ axes and coordinates
normal maps, 417
texture projections, 412, 412
texture remap shaders, 437–438
texture vector shaders, 428–431

translations, 439
vectors for, 422

Y
Y resolution setting, 136
Young, Thomas, 284, 286–287

Z
Z blur, 144
Z depth frame buffers, 70, 70
Z depth passes, 129
zooming vs. dolly, 140
ZT image format, 70

740 ■ xy coordinates in texture projections–zt image format

08547bindex.qxd 10/24/07 4:45 PM Page 740

Wiley Publishing, Inc. End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the software packet(s) included with this book “Book”.

This is a license agreement “Agreement” between you and Wiley Publishing, Inc. “WPI”. By opening the accompanying software packet(s),

you acknowledge that you have read and accept the following terms and conditions. If you do not agree and do not want to be bound by such

terms and conditions, promptly return the Book and the unopened software packet(s) to the place you obtained them for a full refund.

1. License Grant. WPI grants to you (either an individual or entity) a nonexclusive license to use one copy of the enclosed software pro-

gram(s) (collectively, the “Software,” solely for your own personal or business purposes on a single computer (whether a standard computer

or a workstation component of a multi-user network). The Software is in use on a computer when it is loaded into temporary memory (RAM)

or installed into permanent memory (hard disk, CD-ROM, or other storage device). WPI reserves all rights not expressly granted herein.

2. Ownership. WPI is the owner of all right, title, and interest, including copyright, in and to the compilation of the Software recorded on

the physical packet included with this Book “Software Media”. Copyright to the individual programs recorded on the Software Media is owned

by the author or other authorized copyright owner of each program. Ownership of the Software and all proprietary rights relating thereto remain

with WPI and its licensers.

3. Restrictions On Use and Transfer. (a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii) trans-

fer the Software to a single hard disk, provided that you keep the original for backup or archival purposes. You may not (i) rent or lease the

Software, (ii) copy or reproduce the Software through a LAN or other network system or through any computer subscriber system or bulletin-

board system, or (iii) modify, adapt, or create derivative works based on the Software. (b) You may not reverse engineer, decompile, or disas-

semble the Software. You may transfer the Software and user documentation on a permanent basis, provided that the transferee agrees to accept

the terms and conditions of this Agreement and you retain no copies. If the Software is an update or has been updated, any transfer must include

the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements and restrictions detailed for each

individual program in the About the CD-ROM appendix of this Book or on the Software Media. These limitations are also contained in the indi-

vidual license agreements recorded on the Software Media. These limitations may include a requirement that after using the program for a

specified period of time, the user must pay a registration fee or discontinue use. By opening the Software packet(s), you will be agreeing to

abide by the licenses and restrictions for these individual programs that are detailed in the About the CD-ROM appendix and/or on the Software

Media. None of the material on this Software Media or listed in this Book may ever be redistributed, in original or modified form, for commercial

purposes.

5. Limited Warranty. (a) WPI warrants that the Software and Software Media are free from defects in materials and workmanship under

normal use for a period of sixty (60) days from the date of purchase of this Book. If WPI receives notification within the warranty period of

defects in materials or workmanship, WPI will replace the defective Software Media. (b) WPI AND THE AUTHOR(S) OF THE BOOK DIS-

CLAIM ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE

SOURCE CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WPI DOES NOT WARRANT THAT

THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE

SOFTWARE WILL BE ERROR FREE. (c) This limited warranty gives you specific legal rights, and you may have other rights that vary from

jurisdiction to jurisdiction.

6. Remedies. (a) WPI’s entire liability and your exclusive remedy for defects in materials and workmanship shall be limited to replacement of

the Software Media, which may be returned to WPI with a copy of your receipt at the following address: Software Media Fulfillment Department,

Attn.: mental ray for Maya, 3ds Max, XSI, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please

allow four to six weeks for delivery. This Limited Warranty is void if failure of the Software Media has resulted from accident, abuse, or misap-

plication. Any replacement Software Media will be warranted for the remainder of the original warranty period or thirty (30) days, whichever

is longer. (b) In no event shall WPI or the author be liable for any damages whatsoever (including without limitation damages for loss of busi-

ness profits, business interruption, loss of business information, or any other pecuniary loss) arising from the use of or inability to use the Book

or the Software, even if WPI has been advised of the possibility of such damages. (c) Because some jurisdictions do not allow the exclusion or

limitation of liability for consequential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on behalf of the United States of America,

its agencies and/or instrumentalities “U.S. Government” is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in Technical Data

and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial Computer Software - Restricted

Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes and supersedes all prior agreements, oral or

written, between them and may not be modified or amended except in a writing signed by both parties hereto that specifically refers to this

Agreement. This Agreement shall take precedence over any other documents that may be in conflict herewith. If any one or more provisions

contained in this Agreement are held by any court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other provision

shall remain in full force and effect.

08547bmeddis.qxd 10/24/07 4:52 PM Page 741

08547bmeddis.qxd 10/24/07 4:52 PM Page 742

mental ray Color Gallery

On the following pages, you will find images from film and commercial

mental ray applications, along with examples of techniques described in this book. Some

of these are more complete images created using certain techniques, such as indirect

illumination and physical shaders, while others are purely color references for topics

discussed in the chapters. These images are referenced and, in most cases, discussed

further in the chapters. Each image also has a brief description of the techniques or

effects demonstrated. In most cases, images that are references have more elaborate

descriptions in their relevant chapter.

G A L L E R Y

08547bins.qxd 10/17/07 9:58 PM Page 1

A B O V E : An example of mental ray motion blur. Here you can see how texture
color and reflections are motion-blurred based on the rotational direction of the
surface. B E L O W : The water bottle was rendered with direct light, caustics, and
Final Gather. You can see the HDR environment image reflected in the chrome
sphere. Notice the caustic patterns that form on the wall.

08547bins.qxd 10/17/07 9:58 PM Page 2

These are images from the Disney Pictures feature animated film The Wild; they were cre-
ated at Reel FX using mental ray for rendering and Nuke for compositing. Reel FX created
a theatrical dream sequence that is implemented in the film as a self-contained, highly cre-
ative piece.

IM
A

G
E

S
U

SE
D

 B
Y

 P
E

R
M

IS
SI

O
N

 O
F

R
E

E
L

FX

08547bins.qxd 10/17/07 9:59 PM Page 3

These images were created and produced by Walsh Family Media LLC (WFM). WFM is dedicated to
providing inspiring, fun-filled, and cutting-edge content through their characters, called the Cool Beans.
If you are interested in the Cool Beans project, you can find information at www.thecoolbeansmovie.com
and www.walshfamilymedia.com. The images shown on this page and on the opposite page above are
concept renders from WFM’s first feature film, entitled The Cool Beans: Humbucket Caper. The film is
about two Cool Bean brothers finding the soul in music and life.

L E F T : Daddy Bean takes some time out to collect his thoughts and ride the tack. R I G H T : These two
cute girls are called Kiss-Ups; they are a type of flower born to help people. Kiss-Up 1 and Kiss-Up 2
work for the Kernel, the biggest man in show business.

IM
A

G
E

S
U

SE
D

 B
Y

 P
E

R
M

IS
SI

O
N

 O
F

W
A

LS
H

 F
A

M
IL

Y
 M

E
D

IA
 L

LC

08547bins.qxd 10/17/07 9:59 PM Page 4

A B O V E : The Kernel takes a hot butter bath in his studio, Marigold Records, while
the Kiss-Ups attend to his needs. This image was produced by Walsh Family Media
LLC (WFM). B E L O W : This is an image from Yorie Kumalasari’s thesis animation
short, Grounded, completed at CADA, NYU. It is truly a fantastic short about a
bird who really wants to fly.

IM
A

G
E

 U
SE

D
 B

Y
 P

E
R

M
IS

SI
O

N
 O

F
Y

O
R

IE
 K

U
M

A
LA

SA
R

I

08547bins.qxd 10/17/07 9:59 PM Page 5

A B O V E : This is an image from Sameer Shah’s thesis animation short, Voyager,
presented at CADA, NYU. The project was rendered with mental ray as individ-
ual passes and composited with Shake. Some of the passes included participat-
ing media passes for atmospheric effects. B E L O W : This is an image from Santosh
Sailesh Gunaseelan’s thesis animation short, Metamorphosis, which was completed
at CADA, NYU. The project was rendered with mental ray as individual passes
and composited with Shake.

IM
A

G
E

 U
SE

D
 B

Y
 P

E
R

M
IS

SI
O

N
 O

F
SA

N
T

O
SH

 S
A

IL
E

SH
 G

U
N

A
SE

E
LA

N
IM

A
G

E
 U

SE
D

 B
Y

 P
E

R
M

IS
SI

O
N

 O
F

SA
M

E
E

R
 S

H
A

H

08547bins.qxd 10/17/07 9:59 PM Page 6

A B O V E L E F T : Back Scatter Transmission. In image a, the subsurface scatter depth is set to 10,
in b to 50, and in c to 150. A B O V E R I G H T : Marble Subsurface Scattering (SSS) Plate. This is an
example of subsurface scattering using the nonphysical shaders. Image a displays only external
surface scattering, and image b shows the subsurface effect, providing a more natural appearance.
B E L O W : Subsurface Scale and Falloff. This is an example of scale conversion using the nonphysi-
cal subsurface shaders. The front scatter color is set to green, and the back scatter is set to red. The
scale conversion factor changes from a value of 1 (a) to a value of 10 (b). As you can see, image b
is brighter and more translucent.

a

a

a

b

b

bc

08547bins.qxd 10/17/07 9:59 PM Page 7

Photon Counts: These images illustrate global illumination and participating media
(PM). I M A G E A : A low photon count and a large radius (to remove artifacts). The
result is flat lighting, and the color bleeding from the red wall appears to stretch fur-
ther out, which is a result of using a large radius. You can also see some radius arti-
facts that appear as big spots on the wall behind the kitchen. In this image, only the
lights in the living room cast photons. I M A G E B : Here the photon count and accu-
racy were significantly increased, and the radius was decreased. Also, the two stove
lights have been set to cast photons. The detail has improved particularly near corners,
and the color bleeding doesn’t appear to stretch. In both images you can see PM
effects near the window and over the stove, the room is defined as a transmat vol-
ume, and only the external light and stove lights are connected to the PM shader.

a

b

08547bins.qxd 10/17/07 9:59 PM Page 8

A B O V E : Photon Trace Limits. This color image supplements the discussion of photon trace limits.
Increasing the global illumination trace limits from those used in image a to those in image b makes
the photons bounce around (reflect) more and provide additional illumination and color bleeding.
You can achieve a similar effect by using Final Gather rather than increasing the trace depth, which will
also remove global illumination splotchy artifacts. B E L O W : SSS Displacement Mapping. This is a refer-
ence for the discussion of displacement mapping with subsurface scattering. In the image, you can see
displaced cylinder primitive shapes rendered with the nonphysical subsurface shader.

a b

08547bins.qxd 10/17/07 9:59 PM Page 9

T O P L E F T : Stained Glass. This image illustrates the effects of caustics on shadows and color transmis-
sion. The transparent glass transmits its color onto the floor with caustics, the shadow is opaque, and
the caustics contribute the irradiance and color effect on the floor. T O P R I G H T : Brushed Metal Plate.
This is the rendered color plate for the brushed metal tutorial in Chapter 10. It shows anisotropic high-
lights and reflections that follow the metal’s brushing direction. B E L O W : Photon Density. Diagnosing
photon renders using a color-coded image that represents the density of photons. You can see the denser
areas in image a appear in red. In image b, you can see the effect of photon merging to reduce the den-
sity of close-proximity photons in the photon map.

a b

08547bins.qxd 10/17/07 9:59 PM Page 10

A B O V E : Photon Shaders and Color Bleeding. The red wall and sphere are
assigned the same photon shader as the green sphere, which is a green photon
shader. Thus, they reflect green photons into the scene, which is not inline
with their direct lighting illumination shader that renders them as red surfaces.
See Chapter 12. B E L O W : LDR versus HDR. This is a color reference for the
Chapter 13 discussion of dynamic range. Image a shows the influence of Final
Gather using a low dynamic range image; image b shows the effect using the
high dynamic range version of the same background image. The lighting has
more contrast and color influence in image b thanks to the high dynamic range.

a

b

08547bins.qxd 10/17/07 9:59 PM Page 11

A B O V E : 2D HDR Color. These images show the differences provided by using environmen-
tal HDR images. Each row shows two perspectives using the same HDR image. The HDR
images on this page are from real environments (photographed), whereas the plate above
on the opposite page shows similar results using 3D generated HDR images. See Chapter 13.
B E L O W : Sun and Sky Lighting. This is an example of a spherical HDR panoramic image
generated using the mental ray architectural sun and sky shaders, discussed in Chapter 13.
For clouds I used Maya fluids. The ground is cropped to save print space.

08547bins.qxd 10/17/07 9:59 PM Page 12

A B O V E : 3D HDR Color. Compare this with the 2D HDR Color image on the facing page. For these
images I used environmental HDR images generated using the Terragen software from Planetside soft-
ware. B E L O W : Ambient Occlusion Environmental Sampling. The image demonstrates the effects of
using the mental ray occlusion shader for environment sampling discussed in Chapter 13. The apples
on the left and center use different HDR images where you see the different color influences from sam-
pling an HDR environment. The apple on the right has a much lower spread value that provides a more
specular (not as glossy) reflection appearance. The black is from the occlusion effect.

a b c

08547bins.qxd 10/17/07 9:59 PM Page 13

A B O V E : Candle Physical Subsurface Shader (SSS). An example of a physical
subsurface shader, as discussed in Chapter 15. This image demonstrates the
transmission of light through a candle. Notice that caustics transmit through
the candle, inherit its color, and apply it to the walls below the candle top
(indirect lighting). B E L O W : Physical Lighting. This was rendered with global
illumination, and Final Gather. In this image, photons are emitted from the
light source in the room and from an area light outside the window. Final
Gather is used to remove GI artifacts, improve the diffuse illumination, and
capture luminance values from an external HDR environment image. I used
physical shaders in all cases for consistency, as discussed in Chapter 12.

08547bins.qxd 10/17/07 9:59 PM Page 14

Glass Shark Comparisons: Above you can see the shark rendered with the dielectric shader,
and below with the architectural material. In both cases caustics and participating media
effects are enabled. The architectural material provides more control over glossy transmis-
sion such as with frosted glass. These comparisons are references for the discussions in
Chapters 10 and 12.

08547bins.qxd 10/17/07 9:59 PM Page 15

A B O V E : Jade Physical (SSS). This is another example of a physical subsurface shader from
Chapter 15. This one simulates the transmission of light through jade using caustics. For the
counter I also used a physical shader, which is the architectural material. B E L O W : Partici-
pating Media Effects. This image shows different source lights participating in illuminat-
ing the atmosphere. The entire scene is encompassed within a volume container applied
with a participating media shader. The Maya ocean shader was used for the ocean. I ren-
dered the components as independent passes and composited them in Nuke.

08547bins.qxd 10/17/07 9:59 PM Page 16

mental ray Shaders

and Shader Trees (excerpt)

The Architectural (mia) Material
Maya, XSI, and 3ds Max include the mental ray architectural library, which exposes the

mia (mental images architectural) material, as well as the round corners, tone mapping,

physical sun, and physical sky shaders. You’ll learn about the physical sun, sky, and tone

mapping shaders in Chapter 13, “Final Gather and Ambient Occlusion,” with Final

Gathering as they become more relevant.

The mia material is a monolithic (including shadow and photon shaders), physically

accurate shader that emphasizes BRDF functionality with respect to correct light reflection

and refraction, as well as energy conservation and light absorption. This shader has two

major implementation advantages: physical accuracy and render efficiency. The latter

means that several optimization options are built into the mia material. The mia material

can be found in each host application, as follows:

• With Maya, in the Hypershade window under Create mental ray Nodes ➔ Materials ➔

mia_material.

• With XSI, in the Render Tree window under Nodes ➔ Illumination ➔ Architectural.

• With 3ds Max, when mental ray is the specified renderer, from the Material Editor

window select Get Material, and in the Material/Map Browser window select the Arch

& Design (mi) material.

The architectural material offers several options for defining the characteristics of each

color component. These range from Oren-Nayar diffuse, glossy isotropic, and anisotropic

reflections and refractions, to manually defining BRDF curves and simulating translucency.

08547c15.qxd 10/24/07 5:43 PM Page 1

For each component there are several optimization methods to improve the render time,

all covered in the following sections. You can see the mia diffuse options in Figure 1 in

XSI. Notice the several tabs that are divided based on the different mia functionalities. As

you can see in the Diffuse section, the Roughness property defines the Oren-Nayar diffuse

characteristics. The higher the value (from 0 to 1),

the rougher the surface, so a value of 1 is a full

Oren-Nayar diffuse. You can find the same

options for the mia material in Maya’s Diffuse

Shading rollout and in 3ds Max’s Main material

parameters rollout (shown in Figure 1).

Energy Conservation and Fresnel Reflections
A physically accurate shader must maintain “conservation of energy”—in other words,

the total reflected light cannot exceed the incoming light. The mia_material will automati-

cally weight all the different color contributions so that they do not exceed the total

incoming flux, respecting energy conservation without amplifying the source light inten-

sity. Thus, if the color components (diffuse, reflection, and refraction) are all equally set at

100 percent, a nonrealistic condition, the mia material will determine the extent of each

component’s influence on shading (described shortly) while maintaining energy conserva-

tion. To clarify, the total n value for diffuse + reflection + refraction will not exceed a value

of 1, where n is a multiplier for the light intensity at a sampled point. Thus, when energy

conservation is enabled (by default), the mia material assures that the total radiant exitance

does not exceed the total irradiance at a given point.

Figure 2 shows the Conserve Energy (check box)

property, as well as the BRDF function within XSI,

found on the Transparency/Reflection tab. I’ll review

the options shown in XSI and then point out their

equivalents in each host.

Balancing Color for Physical Accuracy

When the mia material determines the influence of each color contribution, it prioritizes

reflections over both refractions and diffuse light, based on a certain BRDF curve that

applies Fresnel equations to determine the reflection and refraction intensities at a given

point, balancing the two realistically, as does the dielectric shader.

The contribution of each color is balanced as follows: reflections outweigh refractions

and diffuse light, and refractions outweigh diffuse light. The influence of reflections and

refractions is based on a BRDF (Fresnel) reflection curve, specifying each component’s

2 ■ Architectural Material

Figure 1

The mia material dif-
fuse options

Figure 2

Enabling energy
conservation and

defining a custom
BRDF curve with
the architectural

material

08547c15.qxd 10/24/07 5:43 PM Page 2

contribution as a factor of the viewing angle. Thus, when energy conservation is enabled, a

surface that is 100 percent and fully transparent will appear transparent, ignoring the dif-

fuse contribution. However, if the surface is also 100 percent reflective, it will render fully

reflective, ignoring both transparency and diffuse.

S P E C I F Y I N G A C U S T O M B R D F C U R V E

The Facing Reflectivity property shown in Figure 2 defines the reflection at facing angles,

and Perpendicular Reflectivity defines the reflection’s intensity at glancing angles. Both

options accept values from 0 to 1, where 1 is maximum reflectivity. You can manually

specify BRDF curves based on the material you are trying to re-create. For example, metals

such as gold, aluminum, and chrome are only slightly more reflective at glancing angles

than facing angles, so with them you may try values from 0.6 to 0.95 for facing and glanc-

ing angles, respectively, while simulating metals, such as gold, aluminum, chrome, and

so forth.

The Curve Falloff property defines the gradation from glancing angles to facing angles.

Hence, the curve can specify a narrower or broader transition along a surface, as its reflec-

tions transition from glancing to facing angles. Higher values such as the default (of 5)

provide faster transitions, which means a narrow edge along glancing angles. Lower values

such as 2 extend the gradation, providing a smoother transition. See Figure 10.19 images A

and B as examples, where A is a broader transition, such as with a lower value, and

image B is a narrower transition, as with higher values.

“ F I X E D ” F R E S N E L R E F L E C T I O N S

When the Default (IOF) property is enabled (Figure 2), the options under the Manual

heading are disabled (even if they don’t appear disabled in host applications). In such a

case, the BRDF curve is automatically generated based on Fresnel equations for dielectric

materials such as glass and water. When re-creating metals, paint, or other materials, you

want to use the manual curve, defining a more appropriate BRDF curve, and with water

and glass surfaces, leave the Default (IOF) property enabled relying on standard (fixed)

Fresnel equations.

The same options discussed in this section are found in Maya and 3ds Max under their

BRDF rollouts (shown in Figure 1 with 3ds Max). The following are a few additional

per-host comments.

Manually controlling the BRDF is one of the great advantages of the mia material. We already

implemented custom BRDF curves in the glossy shader tree tutorials earlier in this chapter,

using a gradient ramp to control the reflection and refraction intensities based on the view-

ing angle.

the architectural (mia) material ■ 3

08547c15.qxd 10/24/07 5:43 PM Page 3

M A Y A E Q U I V A L E N T O P T I O N S

With Maya, the same attributes found in the BRDF rollout are labeled similarly for facing

and glancing (perpendicular to view) reflection intensities. There is also a Conserve

Energy attribute. The Fresnel check box correlates to enabling the automatic Fresnel

reflections, and when it is disabled, the manual curve is functional. The BRDF Curve

attribute correlates to the Curve Falloff option cited earlier.

3 D S M A X E Q U I V A L E N T O P T I O N S

With 3ds Max, the 0 deg. refl parameter refers to facing angles, and 90 deg. refl refers to

glancing angles. A nice addition with 3ds Max is the curve display, enabling you to visual-

ize the effect of the Curve Shape parameter on the BRDF curve, corresponding to the

Curve Falloff option discussed earlier. Note that with 3ds Max, energy conservation is

enabled by default, without manual control over such an option. There is also a By IOR

(Fresnel reflections) parameter, which disables the manual curve and uses predefined

Fresnel equations.

Reflection and Refraction Options and Optimization
The architectural materials provide several options that control quality

and accuracy to optimize reflections and refractions (particularly for

glossy rays). Figure 3 shows all the reflection and refraction options, as

shown in Maya. Note that most options for reflections and refractions

are redundant (repetitive) with minor differences.

Let’s look at the Reflectivity and Refraction options that control

common characteristics such as reflection color and intensity, as well as

unique options such as glossy interpolation.

Basic Reflection Characteristics

With the mia material, unlike other shaders, the reflection options con-

trol both the source light’s specular highlights and the scene (raytrace)

and environmental reflections. In this case, the two are tied together so

they portray the same extent of glossiness and color characteristics, a

more physically accurate approach. You can, however, enable highlights

alone with the Highlight Only attribute, shown in Figure 3. Alterna-

tively, the Highlight vs Refl Balance attribute defines the intensity of

the highlight over the reflection, so if this attribute is set at 0, then the

highlights disappear and only reflections appear. (Of course, reflections

appear only if the Highlight Only option is disabled.) If the Highlight vs

Refl attribute is set to 1, the highlights are superimposed over the reflec-

tions at full intensity, which is the default option.

4 ■ Architectural Material

Figure 3

The architectural
materials reflection

and refraction
options shown with
Maya’s mia material

08547c15.qxd 10/24/07 5:43 PM Page 4

A R E A L I G H T R E F L E C T I O N S A N D H I G H L I G H T S

Visible area lights appear to reflect twice with shading models that render both highlights

and raytrace reflections. It happens because the specular component of a specular shading

model provides emulated source light reflections (even with area light shapes). In addi-

tion, a separate reflection component that provides raytrace specular reflections will

reflect the area light’s visible geometric shape. Thus, in both cases the area light appears

to reflect, once as raytrace specular reflections and once as a specular glossy highlight.

The mia material Vis Area Light Refl Only attribute disables the highlight component,

rendering the area light highlights only with raytrace reflections, without relying on

specular highlight emulations.

A N I S O T R O P Y

The mia material also has options for anisotropic reflections and refractions. In this case,

the anisotropic characteristics are tied together for both reflection color and specular

highlight, so there is no need to construct a separate shader tree for each component (as

in the procedures presented earlier in the chapter). You can see the anisotropic options

in Figure 1 in the Anisotropy rollout. The Anisotropy attribute defines the extent for

anisotropic reflections and refractions, specifying a ratio for the U and V directions of

the anisotropic reflections and refractions. The lower the value, the more pronounced the

anisotropic effect appears, and as the value increases, the anisotropic effect transitions to

a full isotropic effect at a value of 1.

The Anisotropy Rotation attribute controls the angle of the reflection or refraction. You

can use it to orient the highlight or even map it with a brushed-metal texture as demon-

strated in the previous brushed-metal tutorials. Finally, the Anisotropy Channel defines

the UV texture coordinates for the surface; more precisely, it defines where the texture

coordinates are derived from. When set to the default of -1, the coordinates are derived

based on the surface’s local coordinate system. Coordinate systems are discussed in

Chapter 13, “Final Gather and Ambient Occlusion.”

As discussed earlier with the mental ray glossy shaders, the glossy shaders and mia material

provide for more realistic anisotropic effects that naturally extend along a surface.

The Highlight Only attribute has a different effect when Final Gather is also enabled, as dis-

cussed later in the “Emulated Reflections with Final Gather” section.

the architectural (mia) material ■ 5

08547c15.qxd 10/24/07 5:43 PM Page 5

X S I E Q U I V A L E N T O P T I O N S

You can find equivalent options in XSI on the architectural material tabs with the follow-

ing properties:

• The Highlight Only attribute is located under the Optimization tab ➔ Reflection ➔

Highlights Only property check box.

• The Highlight vs Refl Balance attribute, controlling the highlight intensity, is located

under Additional Options ➔ Global Settings ➔ Highlight vs Reflection Balance property.

• The Vis Area Light Refl Only attribute, disabling area light specular highlights, is

located under Additional Options ➔ Remove Effects ➔ Turn Off Visible Area Light

Highlights property check box.

• All the Anisotropy attributes are under the Transparency/Reflection tab ➔ Anisotropy

section with the Anisotropy, Rotation, and Channel properties. All are labeled simi-

larly to the options discussed earlier.

3 D S M A X E Q U I V A L E N T O P T I O N S

You can find equivalent options in 3ds Max under the arch & design (mi) material roll-

outs with the following parameters:

• The Highlight Only attribute is under the Main material parameters rollout ➔ Reflec-

tion section ➔ Highlights+FG only parameter.

• The Vis Area Light Refl Only attribute, disabling area light specular highlights, is under

Advanced Rendering Options rollout ➔ Advanced Reflectivity Options section ➔ Visible

Area Lights Cause No Highlights parameter check box.

• All the Anisotropy attributes are under the Main material parameters rollout ➔

Anisotropy section with the Anisotropy, Rotation, and Map Channel properties. The

Automatic option will derive the UV coordinates automatically.

Glossy Reflections and Refractions, Translucency, and Metal

The following sections cover most of the more common reflection and refraction options

that deal with the visual appearance of a surface. After reviewing these options, I’ll cover

the more advanced options, particularly for optimization purposes and improving render

efficiency.

R E F L E C T I V I T Y A N D R E F L E C T I O N C O L O R

The Reflectivity and Reflection Color attributes define the reflection intensity and reflec-

tion color, respectively. When Reflectivity is set to 1, the surface is fully reflective, and at a

value of 0, reflections are disabled. The Reflection Color is used to tint the reflection’s

color; however, if the Reflection Is Metal attribute is enabled, the reflection tint is defined

by the surface’s diffuse color (as does metal) and not by the Reflection Color attribute.

6 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 6

Thus, the Reflectivity attribute is multiplied by the diffuse color instead of the reflection

color to provide the tinted metal reflection color.

T R A N S P A R E N C Y , R E F R A C T I O N C O L O R , A N D R E F R A C T I O N S

The Transparency and Refraction Color attributes are identical to their reflection counter-

parts, with the difference of purpose. When Transparency is set to 0, the surface is fully

opaque, and at a value of 1, it’s completely transparent. The refraction characteristics are

dependent on the Refraction Index (IOR), the BRDF curve, and of course energy conser-

vation. Note, as with the dielectric shader discussed earlier, the surface normal direction

defines the front side of the surface, where light passing through it refracts according to

the index of refraction. Light passing through the backside does not refract; therefore, it is

important to define the surface normals correctly. See the discussions on glass surfaces

with the dielectric shader earlier in this chapter. In addition, the help documentation for

the mia material provides elaborate explanations and illustrations on modeling glass sur-

faces with mia material.

T O T A L I N T E R N A L R E F L E C T I O N S

When light enters a transparent (refractive) surface, it either transmits through the surface

or reflects internally. The physics (optics) term that relates to this effect is known as total

internal reflections (TIR). With respect to the internal reflections with CG, in most cases

they can be neglected as a means to reduce some raytrace overhead. However, more

important, they can also cause for displeasing visual artifacts such as reflecting dark

(empty) areas of a scene, adding black color to the surface internally. Note that with glass

surfaces, these internal reflections can also overpower transparency leading to other dis-

pleasing visual results. You can use the Skip Inside Reflections attribute to disable internal

reflections.

F A C T O R I N G T H E B R D F C U R V E

The BRDF curve is used as an additional multiplier against the reflection and refraction

intensities, based on a viewing angle, as discussed in the previous section. And because

energy conservation forces the mia material to prioritize reflections over refractions,

where the BRDF curve specifies full reflectivity, the surface will render opaque, and areas

with no reflectivity will render fully transparent. Of course, the refraction index (IOR)

and the diffuse color (when Transparency has a value less than 1) are also influences.

You can test this relationship by setting the BRDF curve falloff to 0.1 and both facing

and glancing angles to 1 and rendering an image. Save the image, set both facing and

glancing angles to 0, and rerender. The first two examples demonstrate the differences

between full reflectivity or full transparency. Set the facing angle to 0 and glancing to 1,

and as you begin to increase the curve’s falloff value, you will see the reflection and

refraction intertwine.

the architectural (mia) material ■ 7

08547c15.qxd 10/24/07 5:43 PM Page 7

T H I N W A L L T R A N S P A R E N C Y A N D T R A N S L U C E N C Y

The mia material provides additional options that deal with dielectric surfaces. The

Refraction rollout’s Thin Walled attribute (Figure 1) is used to apply a simple interface

for flat glass surfaces without a need to model both sides of the surface with correct indices

of refraction. This option omits the index of refraction, meaning it renders simple trans-

parency. However, it still applies Fresnel equations based on the specified index of refrac-

tion and the current BRDF curve. To clarify, if you omit refractions by specifying an index

of refraction of 1, doing so will provide simple transparency. However, the Fresnel equa-

tions will be inaccurate (for a glass surface such as a flat window).

Translucency is a means of simulating materials that scatter internal diffuse (to glossy)

light, before exiting the surface—in other words, subsurface scattering. However, extra

work is required to set up proper subsurface scattering shaders (see Chapter 14, “Subsur-

face Scattering”). By comparison, the mia material’s translucency options offer a shortcut

that may not appear as visually impressive as subsurface shaders but may suffice for sev-

eral purposes, particularly when an easy, quick solution is needed.

Translucency basically determines the characteristics of light that transports through a

surface, with diffuse, glossy, and specular transmission. Thus, because specular refractions

refer to clear glass, anything from diffuse to glossy then refers to more translucent effects.

You can find the mia material translucency options in Maya (Figure 3) in the

Refraction rollout. The Translucency attribute check box enables translucency and two

additional attributes: Translucency Color and Translucency Weight. The color option

tints the translucent color that penetrates the surface, and the weight defines the ratio

between clear refractions (transparency) and the level of translucency. Consider the addi-

tional following points:

• The Thin Walled mode is useful when combined with translucency for the purpose of

re-creating effects of thin surfaces that scatter light through them such as paper, thin

clothes, lamp shades, plastic bags, and other surfaces that don’t show a clear picture

through them—just a shape. You can see examples in the help files.

• Source lights placed behind a translucent surface scatter their light (intensity and

color) through the surface, which also blends with the Translucency Color attribute

cited earlier.

• When Translucency is enabled, you should also use glossy refractions, particularly

interpolation. The glossy component will assure that colors that scatter through the

surface appear blurred, as expected. I discuss the topics of glossy refractions and

interpolations in the following sections.

8 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 8

G L O S S I N E S S , G L O S S Y S A M P L I N G , A N D E N V I R O N M E N T A L S A M P L I N G

The mia material offers several options for controlling and optimizing raytracing. I

have already discussed in detail glossy reflections and refractions using other shaders

throughout this chapter. The mia material provides the same functionalities using the

Reflection Gloss and Reflection Gloss Samples attributes shown in the Reflectivity rollout

in Figure 3, as well as the Refraction Gloss and Refraction Gloss Samples shown in the

Refraction rollout. The Reflection Gloss value defines the glossiness extent for reflections,

where sharp (specular) reflections are set with a value of 1 and, as you decrease the value

the glossiness increases, eventually becoming fully diffusive at a value of 0. Reflection Gloss

Samples controls the glossy quality, defining the number of samples taken per shading

point during the render, a per-shader multisampling ability (see “Glossy Sampling and

Raytrace Control” earlier in this chapter). The Single Env Sample will force the shader to

use only one environmental sample for glossy (reflective) environments and only when

interpolation is also enabled (see the following “Glossy Interpolation” section).

When either the Reflection Gloss is set to 1 or the Reflection Gloss Samples is set to 0,

the reflections render fully specular (mirror) reflections. The same is true with refractions

and their corresponding options. Glossy refractions were discussed for the glossy shaders

and the DGS shader earlier in this chapter. Also, as cited earlier, with translucency, you

should use glossy refractions to provide a more visually pleasing effect.

X S I E Q U I V A L E N T O P T I O N S

You can find equivalent options in XSI on the architectural material’s tabs with the fol-

lowing properties.

The following options are in the Transparency/Reflection tab:

• The Reflectivity and Reflection Color attributes are under the Reflection section ➔

Reflectivity and Reflection Color properties.

• The Reflection Gloss and Reflection Gloss Samples attributes are under Reflection ➔

Glossiness and Glossy Samples properties, respectively.

• The Transparency, Refraction Color, and Refraction Index attributes are under the

Refraction section ➔ Reflectivity, Color, and Index of Refraction properties.

• The Refraction Gloss and Refraction Gloss Samples attributes are under Refraction ➔

Frost and Samples properties, respectively.

• The Thin Walled attribute is under the Additional Options tab ➔ Add Effects ➔ Enable

Thin-Walled Mode property check box.

• The Translucency, Translucency Color, and Weight attributes are located under the

Indirect Illumination tab ➔ Translucency ➔ Enable, Color, and Weight properties,

respectively.

the architectural (mia) material ■ 9

08547c15.qxd 10/24/07 5:43 PM Page 9

• The Single Env Sample attribute is under the Optimization tab ➔ Interpolate Reflec-

tion/Refraction ➔ Single Environment Sample check box property and is enabled

when reflective interpolation is also enabled.

• The Skip Internal Reflections attribute is under Additional Options ➔ Turn Off Weak

Internal Reflections property check box.

3 D S M A X E Q U I V A L E N T O P T I O N S

You can find equivalent options in 3ds Max under the arch & design (mi) material roll-

outs with the following parameters.

The following options are under the Main Material Parameters rollout (these parame-

ters are shown in Figure 10.34):

• Reflectivity and Reflection Color attributes are under the Reflection section ➔ Reflectivity

and Color.

• Reflection Gloss and Reflection Gloss Samples attributes are under the Reflection

section ➔ Glossiness and Glossy Samples.

• Transparency, Refraction Color, and Refraction Index attributes are under the

Refraction section ➔ Transparency, Color, and IOR parameters.

• Refraction Gloss and Refraction Gloss Samples attributes are under the Refraction

section ➔ Glossiness and Glossy Samples.

• Translucency, Translucency Color, and Weight attributes are under the Refraction

section ➔ Translucency, Color, and Weight parameters.

• The Thin Walled and Skip Internal Reflections attributes are under the Advanced

Rendering Options rollout ➔ Thin-walled (Can Use Single Faces) parameter radio

button and the Skip Reflections on Inside Parameter check box.

• The Single Env Sample attribute is under the Fast Glossy Interpolation rollout ➔ Sin-

gle Sample from Environment parameter check box.

Multisampling and Raytrace Optimization

For optimization, the mia material offers control over per-shader sampling and raytrace

ray lengths, as discussed in the section “Glossy Sampling and Raytrace Control” earlier in

this chapter. There are three approaches for optimization: multisampling glossy reflections

(as with mib_glossy shaders); glossy interpolation (reduced quality, improved speed); and

leveraging Final Gather to emulate (fake) reflections. I’ll cover these optimization options,

as well as other related options as they become relevant.

M U L T I S A M P L I N G

Multisampling is the default approach for calculating glossy reflections; it is also the most

expensive to render. It functions the same as with the mib_glossy reflection and refraction

10 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 10

shaders discussed earlier. Thus, in this case, optimization refers to per-shader multisam-

pling, rather than requiring increasing scene sampling to improve quality. The Reflection

and Refraction Gloss Samples attributes control the multisampling level, specifying addi-

tional samples for rendering glossy effects.

E M U L A T E D R E F L E C T I O N S W I T H F I N A L G A T H E R

The Highlight Only attribute discussed earlier disables reflections and renders highlights

only. However, it also enables the emulation of reflections when Final Gather (Chapter 13,

“Final Gather and Ambient Occlusion”) is enabled. Thus, the reflections are roughly aver-

aged using Final Gathering, which typically provides faint (very glossy) reflections. As a

test, try enabling Final Gather with the Highlight Only attribute and disabling reflections

by specifying a Reflectivity value of 0. The result will look like a standard Final Gather effect.

However, if you set the Reflectivity to 1 (enabling reflections) and render again, you will

see that reflections are roughly accounted for; the result of emulating reflections appears

different from when reflections are disabled.

T R A C E D E P T H A N D C U T O F F O P T I O N S

To improve speed with raytracing you can limit the number of times secondary rays

bounce in the scene. The concept is the same as with the global raytrace limiting options

(and earlier with Maya-centric shaders) discussed in Chapter 2, “Rendering Algorithms,”

only in this case providing a per-shader reflection limit. Thus, the Reflection or Refraction

Depth attributes (shown in Figure 10.3) define the number of times secondary rays

(reflection or refraction) may bounce in the scene, which is also limited by the global

scene trace limit (see Chapter 2). If the Reflection or Refraction Depth attributes are set

with a value of 0, the global trace options are used instead. Thus, these options enable you

only to specify fewer reflections or refractions, on a per-shader level, than those defined

globally for the scene. In addition, when the trace limit is reached, the mia material behaves

as if emulated reflections (highlight only option) are enabled, accounting for additional

highlights (specular color) and emulated reflections.

The Reflection or Refraction Cutoff attributes (shown in Figure 3) can provide further

optimization by not tracing rays that will provide less than a given percentage of the final

pixel color. A value of 0.01 is equivalent to 1 percent of the final pixel color.

R E F L E C T I O N D I S T A N C E

Limiting reflection distances has a significant impact on render time and quality. Render

times improve because fewer objects (triangles) in the scene need to be considered. Also,

distant objects can cause grainy (low quality) glossy reflections, requiring an enormous

sampling count to improve quality. By limiting the distance, you instruct raytracing to

ignore objects far from the surface, so they will not influence the glossy reflections.

The Reflection Falloff attribute (shown in Figure 3), when enabled, lets you specify

a falloff distance using the Falloff Distance attribute. The Falloff Distance attribute

the architectural (mia) material ■ 11

08547c15.qxd 10/24/07 5:43 PM Page 11

determines the maximum distance a ray can travel based on scene units, before terminat-

ing and returning a nonraytraced environment or predefined color reflection. Thus, the

falloff distance doesn’t only terminate reflections at a given distance; it also defines a dis-

tance over which scene (raytrace) reflections transition to the environment map’s color

(assuming one is provided). If the Reflection Falloff Color attribute is enabled, then the

transition is applied using the specified Falloff Color attribute, rather than an environment

map or background color. An environment map can be applied using an environment

shader for the material or for the camera (scene environment). For 3ds Max users, in the

brushed-metal tutorial, you saw how to add an environment image to the mia material

rather than a camera (scene) environment.

R E F R A C T I O N D I S T A N C E

Limiting refraction distances presents the same advantages described in the previous sec-

tion for reflections. The difference is that options deal with refractions through a surface,

rather than obtaining reflection color from the surroundings or an environment map. The

Refraction Falloff attribute (shown in Figure 3) enables defining a maximum distance for

refractive secondary rays. The Falloff Distance, as with reflections, defines the length of

refractive rays. Again, limiting this distance can significantly improve render time. In this

case, the refractions fade to black over the falloff distance, making the surface appear to

absorb all the light within a given distance.

When the Refraction Falloff Color attribute is also enabled, the refraction doesn’t fade

to that color (as with reflections). Instead, it uses it to define the surface absorption rate

and color, as with the dielectric shader. Thus, the color value defines the absorption color,

and the Falloff Distance defines the absorption rate. That is, it defines the intensity of the

Falloff Color as a factor of distance, where lower distance values provide for faster absorp-

tion rates. You can see samples of the mia material with absorption and glossy refractions

in the color insert under “Glass Shark Comparisons.” Note that at 100 percent distance

(the distance defined with the Falloff Distance attribute), the refraction color is used at its

full value, and as that distance increases, the value of the color increases, similar to the

dielectric shader. In this case, you benefit from using the Falloff Distance attribute to

define the absorption rate rather than depending on a color value to define both absorp-

tion rates and color.

Most significantly, when you enable the Refraction Falloff Color, the Falloff Distance

doesn’t act as a distance limit for secondary (refraction) rays, as when the Refraction

These distance-limiting options are among the most influential on both glossy quality and

render time and therefore should always be considered while rendering high-resolution ray-

trace-intensive images.

12 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 12

Falloff Color is disabled. Thus, instead of optimizing by limiting ray distances, it serves a

different purpose that is to define absorption over distance.

G L O S S Y I N T E R P O L A T I O N

To improve glossy reflections and refractions, the mia material has an interpolation

option, which you can find under the Reflection rollout ➔ Interpolate Reflections attribute,

and under the Refraction rollout ➔ Interpolate Refractions attribute (shown in Figure 3).

These options control a resolution-dependent grid used to store and blur reflection and

refraction samples.

The process takes glossy reflection or refraction samples for each grid point and then

interpolates their results based on a grid samples factor (described shortly). Interpolation

is then a smoothing algorithm for already sampled reflection or refraction values. To clar-

ify, each grid point contains sample information based on the quality settings defined with

the Reflection and Refraction Gloss Samples attributes. Thus, the multisampling stage is

still in effect, only with a difference in purpose, in this case precalculating and passing rele-

vant sample data to the grid for color interpolation, rather than calculating glossy effects

per sample (render sample). Ideally, when interpolation is enabled, you can use fewer

glossy samples (multisample samples) and interpolate (average) those results so that they

appear glossier and thus improve render time by reducing the multi-sampling count.

Figure 4 shows the interpolation attributes in Maya.

The Grid Density attribute defines the number of grid

points on a per-pixel basis; it defines the relationship

between the render resolution and the glossy grid

resolution (number of points), as shown in Table 1. Consider that a Grid Density value

of one means that each render pixel has a corresponding grid point. We can conclude that

a lower render resolution will store fewer glossy samples within the grid as a result of

fewer grid points.

G R I D D E N S I T Y V A L U E G R I D : R E N D E R R E S O L U T I O N R A T I O

0 Double the render resolution

1 Same as render resolution

2 Half the render resolution

3 One third of the render resolution

4 One fourth of the render resolution

5 One fifth of the render resolution

Table 1

Online Resources for
Custom Mental Ray
Shaders*

It is important to realize that high Reflection or Refraction Gloss Samples values still improve

the quality of the render when interpolation is enabled; however, the purpose of interpola-

tion is to enable you to use lower sample values, maintain quality, and render faster.

the architectural (mia) material ■ 13

Figure 4

Glossy interpolation
attributes shown
with the Maya archi-
tectural material.
These options can
significantly
improve render
speed without a sig-
nificant compromise
in quality.

08547c15.qxd 10/24/07 5:43 PM Page 13

Consider the following points with respect to the grid resolution:

• The render performance improves as the grid resolution decreases, because fewer

samples are taken.

• The glossiness accuracy decreases with lower resolutions, because fewer glossy sample

points are provided, and hence there is less color accuracy.

• With lower grid resolutions, you need to consider that the reduced accuracy may

appear unnatural on surfaces with complex forms. To clarify, blurring the reflection

across relatively flat surfaces may work; however, with complex forms (where the sur-

face curvature frequently changes directions), the glossy reflection may appear mis-

placed, or misinterpreted, rendering reflections that don’t correspond to a relatively

correct mirror direction (for a given surface point). Thus, you can either use a higher

resolution grid, which in most cases should suffice, reduce the grid samples (dis-

cussed next), or disable interpolation. Consider that with very glossy (blurred) reflec-

tions, it will not look unnatural.

• To remedy the problem cited earlier, you can use higher reflection or refraction samples

(interpolation samples discussed shortly) that will provide a more accurate glossy effect.

The Reflection and Refraction Samples attributes shown in Figure 4 define how many

grid points (glossy samples) are used to interpolate (average) the glossy effect. These

attributes have the effect of determining the glossy quality and blurriness; as more samples

are used (averaged), the reflection or refraction is increasingly diffused (blurred). The

samples value defines an n by n grid region used for interpolation, where n is the number

of grid points (and their associated glossy color samples) used to define the glossy effect.

To clarify, consider that multiple glossy samples are taken for the different grid points and

stored, and the grid interpolation samples (the Reflection and Refraction Samples attrib-

utes) average these colors across an n by n region; hence, the larger the (averaged) region,

the glossier (more blurred) the reflection or refraction appearance.

Figure 5 shows various examples of glossy reflections. Before I discuss them, note that

Reflection Gloss and Reflection Gloss Samples are both set to 1. Thus, without interpolation,

the reflection will appear as a mirror reflection. Thus, in the following examples the quality

and glossiness is entirely driven by the interpolation options. It will appear a bit different on

your screen if you test similar values; since I’m rendering for print, the increase in resolution

already improves the quality.

Figure 5 image A is rendered using a Grid Density value set to 3 and Reflection Samples

value set to 4. In image B the Reflection Samples value is increased to 8, and you can see

the increase in glossiness. Image C increases the Reflection Samples to 16 and the Grid

Density to 4, providing an exaggerated glossy appearance. Notice how the floor and

environment map reflection appear equally blurred, regardless of their distance from the

surface.

14 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 14

I’ve mentioned that one of the characteristics of realistic reflections is distance-based

glossiness, which image C lacks. To remedy this oversight, you can use the Detail Distance

attribute shown in Figure 4. When you enable this attribute, you specify a radius (dis-

tance) from the surface where additional rays are used to provide more specular reflections

(only for reflections). Image D incorporates this option, and as you see, the reflection of

the floor appears more focused within a given radius (distance) from the surface, based on

the values provided.

You can conclude that with lower resolution grids the

points are spread farther apart, increasing glossiness, in

contrast to higher resolution grids, which provide more

accuracy and control over the glossy appearance but also

longer render times. Here are some additional considera-

tions to help clarify some of the finer intricacies of these

options:

Resolution-based glossiness Because the grid is depend-

ent on the render resolution, if you change your render

resolution, the results will tend to change. Higher resolu-

tions require lower grid densities (higher Grid Density

values) to increase the glossiness, as well as more interpo-

lation samples.

Because both the grid resolution and the interpolation

samples define the extent of the glossiness, consider that

decreasing the grid resolution is cheaper than increasing

the samples. With more interpolation samples, the ren-

der takes much longer because those samples are inter-

polated. Lower grid resolutions, by contrast, decrease the

number of glossy samples and interpolate over larger dis-

tances, providing increased glossiness and decreased

accuracy, as well as a faster render time.

When the result appears grainy, increasing the interpola-

tion samples will make it look smoother but will also

make it look glossier. Thus, you need to find the right

balance between the grid resolution and interpolation

samples.

Glossy Samples vs. Interpolation Samples The interpola-

tion increases the glossiness based on the initial Reflec-

tion (or Refraction) Gloss Samples setting. If this is set to

0, meaning a mirror reflection/refraction is rendered, the

A

B

C

D

the architectural (mia) material ■ 15

Figure 5

Comparisons for dif-
ferent interpolation
options and their
effects on the ren-
dered result

08547c15.qxd 10/24/07 5:43 PM Page 15

entire glossy reflection/refraction can then be interpolated by increasing the interpolation

samples instead of the glossy samples. This is a fast approach to rendering glossy reflec-

tions or refractions, compared to multisampling techniques, but obviously it provides

reduced accuracy.

The Reflection Gloss and Reflection Gloss Samples (or equivalent refraction options)

attributes both influence the interpolation results as follows:

• They (interpolation glossiness) extend the existing glossiness so that if the reflec-

tion already appears glossy, interpolation will further increase the glossiness. Again,

interpolation is merely a smoothing algorithm for already existing samples.

• If the reflection is a specular mirror reflection, then the render times will depend

solely on interpolation, which is the fastest and least accurate method for quickly

rendering glossy effects, as demonstrated in Figure 5.

• If the glossiness is a mixed result from interpolation and glossy samples, fine-

tuning may require you to carefully consider which of the two methods you want

to tweak, such as reducing the grid density or increasing the interpolation samples

for glossier results or increasing the glossy samples and reducing the interpolation

samples for more accuracy.

X S I E Q U I V A L E N T O P T I O N S

You can find the equivalent XSI options under the architectural material tabs with the fol-

lowing properties, which are all located under the Optimization tab:

• The Reflection and Refraction Depth and Cutoff attributes are under the Reflection

and Refraction sections, with the Trace Depth and Cutoff properties.

• The Reflection and Refraction Falloff and Falloff Distance attributes are under the

Reflection and Refraction ➔ Falloff sections, labeled Enable and Color, respectively.

• You can also find the Reflection and Refraction Falloff Color and Falloff Color attrib-

utes under the Falloff section with the Use End Color and Color properties.

• You can enable interpolation (Interpolate Reflections and Refractions attributes)

under the Interpolate Reflection/Refraction section ➔ Refraction or Reflection sec-

tions with the Enable property check box.

• The Grid Density property is directly under the Interpolate Reflection/Refraction

section.

• The Reflection and Refraction Samples (for interpolation) are under their correspon-

ding Reflection or Refraction sections, with the Samples property.

• The Detail Distance and Reflection Detail Distance attributes are under the Reflection

section with the Distance On property check box and the Distance property.

16 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 16

3 D S M A X E Q U I V A L E N T O P T I O N S

You can find the equivalent 3ds Max options under the arch & design (mi) material roll-

outs with the following parameters:

• You can enable interpolation for reflections and refractions under the Main Material

Parameters rollout ➔ Reflection and Refraction sections (shown in Figure 10.34) with

the Fast (interpolate) parameters.

• The Reflection and Refraction Depth and Cutoff attributes are under the Advanced

Rendering Options rollout ➔ Reflections and Refractions sections with the Max Trace

Depth and Cutoff Threshold parameters.

• The Reflection and Refraction Falloff attributes are under the Advanced Rendering

Options rollout ➔ Reflections and Refractions sections with the Max Distance param-

eters. The same parameter is used to both enable the falloff options, as well as set the

distance as with the Falloff Distance attribute discussed earlier.

• Similarly, under the same section, the Reflection Falloff Color and Falloff Color

attributes are enabled and set with one parameter, which is the Fade to End Color

parameter. The equivalent refraction attributes for enabling and specifying a falloff

color (absorption with refractions), are also controlled with one parameter, in this

case the Color at Max Distance parameter.

• The additional attributes discussed earlier that control interpolation are located

under the Fast Glossy Interpolation rollout as follows:

• The Grid Density attribute is the Interpolation Grid Density parameter drop-

down list.

• The Reflection and Refraction Samples for glossy interpolation are the under the

Reflective and Refractive Interpolation sections with the Neighboring Points to

Look Up parameters.

• The reflection Detail Distance and Reflection Detail Distance attributes are con-

trolled with one parameter found under the Reflective Interpolation section with

the High Detail Distance parameter check box and value.

Absorption, Interpolation, Bumps, and Caustics

Figure 10.6 demonstrates two refractive apples rendered using different approaches. In

both cases, refractive caustics are used for shadows rather than the shadow shader. Image

A used multisampling refractions without any interpolation, with some degree of absorp-

tion. Image B used the same settings with the difference of using interpolation for the

refraction quality. Image A took several hours to render, and image B rendered in a matter

of minutes. You can see that the quality and accuracy are reduced in image B; I could

the architectural (mia) material ■ 17

08547c15.qxd 10/24/07 5:43 PM Page 17

improve the quality by increasing the grid density and reducing the interpolation samples,

but at the cost of a longer render time. Also notice that with interpolation (image B) the

refractive caustics on the floor are more pronounced than with the pure multisampled

glossy refractions. In addition, the Fresnel BRDF curve was enabled, and as you can see,

the reflections along the rim of the surface appear brighter.

S H A D O W S H A D E R S A N D C A U S T I C S

When using caustics to simulate light transport through dielectric materials, such as glass,

shadow shaders are omitted or set to render nontransparent shadows (see Chapter 12,

“Indirect Illumination”).

In such cases, caustics are used to define the shadow transparency by transmitting light

through the refractive surfaces and illuminating the surface (such as a floor) behind them

(the shadow area). With the mia material, you can choose whether you want the shadow

shader to render a transparent shadow or use caustics for caustic shadows. When the

Refractive Caustics attribute is enabled (shown in Figure 3), under the Refraction rollout,

caustic “shadows” are rendered (as shown with the images in Figure 6), and when dis-

abled, a built-in shadow shader is used instead. Typically, the shadow shader provides an

easier approach for tweaking refractive shadows, as opposed to controlling caustics; how-

ever, the appearances will be drastically different. Thus, determining whether to use caus-

tics for shadows is mostly a creative decision based on what looks more visually pleasing.

You can find the Refractive Caustics attribute in XSI under Additional Options ➔ Add

Effects ➔ Enable Refractive Caustics property check box. In 3ds Max, you can find it

under the Advanced Rendering Options rollout ➔ Refract Light and Generate Caustics

effects parameter radio button or the Use Transparent Shadows (enables the shadow

shader) parameter radio button.

The mia material must be connected to a mental ray material’s shadow shader input so that

the built in shadow shader functions correctly.

A B

Figure 6

Rendering glossy
refractions without

interpolation (image
A) and with interpo-

lation (image B). In
addition, light

absorption, Fresnel
reflections, and

caustic shadows are
all enabled.

18 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 18

N O N D I F F U S E B U M P M A P P I N G

The images shown in Figure 6 also used a bump map for a rougher glass surface. However,

the bump was applied only to the glossy and specular components. You can disable diffuse

bump mapping with the mia material, which can benefit surfaces that should hint at their

roughness within their transparent, translucent, or reflective components, and not with

the external diffuse. Thus, doing so makes the surface appear to have a more internal than

an external roughness. You can disable the diffuse bump in each host as follows:

• In Maya under the Bump rollout with the No Diffuse Bump attribute check box.

• In XSI under the Additional Options tab with the Turn Off Bumps for Diffuse Only

property check box.

• In 3ds Max under the Special Purposes Maps rollout with the Do Not Apply Bumps

to the Diffuse Shading parameter check box.

Combining the Round Corners Shader with the Mia Material

The round corners shader is a bump map shader that fakes the curvature along sharp

edges by perturbing the surface normals. All bump maps and normal maps simulate more

complex surfaces by changing the normal orientation across a surface (see Chapters 11

and 15). The round corners shader is useful with simple forms that require capturing

highlights along their edges, which creates a visually pleasing appearance. With complex

forms you have less control over where the shader tries to smooth an edge, which can lead

to undesirable results. Basically, for stairs, simple mechanical objects, fences, tables, and so

forth, the round corners can reduce the amount of beveling you would typically apply to

provide smother curvature along edges. (See the help files for sample images.)

As this shader is applied as a bump, it also has an input for any additional bump map-

ping. In other words, if you have a bump map, you could pipe it through the round cor-

ners shader and into the mia material. The shader has a Radius option that is used to

define the distance from an edge that appears rounder; typically, you should start with low

values such as 0.1. It also has an option for allowing different materials, which basically

means that if the surface has several materials, it will act on all of them.

The following quickly reviews applying the round corners shader in each host.

Bump mapping with mental ray shaders is discussed in detail in Chapter 11, “mental ray Tex-

tures and Projections,” and in Chapter 14, “Subsurface Scattering,” with a focus on normal maps.

Although the round corners shader is part of the architectural library, you are not required to

use it only with the mia material; essentially you can use it with any other shader, as long as

you connect it as a bump shader.

the architectural (mia) material ■ 19

08547c15.qxd 10/24/07 5:43 PM Page 19

M A Y A

In Maya, you can find the round corners shader in the Hypershade window under the

Create mental ray Nodes ➔ Textures ➔ mia_roundcorners shader. To add the round cor-

ners shader to the mia_material, simply drag and drop the round corners shader into the

mia_materials Bump rollout ➔ Texture input. You can now set the Radius attribute and

define the round corners. Test it on a simple polygon cube.

Let’s look at a simple workaround, shown in Figure 7, to apply a Maya bump map

through the round corners shader and into the mia_material. You can use roundcorners.mb

from the Chapter 10 Maya folder on the CD.

1. From under the Create mental ray Nodes rollout ➔ Materials rollout, create the

misss_set_normal shader—part of the subsurface library; see Chapter 14, “Light

Maps (Baking).”

2. Create a Maya-centric bump shader such as a checker or bulge from under the Create

Maya Nodes ➔ 2D Textures rollout. Connect the texture to a Bump 2d node from

under the General utilities rollout, as with standard Maya bump shader networks, as

shown in Figure 7.

3. Drag and drop the Bump 2d shader node onto the misss_set_normal shader’s Normal

Vector attribute, as shown in the figure.

4. Drag and drop the misss_set_normal shader onto the mia_roundcorners shader’s

Bump attribute. Then drop the round corners shader into the mia shaders Bump ➔

Texture attribute.

X S I

Currently, the round corners shader doesn’t appear to function correctly when connected

to the XSI material. I assume it will be resolved in future releases.

3 D S M A X

With 3ds Max, the round corners shader is built into the mia material. You can find the

parameters under the Arch & Design (mi) material’s Special Effects rollout. Enable round

corners with the Round Corners parameter check box. You can then specify the round

corners radius with the Fillet Radius parameters. As cited earlier, you can enable the Blend

with other materials parameter to allow the round corners to act on all the edges of the

surface, regardless of other materials that may be applied to that surface.

You can also add additional bump maps from under the Special Purpose Maps rollout

using the Bump mapping parameter.

Figure 7

Applying Maya-
centric bump

mapping with the
round corners

shader to a
mia_material

20 ■ Architectural Material

08547c15.qxd 10/24/07 5:43 PM Page 20

Surface Approximation Methods

3D applications provide various surface types, along with methods for

shaping those surfaces into any imaginable form. During rendering, surfaces are triangu-

lated into polygons, a process known as tessellation. In the past, advanced models such as

automotive designs or characters for film were mostly modeled using NURBS surfaces.

NURBS effectively avoided some of the problems that were posed by polygon modeling,

such as rigid polygon characteristics, poor modeling tools, complex deformations (for

example, in character rigs), and slower performance with high-resolution models. With

NURBS you define several patches that have a smooth appearance and then further define

their tessellation resolution when rendering, typically using a surface approximation. men-

tal ray’s surface approximations provide several methods and approaches for converting

NURBS surfaces into triangles, matching as closely as possible the original form designed

within the host application.

As 3D technology has evolved, polygon modeling techniques and tools have risen from

their “dark ages,” becoming easier to shape. Support for high-resolution models has also

greatly improved. Today, several industry leaders prefer using high-resolution polygon

models rather than dealing with high-resolution NURBS patch models, which require greater

expertise and effort to form properly compared to the flexibility afforded by polygons and

subdivision surfaces. The primary difference between NURBS and polygon surfaces is that

NURBS utilize a mathematical description for the surface’s curvature in conjunction with

a set of curves and their resulting surface, which is then converted into polygons during

rendering. With polygonal modeling, each polygon has already been placed within object

space and requires no additional approximation to interpret the surface’s appearance unless

subdivision modeling is utilized. In this chapter, we look at understanding optimization

techniques for NURBS and subdivision polygon surfaces as well as displacement mapping.

The chapter focuses on how these approximations are used with host applications.

■ mental ray Approximations

■ Approximation Techniques and Styles

■ Polygon and Subdivision Surfaces

■ Host Application Approximation Settings

08547c16.qxd 10/24/07 5:45 PM Page 1

mental ray Approximations
With all host applications, mental ray approximations are applied automatically through

the translator application before rendering commences. All mental ray approximation

methods support NURBS surfaces, also referred to as free-form surfaces, and some are also

used with subdivision surfaces. With subdivision surfaces, host applications can export the

highest refinement (subdivision) level as a high-resolution polygon surface and not as a

subdivision surface that requires further tessellation for the surface refinements, a topic

further examined throughout this chapter. Surface refinements refers to additional (subdi-

vision) levels of detail added by the modeler, defining fine surface detail such as creases or

finer detail for a given area adaptively. Non-subdivision polygon surfaces are already

organized in the form of polygons for the purpose of rendering and require only that

polygons (quad or larger) tessellate into triangles.

With respect to implementation, the host will determine whether to include the approx-

imation as part of an exported .mi file for rendering or transfer the tessellated data directly

as tessellated polygons. Host-specific implementation characteristics are further discussed

in the section “Host Application Approximation Settings” at the end of this chapter.

The mental ray approximation is added per-surface at the end of a surface declaration

within the .mi file using the following syntax:

approximate [type] [style] [Fine mode] [view] [any] [technique]

[conditions/options] [name]

It can also be applied as a global override for the entire scene. In the following sections,

we primarily focus on the techniques and styles for a given geometric type and how the

approximation options interact together.

Approximation Types
The approximation type refers to different surface types that exist in 3D applications,

including Curve, Surface, Trim, Displace, and Subdivision Surfaces. Surfaces may have

more than one approximation type on a per-surface basis; for example, a NURBS surface

may possess a Surface, a Trim, and a Displace approximation. With standalone mental

ray, you can further specify different approximations for secondary rays so that a lower-

resolution model is used when rendering it as a reflection (or refraction). Let’s start by

clarifying the different approximation types and their syntax.

All approximation types may be used with a variety of different techniques and styles. Clari-

fying the dependencies and supported options for a given approximation type is the main

focus of this chapter.

Throughout the chapter, “name” is shown only for completeness and is irrelevant to host applica-

tion users. It refers to a particular block within a surface’s declaration and not the surface’s name.

2 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 2

Surface Used with NURBS surfaces, defining their tessellation based on a set of techniques

(rules) and styles. The following example demonstrates a common Surface approximation

that reads “surface approximation in Fine mode, using the Parametric technique with 4.5

for both U and V subdivisions.”

approximate surface fine parametric 4.5 4.5 “name”

Curve Used in reference to NURBS surfaces that have trimmed holes, such as with fillets

and Booleans that form cut-out holes in a NURBS surface. The Curve type is used to

increase the surface tessellation along a curve that forms a trimmed surface by increasing

the precision (number of points) along the trim.

Trim Used as an additional approximation only with NURBS surfaces that support trimmed

holes (curves). A surface may have several curves applying trims so that the Curve approx-

imation type is used on a per-curve basis and the Trim approximation type is used collec-

tively. Thus, the Trim approximation is a shortcut that applies a Curve approximation to

all the curves associated with a surface. The Trim approximation techniques and styles

adhere to the same rules as those discussed for NURBS surfaces in the following sections

so that you may interpret that information for both NURBS Curve and Trim approxi-

mations. The Trim (and Curve) approximations require only a single value to represent

tessellation along the U direction because there is no three-dimensional form of these

approximation types. Notice in the following example that the Parametric technique is

used (as with the surface example earlier); however, only one value is provided (2):

approximate trim parametric 2 “name”

Subdivision Surfaces These approximations determine the level of detail (refinement) for

subdivision surfaces in rendering. The objective is to match the same level of detail mod-

eled within host applications (possibly at several levels of refinement). The following Sub-

division Surface approximation demonstrates the Angle technique, where 5 represents a

condition and 0 and 3 represent an allowable adaptive subdivision range that spans from

a minimum to a maximum subdivision level:

approximate subdivision surface angle 5 0 3 “name”

Displace Displace or Displacement approximations are used for defining additional tes-

sellation (for NURBS, subdivision, and polygon surfaces) at render time. The additional

tessellation is added based on a grayscale RGB image known as displacement mapping.

Essentially, the Displacement approximation and an additional Surface approximation

can both be applied to the same NURBS surface. In this case, the Surface approximation

deals with the initial “base” surface tessellation, and the displacement then adds additional

tessellation based on the displacement map during the render. The ability to add additional

tessellation when required is primarily beneficial when using a method known as Fine

mode displacement. See “Fine Mode and Displace Approximations” later in this chapter.

The following syntax demonstrates the Displace approximation using Fine mode and the

mental ray approximations ■ 3

08547c16.qxd 10/24/07 5:45 PM Page 3

Length technique where the condition is set to 0.1 and the allowable range is set from 0 to 3

(up to three additional levels of subdivision):

approximate displace fine view length 0.1 0 3 “name”

Polygon Polygon approximations omit the surface type because there is no relevance to

approximating polygons already provided. Clearly a polygonal object doesn’t further

subdivide, unless a displacement map is applied. Thus, when an approximation is applied

to a polygon surface, it is used only if an additional displacement map is present, provid-

ing information on how the surface should further tessellate. Essentially, Polygon approxi-

mations are the same as Displace approximations when used with polygon surfaces,

omitting the displace type declaration as seen in the following example:

approximate length 1 angle 15 0 6

Approximation Techniques and Styles
Approximation techniques (methods) are used to define an approach to tessellation for

NURBS curves and surfaces, displacement maps, and subdivision surfaces. Essentially, the

technique defines the “rules” for tessellation, determining the relationship between the

geometry (in the host application) and how it is used as a guide for tessellation. The rules

refer primarily to levels of subdivision that may increase (even adaptively) based on a set

of defined conditions—“the rules.” With NURBS, these conditions are based on either the

U and V 2D surface coordinates or 3D object space coordinates. The different techniques

are Parametric (UV), Regular Parametric (UV), and Length, Distance, and Angle (LDA), as

well as any combination of Length, Distance, and Angle. Aside from parametric and regu-

lar parametric, the remaining three techniques are all based on unit measurements in 3D

object space or pixel raster space, as you will see.

Each technique applies conditions. For example, the LDA techniques can state that an

edge shall not exceed a given length, and the parametric techniques include a tessellation

condition based on the NURBS surface’s U and V parametric representation. Thus, depend-

ing on the technique, the condition is either derived automatically from the surface or

specified manually by the user. In all cases, the user does have control over the maximum

allowable tessellation per surface.

You will examine these techniques and styles based on NURBS surface examples, unless

polygonal-based surfaces are explicitly noted. The topics of subdivision and polygon sur-

faces are further discussed later in this chapter in the section “Polygon and Subdivision

Surfaces.”

Subdivision Surface, Surface (NURBS), and Displace approximations can tessellate adaptively

based on an approximation technique and style, a topic discussed in detail throughout

the chapter.

4 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 4

N U R B S P A R A M E T E R I Z A T I O N

NURBS surfaces, unlike polygonal surfaces, use U and V curves to define 3D surface patches

along those curve profiles, as shown here.

This diagram illustrates a cubic NURBS surface that has four isoline curves for both U and

V directions (also known as isoparms). The border curves along each direction (U and V) are

counted as one. For each set of intersection pairs along both U and V directions, a surface

patch is formed. The surface hulls (not illustrated) in the host application provide control

points (CVs) for tweaking the surface curvature along both the U and V directions, and with

linear NURBS surfaces there is a one-to-one mapping between hulls and isolines. The density

of isolines on a surface is described as surface degree. As the surface degree increases, more

hulls become available between isolines, enabling better-defined curvature from one patch

to the next, similar to a refined subdivision with subdivision modeling. Essentially, higher-

degree NURBS surfaces have more points equally spread out along each patch, enabling bet-

ter deformation.

The Parametric and Regular Parametric Techniques
Both the Parametric and Regular Parametric techniques can be used with NURBS surfaces,

but only Parametric is available with polygons (with displacement mapping) and subdivi-

sion surfaces. With NURBS, both methods examine the U and V coordinates of the surface,

The topic of modeling is beyond the scope of this book. However, you should already be

familiar with key concepts and how they are implemented in your host application to better

understand approximations for NURBS, polygon, and subdivision surfaces.

NURBS Surface

U and V isolines

U

V

Surface patch

approximation techniques and styles ■ 5

08547c16.qxd 10/24/07 5:45 PM Page 5

which means they look at the surface isolines as they appear distributed along the surface

along the U and V coordinates. Figure 1 demonstrates a NURBS surface as seen in a host

application’s viewport (A) and rendered with both the Regular Parametric (B) and Para-

metric (C) techniques.

A

C

B

Figure 1

The difference
between rendering

a NURBS surface
(A) using the Regular

Parametric (B)
and Parametric

(C) approximations

6 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 6

Regular Parametric

The Regular Parametric NURBS technique evenly distributes polygons along the NURBS

surface with no regard to the geometry’s isoline spacing. As you can see in Figure 1 image

A, the surface has an uneven distribution of isolines within the host application, but when

rendered with a regular parametric approximation (B), the polygonal triangles are evenly

distributed along the surface. This technique utilizes the following approximation:

approximate surface regular parametric u v “name”

The U and V values define the amount (density) of isolines evenly spaced along the

surfaces, producing an even spread of polygonal faces. In Figure 1 image B, a value of

13 × 12 was utilized for the U and V isolines, respectively. These values correspond to the

typical subdivision U and V values you select when creating NURBS geometry within the

host application, evenly spacing the U and V isolines along the surface. Clearly, at mini-

mum you should use the same number of U and V isolines as in your host application for

a given surface. As NURBS surface curvature is based on mathematically interpreting a

surface between these U and V isolines, higher values produce denser, more accurate

geometry that has finer curvature along the surface’s isolines.

Parametric

The Parametric technique looks at each surface patch (or polygon face) and defines a sub-

division level. This technique utilizes the existing surface “drawing” from within the host

application as the starting point, possibly applying additional tessellation between isolines

(to each surface patch). Essentially, if you have more U or V isolines in a given area, the

resolution in those areas will increase. Thus the distribution of tessellated polygons along

the surface may appear uneven based on the current geometry’s distribution of isolines.

Figure 1 image A shows the uneven distribution of isolines along the surface in the view-

port, and as you see under image C, that distribution is respected throughout the render,

meaning the same spacing is applied, where certain areas appear to have a denser resolu-

tion. This technique utilizes the following approximation:

approximate surface parametric u v “name”

Because each surface patch is further subdivided with this technique, initial values

should be set low to avoid overly dense geometry. A value of zero would use the current

surface distribution (unchanged), where each patch is equivalent to one quad face (two

triangles). At a value of one with a cubic NURBS surface, each patch is tessellated into a 3 × 3

grid of faces, receiving nine faces instead of one—thus even a slight increase in value has a

tremendous effect on resolution. The NURBS surface degree affects this equation in a way

that higher-degree surfaces produce more tessellation; hence, the reference to a cubic

NURBS surface is very relevant. The equation is as follows:

(U × degree) × (V × degree) = number of quad polygons

approximation techniques and styles ■ 7

08547c16.qxd 10/24/07 5:45 PM Page 7

The U and V refer to the number of isolines (spans) across the surface in each direction.

This number is also extracted by counting the number of surface patches in either direction

because the first and last isolines are counted as one. The different degrees for NURBS sur-

faces are typically referred to (in a numerical form) as first-, second-, and third-degree sur-

faces so that a cubic surface correlates to a third-degree surface and a linear degree correlates

to a first-degree surface. The resulting value from the equation represents the total number

of quad faces generated for a given surface, which are also further subdivided into triangles

(two per quad), as the final tessellation output is always triangular. Figure 2 shows the

rendered differences between a first-degree (1 in the figure), second-degree (2 in the figure),

and third-degree (3 in the figure) surface using a value of one for both U and V Parametric

values in all cases. Only the surface degree changes.

1

2

3

Figure 2

The differences
surface degrees

make in tessellation
with the Parametric

technique

8 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 8

Length, Distance, and Angle Techniques
Before we discuss the intricacies of each of the LDA techniques I should point out a few

important differences between these techniques and the two parametric techniques dis-

cussed earlier. One is that these techniques use adaptive subdivision, unlike the parametric

techniques discussed earlier, which tessellate based on UV specifications. In addition,

with the parametric techniques only one of them may be applied to a surface, whereas

with the LDA techniques all of them may be included within one approximation state-

ment, essentially applied together, as seen in the following approximation:

approximate surface tree view any length 0.1 distance 0.2 angle 15. sharp

0.5 0 2 “Surface”

Each of these techniques presents a specific condition using a numerical value that

appears directly after the technique (0.1, 0.2, and 15 in the excerpt). The condition then

must be met before additional adaptive tessellation is applied. For example, in this excerpt

all the edges must be no longer than 0.1 units in length, so any edge longer than 0.1 units

Let’s clarify the three techniques Length, Distance, and Angle and how their conditions

apply adaptive tessellation. The condition is based on some form of units, as cited earlier,

and in this case I am referring to scene units in object space, thus 3D space measurements.

Consider the NURBS surface seen in a host application’s viewport in Figure 3 image

A, which has an even distribution of 10 U and V isolines across a third-degree (cubic) sur-

face. We will use this surface with each of the three techniques to compare their effect on

tessellation. The Base topology seen rendered in Figure 3 image B utilizes the current isoline

distribution as a starting point for the lowest-level (minimum) faces. The effect on how

faces are adaptively subdivided is based on an approximation style. In this case, the tree

style is used for all the LDA examples and until we discuss styles in the section “Approxi-

mation Styles” later in this chapter. All the LDA techniques support both subdivision and

NURBS surfaces.

L E N G T H

The Length technique, seen in the following example, applies a condition defining the

maximum length of each tessellated polygon edge:

approximate surface tree length n min max “Surface”

With Length, no edge can be longer than n units in object space. In Figure 4, you can

see that several levels of subdivisions are used to reduce the length of edges, particularly

the long ones seen in Figure 3 image B, the base level starting point. Figure 4 images A

and B both have an adaptive min and max level set at 0 and 5, respectively. In image A, a

length of 0.15 is used, and in image B a length of 0.05 is used, so image B appears to have

more subdivision levels because of the more restrictive condition for each edge length.

Image C has the max limit reduced to 1 rather than 5, providing one additional level of

subdivision on top of the base level tessellation. The length condition was set at 0.05 (as

with B), and you can see that fewer subdivisions occur as the maximum limit is reached

fairly quickly. Also notice that all the base-level polygons are subdivided at least once

A B

10 ■ Surface Approximation Methods

Figure 3

A NURBS surface (A)
as it appears in the

3D host application
before tessellation
and (B) a rendered
sample of its base
tessellation (mini-
mum level), using

the Tree style

08547c16.qxd 10/24/07 5:45 PM Page 10

(including the ground) to accommodate the condition. You can see that all these polygons

have been subdivided once because the image lacks any of the visible adaptive subdivisions

seen in image B, where certain areas appear to increase in resolution to meet the criterion.

Thus, as you can see, the Length technique can produce an increase in resolution along

the entire surface, even in the flat areas along the surface floor that really don’t require

these additional subdivisions. The Angle and Distance techniques provide a solution to

reduce tessellation in flat areas, resulting in a more optimized solution than with the

Length technique.

A

B

C

Figure 4

The Length tech-
nique limits the
maximum length for
each edge, resulting
in additional subdi-
visions with edges
that remain longer
than the condition
value.

approximation techniques and styles ■ 11

08547c16.qxd 10/24/07 5:45 PM Page 11

D I S T A N C E

The Distance technique, seen in the following example, looks at the NURBS (or subdivi-

sion) surface’s curvature and tries to match the same curvature during the render, as illus-

trated in Figure 5.

approximate surface tree distance n min max “Surface”

The syntax is exactly the same as with the Length technique except that the distance

option is used. The NURBS surface outline seen in Figure 5 shows a smooth NURBS

surface as it appears in the viewport while modeling. (For visibility, the NURBS outline is

highlighted with a black stroke.) With subdivision surfaces, this similarly refers to the

higher-level subdivision display. As you can see, the NURBS surface outline has a slight

offset compared to the viewport display tessellation (seen superimposed on top of the

NURBS surface), particularly at the surface peaks. To match the same curvature along

those peaks during rendering, mental ray needs to constantly tessellate polygons until

they “fit” along the NURBS surface outline as closely as possible. The distance then refers

to a measurement from the tessellated polygon edge to the outline of the NURBS model,

where lower values adaptively tessellate polygons, essentially decreasing the gap between

the polygon edges and the NURBS surface outline. Thus, the Distance technique is used to

better approximate the curvature of the surface and is one of the two techniques (Angle

and Distance) used by the outdated Curvature technique.

NURBS surface underneath a view
port display of tessellated geometry;

the NURBS outline is highlighted
with a black stroke.

The distance between the NURBS surface outline and polygon tessellation

NURBS surface outline (in host)

Polygon tessellation during render

Figure 5

The Distance tech-
nique tries to repro-

duce the exact
curvature of a

NURBS or subdivi-
sion surface from

within the host
application by sub-

dividing polygons
until they match the

surface’s smooth
outline.

12 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 12

In Figure 6, you can see two different renders, A and B. Both have a min and max

subdivision level set to 0 and 5, respectively. Image A received a 0.01 value and image B

received a 0.001 value as the distance condition. You can see that in image B, additional

levels of subdivision are applied adaptively along the surface curvature, trying to tessellate

the polygons so they match the same curvature as the original surface. The Length tech-

nique applies the same length condition to all edges regardless of curvature; the Distance

technique instead focuses on curvature. You can see that with the distance technique, the

flat planes at the lower portion of the surface don’t receive additional tessellation because

they already match the surface outline along those uncurved regions. As the surface begins

to bend to form the curved “mountains,” additional subdivisions are applied adaptively.

You can clearly see that both A and B (along with Figure 3 image B) share the same

amount of base tessellation along those noncurved regions without increasing their total

polygon resolution across the surface—hence a more optimized tessellation.

A N G L E

The Angle technique uses the same syntax as the two other LDA techniques, with the dif-

ference that you specify the angle option (which means that the n parameter takes a new

meaning):

approximate surface tree angle n min max “Surface”

Similar to the Distance technique, the Angle technique focuses on surface curvature

based on an angle provided as degrees. The angle condition is then based on the angle

between two neighboring polygon normals, where no angle greater than the specified

n value is acceptable. Obviously, tessellation is dependent on the max subdivision level,

as discussed earlier. Figure 7 shows two images, A and B, in which a min and max of 0

and 5 were used as with the other examples, and angle values of 25 and 10, respectively,

were set.

A B

approximation techniques and styles ■ 13

Figure 6

The Distance tech-
nique matches the
curvature of the sur-
face—hence the flat
areas remain at their
base tessellation,
and as the curvature
increases, additional
subdivisions occur.

08547c16.qxd 10/24/07 5:45 PM Page 13

As with the Distance technique, areas on the ground remain at their base resolution,

which can be seen by comparing both image A and B in Figure 7 with Figure 4 image B.

Clearly the angle on the flat areas between normals remains zero, and as the surface begins

to bend, the angle increases so that additional subdivisions are applied. Both Angle and

Distance provide similar results, prioritizing curvature over edge sizes. These techniques

can be very beneficial in optimizing resolution, particularly with surfaces that share both

flat and curved geometry, adding resolution adaptively to maintain the surface curvature.

View Dependency and Units

As noted earlier, the LDA technique’s condition is based on some form of units, and in

the examples I referred solely to scene units in object space; thus, the units for the LDA

techniques are 3D object space measurements. In addition to being specified in object

space, units can also be specified as pixel units for the Distance and Length techniques.

With pixel units, the tessellation is effectively view-dependent. With view dependency, an

edge cannot exceed n pixels in length (or distance), representing a pixel space unit, not a

3D space unit. With view dependency, a unit value of 1 correlates to 1 pixel in raster space.

The mental ray view option can be added to the approximation, defining view depend-

ency. With view-dependent renders, polygons that are closer to the camera occupy more

pixel space and are further tessellated than those placed in the distance, which have less pixel

coverage per triangle. This provides the benefit of optimization, reducing the overall

mesh size during rendering. Figure 8 demonstrates the same surface used in the previ-

ous figures, rendered in both cases using the Length technique. The image on the right

half (B) is rendered without the view option and the image on the left half (A) has the

view option enabled. Notice how the view-dependent image reduces the resolution adap-

tively as the surface gets farther from the camera in comparison to the uniform distribu-

tion seen in the non-view-dependent render.

A B

14 ■ Surface Approximation Methods

Figure 7

The Angle technique
increases the resolu-

tion to provide
smoother tessella-

tion based on the
angle between two

neighboring poly-
gon normals, match-

ing the surface
curvature. Hence flat
areas remain at their

base tessellation as
the angle between

neighboring nor-
mals remains zero.

08547c16.qxd 10/24/07 5:45 PM Page 14

One factor in view dependency is scale or image resolution. As a surface’s scale (or the

image resolution) changes, so does the tessellation. Thus, a surface that is scaled down will

occupy fewer pixels, which will result in less-adaptive tessellation, The discrete jumps in

tessellation visible in Figure 8 image A occur because the condition is satisfied for all tri-

angles up to a given point, at which further tessellation is required. To clarify, consider

that (from the far end toward the camera) all the triangles meet the condition. However,

beyond a certain point as they get closer to the camera, they suddenly appear too large; at

that point they require an additional adaptive subdivision. They will remain at that tessel-

lated scale until the next point at which they again fail the condition; the process will repeat

until eventually the triangles closest to the camera have the most tessellation.

A problem with view dependency is that motion artifacts may appear as a camera travels

along a surface because additional tessellation will appear as those edges get closer to the

camera, forming a sort of jitter artifact on the surface. Further, as surfaces are tessellated

into the geometry cache, if there are several instances of a surface in the scene (a problem

called surface-dependent duplication), such as several vehicles, normally only one tessella-

tion is required for all these surfaces. However, with view dependency, each “vehicle” will

be tessellated individually based on its pixel space representation, essentially adding several

additional tessellation jobs that otherwise would not have been required. Thus, careful

consideration should be applied when using view dependency. You can see the view option

used in the approximation example at the beginning of this section.

A common practice is to use the Length technique with view dependency. In such a case,

the approximation is far more effective as each edge is subdivided based on the screen real

estate it occupies, and so large portions of geometry that occupy a relatively smaller portion

of screen space will have fewer subdivisions compared to units in object space, which would

apply higher resolution across the board.

A B

approximation techniques and styles ■ 15

Figure 8

Rendering with
(A) and without
(B) view dependency
enabled, where faces
are tessellated based
on the pixel real
estate they occupy.

08547c16.qxd 10/24/07 5:45 PM Page 15

The any Option

Notice that the any option is used in our approximation example:

approximate surface tree view any length 0.1 distance 0.2 angle 15. sharp

0.5 0 2 “Surface”

This option is used only when more than one technique is applied, as in this example

where all three LDA techniques are applied. The any option controls how mental ray

determines when it has satisfied the conditions. When any is not present, mental ray will

examine all the conditions until each one is met. However, when any is included in the

statement, mental ray can skip subsequent conditions after one of them has been satisfied.

For example, if Length describes a maximum edge length and Angle determines the maxi-

mum angle between two normals, as the surface subdivides, the angle between two neigh-

boring polygons is reduced, as well as the edge length, and the first of two that falls within

the allowable range (the condition) will cause mental ray to terminate the adaptive subdi-

vision process for those polygons. Clearly this holds true only when there is also a sufficient

maximum limit to further subdivide, so the max limit essentially is a global stop function

regardless of whether the conditions have been met.

You should always consider using any because it reduces the chances of excessive tessella-

tion. If certain areas are prone to excessive tessellation with one technique, any allows them to

be more suitably addressed with another technique. For example, flat planes, as that would be

noted earlier, will be tessellated with the Length technique are not because the Angle and

Distance technique’s conditions have been satisfied, reducing their overall tessellation.

Approximation Styles
Approximation styles represent an additional level of optimization. If the technique is

responsible for adaptively determining the rules for the surface subdivision (tessellation),

as with Length, Distance and Angle, the style defines how that technique is implemented,

specifying the tessellation pattern. Thus, selecting a style is relevant only with the LDA

techniques (with Surface or Displace approximations), particularly for controlling adaptive

tessellation. For example, when different levels of resolution are required across a surface,

there are then different styles that define how those areas increase in resolution, meeting

the conditions set forth by the approximation style.

The three approximation styles are Grid, Tree, and Delaunay. With the parametric

techniques, the Grid style is used by default. The parametric techniques equally subdivide

the surface between isolines, and they don’t apply adaptive subdivision, so there are no

conditions that force adaptive tessellation. Thus only the three LDA techniques really

utilize the style options, determining how the surface tessellation increases for a given area

based on the condition.

Remember that the primary objective of approximations is to optimize the render; you don’t

want an excessive increase in tessellation.

16 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 16

By default the LDA techniques use the Tree style unless another style is specified. Figure 9

demonstrates a surface rendered with the LDA techniques; in the three images, only the

approximation style is different. The A, B, and C samples correspond respectively to the

Grid, Tree, and Delaunay styles. Recall that at a min level of zero utilizes the geometry’s

isolines with a one-to-one mapping, where tessellated faces overlap with surface patches.

With Tree and Grid styles, those isolines represent the starting tessellation “cage” before

any additional adaptive tessellation is applied. If additional tessellation is required, at that

point the Tree or Grid style will adaptively increase the resolution using its different criteria.

Notice that in Figure 9 the base isolines are used for both A and B (Grid and Tree)

before the adaptive subdivision takes place, and C (Delaunay) bears no similarity to those

other two base cages. Thus, the Delaunay style does not use the isolines as a base for tessel-

lation. Clearly, Delaunay utilizes a very different approach, as you will soon see. Let’s take

a quick look at each style.

A

B

C

Figure 9

Approximation
styles: (A) Grid, (B)
Tree, (C) Delaunay

approximation techniques and styles ■ 17

08547c16.qxd 10/24/07 5:45 PM Page 17

Grid

The Grid style uses the base tessellation and then increases the surface resolution by

increasing the number of isolines across a given area on the surface so that the area in

question receives more tessellation locally. However, with the Grid style, the increased

tessellation impacts the overall resolution along those isolines that span from both sides

of the surface, as illustrated in Figure 10. Thus, the Grid style adheres to the technique’s

conditions by increasing tessellation in a given area by increasing the tessellation along

intersecting U and V isolines as seen in Figure 9 image A.

Tree

The Tree style provides reasonably good optimization by increasing the resolution locally. The

Tree uses the base surface “grid” formed by the isolines as the starting point, then further

tessellates in an adaptive fashion. Each (base) patch can be adaptively divided into two new

patches, essentially increasing resolution locally as illustrated in Figures 9 image B and 11.

Adaptive subdivision area
(based on the technique’s condition and the subdvision limits)

Figure 11

The Tree approxima-
tion style

Adaptive subdivision area
(based on the technique’s condition
and the subdvision limits)

Figure 10

The Grid approxima-
tion style

18 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 18

Note that the default Tree style has been used in all of this chapter’s render examples

of LDA techniques. The advantage of this style is that it provides that ability to leave large

areas on the surface at their base tessellation, increasing resolution only where needed,

particularly around curved regions, as seen with the Distance and Angle techniques.

Delaunay

Instead of using isolines as a base for tessellation, the Delaunay style recalculates a surface by

triangular optimization. The Delaunay style does not seek to increase the triangle count

by drawing additional isolines or by adaptively subdividing them; it tries to spread them

unevenly across the surface to maintain the technique’s condition, essentially rebuilding

the surface from scratch. The focus is then on reducing the number of triangles by spreading

them in a more efficient manner, eliminating the use of extremely thin triangles, as you

see in Figure 9 image C. Unfortunately, there is really no way to visualize Delaunay in a

diagram, as it always produces very different results, based on the surface and the technique.

Another difference from Grid and Tree is that Delaunay doesn’t use adaptive min and

max levels. Because this style redraws the surface from scratch, it relies on its own specific

options, not on adaptive subdivision levels. Clearly, like the Regular Parametric option

that also “redraws” a surface from scratch, the Delaunay style works only with NURBS

surfaces. The Delaunay-specific options can be seen in the following excerpt:

approximate surface delaunay length 1 distance 0.1 angle 15 grading 10.5

max 10000 “name”

The additional options are max and grading, and are as follows:

max defines the total number of triangles for the surface; it is simply a total triangle count.

grading is used for determining the quality when transitioning from high-density

triangulation to lower density, defining the in-between stages. Grading is used to

transition between approximations, as with a surface that has two approximations,

one for the surface and another for the trim. The grading value ranges from 0 to 30

(0 disables grading) and defines a minimum angle for each triangle, which it may not

exceed. Figure 12 consists of a NURBS surface with a center trim; a grading value

of 5 is used in image A, and 30 is used in image B. Notice how under A the transition

in resolution is sharper than with B, as thinner triangle angles are allowed.

Fine Mode and Displace Approximations
As you’ve seen, the main purpose of approximations is to balance polygon distribution

efficiently by using techniques, styles, and adaptive subdivision. In particular, memory

needs to be balanced efficiently during rendering so that the geometry cache requires less

loading and unloading of tessellation data in and out of the cache. For the purpose of con-

trolling memory with LDA techniques, mental ray imposes a maximum subdivision level

of 7, so that additional subdivision will not exceed a level of seven subdivisions.

approximation techniques and styles ■ 19

08547c16.qxd 10/24/07 5:45 PM Page 19

Fine Mode

To deal with more-complex surfaces that may require millions if not billions of polygons,

mental ray offers the additional Fine mode. When Fine mode is enabled, there are no

restrictions and mental ray can tessellate virtually limitless amounts of polygons. Fine

mode provides a more efficient way of coping with highly complex objects by tessellating

them in smaller segments. Beginning with version 3.1, mental ray allows the splitting of

surfaces into separated tessellation jobs, so that theoretically any surface (polygon count)

A

B

Figure 12

A trimmed NURBS
surface using the

Delaunay style.
The images differ
in grading value:

(A) 5, (B) 30.

20 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 20

can be tessellated and rendered by managing a more efficient flow of data through the

geometry cache. In Fine mode, tessellation is applied (particularly for displacement maps)

on a per-job basis. mental ray begins tessellation when a job is initiated and then dumps

the tessellation on completion. Fine mode tessellates polygons into equally sized micro

polygons. With this approach, a theoretically unlimited number of extremely small poly-

gons may be loaded on demand into memory as determined by the specified technique

and its conditions applied to the current render job (tile).

Fine mode is used with only four techniques: Length, View Length, and the parametric

techniques (Regular Parametric and Parametric). With the parametric techniques, the

surface is tessellated into equally fine micro polygons that are spread uniformly across the

surface. With Length, and particularly View Length, those micro polygons will be better

suited in areas that require additional subdivision, especially when view dependency is

enabled (as recommended). Fine mode is most commonly used to tessellate complex

displacement maps, and so all host applications offer Fine mode for displacement approx-

imations, a topic further discussed in the section “Host Application Approximation Settings”

later in this chapter.

Displacement Mapping

Displacement mapping provides a completely different approach to 3D modeling, essen-

tially determining surface tessellation based on a grayscale image. With displacements, the

amount of surface extrusion and detail is based on two primary factors: the displacement

shader and a max displace mental ray option.

Displacement shader This shader passes a scalar (grayscale) value from a shading tree to a

given surface. Those value ranges express the extent of displacement, based on the scalar

values. Essentially, values of zero (black) represent the “floor,” and values lower and higher

then extend the surface in positive or negative directions.

max displace This option can be added to the object’s declaration block (not within the

approximation) and defines the displacement extent limits for a given surface, defining a

bounding box for the displacement map extrusion.

Each host application provides a max displace option; however, there are also many

shader-based methods for controlling the scale of displacement. Shader techniques typi-

cally utilize a shader tree that remaps an image so that you can control (expand, contract,

or clip) its grayscale range to match any desired range. A common practice would be using

a gradient to control the color value across the image, setting it to a specific range.

Fine mode primarily benefits displacement and parametric approximations that deal with

excessive polygon counts.

approximation techniques and styles ■ 21

08547c16.qxd 10/24/07 5:45 PM Page 21

Displace Approximation Options

Displacement approximation can be used with all the techniques and styles discussed ear-

lier, but they are most commonly used with the Fine View Length mode and technique.

Let’s look at an approximation:

approximate displace fine view length 0.1 sharp 0.8 0 3 “Surface”

The additional sharp option controls the surface normals for polygons generated through

the displacement map. At a value of 0 the surface will appear smoother, as with averaged

normals, and at a value of 1 they appear as perpendicular to their face and thus provide a

faceted “sharp” appearance. The rest of the example approximation should be familiar.

You already know the meaning of view and the conditions the length technique imposes,

and you recognize the subdivision min and max limits (0 and 3 in the excerpt) following

the sharp 0.8 option. Figure 13 has been generated using this technique. As you can see,

image A appears very smooth with a lot of displacement detail, which has been generated

using a simple shader utilizing checker and grid textures to form a procedural displacement

map. Under image B, you can see the finer-detailed tessellation applied to the surface; you

can also see some variation in the tessellation detail as a result of the technique’s conditions.

In Figure 14, you can see a close-up of a similar surface generated using an even smaller

length edge limit in Fine mode.

A

B

Figure 13

Displacement
approximation

applied to a surface
using the Fine mode
and the View Length

technique with and
without the tessella-

tion cage

22 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 22

Additional considerations apply when using displacement mapping with other tech-

niques. With the Distance technique, the distance can’t be evaluated between a polygon’s

edge and that of the surface outline, which does not yet exist, as it will only be generated

during the displacement.

When distance is used for displacement approximations, the condition changes to rep-

resent a maximum distance for each triangle vertex. That is, as the surface extrudes out-

ward from a given face, certain triangles along that extrusion are stretched outward as they

are “lifted” to form the new displaced surface. The Distance techniques will then not allow

vertices on those triangles to pass a certain range from their parent face’s plane, the 2D

dimensional plane on which they theoretically reside before extruding. Essentially, as they

move from their parent positions, past a certain distance, more detail is introduced, typi-

cally by adding detail along the extrusion line. Essentially, this characteristic maintains the

Distance technique’s objective of prioritizing curvature tessellation over flat area tessellation.

For both Length and Angle techniques, their settings hold true as they examine polygon-

dependent characteristics such as the angle between two normals or the length of an edge.

Memory Limits

One important consideration when rendering in Fine mode is that you specify a memory

limit so that mental ray knows its limits before running out of memory. On the mental ray

stand-alone command line, you control memory by using the -memory option flag and

Figure 14

A close-up look at
very fine tessellation
using the Fine mode
and the View Length
technique

approximation techniques and styles ■ 23

08547c16.qxd 10/24/07 5:45 PM Page 23

specifying a limit in MB. With host applications, the memory for the render process is

determined by your host during export. Each host also has an equivalent option that

allows you to specify the memory limit in MB, which should be adjusted to at least half of

your system’s memory. Note that 64-bit systems open the door for much larger computa-

tions, but only if you are running a 64-bit version of mental ray. You can adjust the mem-

ory limit in each host as follows:

Maya Set the memory limit in the Render ➔ Render Current Frame or Batch Render

windows using the Memory Limit attribute which appears disabled when the Auto

Memory Limit attribute is enabled.

XSI Under the Render Options window, locate the Optimization tab ➔ Memory Limit sec-

tion. The Enable property, when enabled, allows you to specify the memory limit manually

using it’s numerical slider.

3ds Max In the Render Scene window, under the Processing ➔ Translator Options you will

find the Memory Limit option, which enables you to specify values in MB.

Polygon and Subdivision Surfaces
Polygon surfaces already have a fixed set of polygons that require no additional tessella-

tion (other than tessellating quads or larger polygons into triangles). The two exceptions

to this rule are displacement mapping and subdivision modeling. Thus, if a polygon (non-

subdivision) surface has an approximation, like that in the following excerpt, the approxi-

mation is irrelevant unless a displacement map is also present:

approximate length 1 angle 15 0 6

If you are using a polygon surface as a subdivision surface, this surface is in fact a sepa-

rate approximation type. However, some host applications simply export subdivisions at

their highest level of refinement, as high-resolution polygonal surfaces and not as subdivi-

sion surfaces. In such a case, as converted polygonal surfaces, they do not require an

approximation in the .mi file. This sort of characteristic is commonly found with XSI and

3ds Max.

Subdivision Surfaces
Subdivision surfaces are dependent on a basic top-level polygonal surface (also known as a

cage), which defines a “starting point” with a fixed tessellation. Figure 15 shows a subdi-

vision surface in Maya, where you can see the refined higher-level subdivisions controlled

by the lower-level cage, as within each host application.

Essentially, when you’re modeling subdivision surfaces, your host application deals with

different levels of surface refinements on top of the base level, allowing you to increase the

subdivision level and add more detail as required. Notice that the detail along the surface

seen in Figure 15 is displayed similarly to a NURBS surface, where you don’t see the final

polygonal tessellation.

24 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 24

The same subdivision surface seen in Figure 15 can be seen in Figure 16 converted

to a polygon mesh at different levels of refinement. When rendering, as cited earlier, the

host will decide how to target the different levels of refinement either by exporting a polyg-

onal mesh or by providing a subdivision surface approximation. In both cases, Figure 16

demonstrates the relationship between an exported (or approximated) polygonal mesh

and its associated level of refinement. In image A, the base cage level is 0 refinements (sub-

divisions), B represents level 2, and C represents level 4. Notice that as the surface is con-

verted to a polygon at these different levels, only details up to and including that refinement

level are seen in the converted polygonal mesh. None of these levels provide an equiva-

lent to the original subdivision surface seen in Figure 15, as the original subdivision

surface utilizes six levels of refinement. Note that the images seen in Figure 16 B and C

look similar to a parametric approximation in that polygons are uniformly distributed

across the surface.

Subdivision Surface Approximations

When using subdivision approximations, during rendering each four- or three-sided poly-

gon is subdivided into four new polygons using a given subdivision technique, as seen in

Figure 17. A quad polygon divides into four new quads using the Catmull-Clark technique,

and a triangular polygon divides into four new tri polygons using the Loop Refinement

technique.

Figure 15

A typical subdivision
surface has a higher
refined mesh that is
controlled by a
lower-level base
mesh, acting as
the subdivision
surface “cage.”

polygon and subdivision surfaces ■ 25

08547c16.qxd 10/24/07 5:45 PM Page 25

Figure 17

Subdivision surface
methods: (left) Cat-

mull-Clark, (right)
Loop Refinement

A

B

C

Figure 16

Exporting three dif-
ferent levels of

refinement as poly-
gon surfaces: (A) 0,

(B) 2, (C) 4. Notice
how each level uni-

formly spreads poly-
gons, revealing

detail up to that
level only, as with

the Parametric
technique.

26 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 26

Essentially, as the subdivision always provides four new divisions for each face (quad

or tri), each additional subdivision level quadruples the tessellation, rapidly increasing the

polygon count.

With subdivision surface approximations, the level of refinement internally within the

host application correlates to the approximation technique’s limit (Parametric U and V

values or LDA max limit). Thus the refinement level from within the host should be pro-

vided as the technique’s limiting value (subdivision level). For example, consider a surface

with four levels of refinement. For mental ray to display the same details as seen in the host

application, you must provide at least four levels of refinements for the parametric U and

V values or the LDA technique’s maximum subdivision level. Thus with subdivision sur-

faces, additional levels of subdivision play two roles:

• Increasing the surface resolution using either the Catmull-Clark or Loop Refinement

method, providing smoother curvature and a significant increase in the polygon count.

• Providing access to rendering details at different levels of refinement. As you saw in

Figure 16, as the level increases, so do the resolution and the available details found at

that level of refinement.

The Parametric Technique

The Parametric technique’s increase in resolution is nonadaptive, so all polygons are sub-

divided equally, forming extremely high-resolution polygons. It’s a good idea to use the

Fine mode with the Parametric technique to better cope with high-level subdivisions. The

Parametric approximation for subdivision surfaces uses one value representing the num-

ber of subdivision levels, as seen in the following approximation:

approximate subdivision surface parametric 4 “name”

Figure 18 shows this surface rendered with the Parametric technique at two different

levels of refinement. Figure 18 image A shows two subdivision levels, and image B shows

six levels. These renders are similar to converted geometry seen in Figure 16, where the

resulting tessellation is equivalent to the (provided) level of refinement. Also, notice that

with the Parametric technique, as with the converted geometry, the tessellation is uniformly

spread across the surface, lacking any adaptive nature as with LDA techniques.

The LDA Techniques

The LDA techniques provide a means for adaptively increasing the tessellation based on

certain conditions, as discussed earlier. With subdivision surfaces, these conditions use the

same methodology with slight differences. Length limits an edge’s length, Angle compares

normal angles between new and parent faces (discussed next), and Distance looks at the

subdivision surface’s polygon vertices, limiting their distance from their parents’ plane,

similar to the explanation in the section “Displace Approximation Options.” Figure 19

shows three LDA techniques used with this subdivision surface.

polygon and subdivision surfaces ■ 27

08547c16.qxd 10/24/07 5:45 PM Page 27

Length

Distance

Angle

Figure 19

The LDA techniques
used separately for

each sample render
with a max level of

six subdivisions

B
Level 6

A
Level 2

Figure 18

Rendering with the
Parametric tech-

nique at two differ-
ent levels of
refinement

28 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 28

Using Figure 20, we can examine the measuring of distances based on parent faces

using the Distance or Angle techniques. Consider the following: At the base level (level 0),

each face is completely flat along some 2D plane as seen in the figure in section A. As you

increase the subdivision level by one (B), each of those faces is divided into four new faces

and the vertices shift away from the parent plane. After another subdivision level (C), the

distances and angles between the child faces (and vertices) and their parent planes get

smaller. If you consider the shape used in Figure 19 (and in all these examples), every

refinement level actually provides for a change in distance (or angle) from the parent

plane. The lower the Distance or Angle technique’s condition (harsher criterion), the

more tessellation is required along those new faces, providing better curvature. Also con-

sider a flat surface, like the base of the “mountains” in previous figures: the faces along the

floor would never require additional adaptive subdivision because they don’t move away

from their parent faces, thus maintaining a perfect overlap with those parent faces.

Subdivision Displacements
With subdivision surfaces and displacement approximations, the surface will receive only

one approximation. This is because the subdivision surface is tessellated in one pass, which

essentially overrides the subdivision approximation with the displace approximation. Thus,

even if you apply two approximations through your host application, only one approxima-

tion will export.

The host application will determine how to export the approximation, typically main-

taining the displacement approximation. You can examine these characteristics by export-

ing .mi files and examining their contents. You should see an approximation similar to the

following one:

approximate subdivision surface fine view length 0.1 sharp 0.5 0 6

“surface”

As you can see, the reference to a displace approximation has been removed; however,

this approximation is in Fine mode, using the view length approximation technique and

providing six levels of recursive subdivisions before maxing out. Thus, the quality of the

displacement will most likely be maintained through this approximation.

A
Base level 0

B
Subdivision level 1

C
Subdivision level 2

Face normal

Level 0
vertices

Level 0
(parent) faces

Angle between
normals

Distance
between
vertices Level 0

normals

Level 1
normalsLevel 1

verticesLevel 1
faces

Level 2
normals

Level 2
vertices

Level
2 faces

Figure 20

Measuring the dis-
tance or angle from
a parent face with
subdivision surface
approximations

polygon and subdivision surfaces ■ 29

08547c16.qxd 10/24/07 5:45 PM Page 29

Host Application Approximation Settings
With all host applications, using approximations is optional. As with stand-alone mental

ray, when you don’t specify approximations, mental ray will use default settings for each

approximation type. Typically, NURBS are approximated using the Parametric technique

and subdivisions are exported with a subdivision surface approximation or exported as

polygons.

Further, even when you explicitly set tessellation settings, your host determines whether

to use a mental ray approximation or export the geometry after applying its own tessella-

tion, essentially exporting already approximated polygons. For example, 3ds Max typically

exports NURBS surfaces as polygons and not as NURBS surfaces.

Using approximations simply provides you with added control, particularly with com-

plex surfaces that can benefit from proper optimization.

Keep the following points in mind as you work with approximations in your host

application:

• All hosts attempt to tailor the range of options offered based on what the developers

see as valuable for the user, trying to provide as many options as needed but not so

many that they impede the workflow. In all cases, these options should suffice for all

purposes.

• To learn more about your host and how it handles approximations, particularly

before rendering, you can export an .mi file to examine the approximation syntax.

• If you are a ZBrush user, consider exporting the cage from ZBrush and then adding a

fine view length Displace approximation with a displacement map (generated from

ZBrush). You can then render the cage as a subdivision surface with a Displace approxi-

mation using the same subdivision levels as within ZBrush.

Let’s look at each host to quickly identify the approximation windows as well as some

of their characteristics with host applications.

Maya
With Maya, you can apply approximations either on a per-surface basis or as global over-

rides for the scene. With global overrides, you can quickly run test renders using lower-

resolution tessellation and then either increase the resolution for all surfaces collectively

(for a given type) or simply remove the approximation, letting them resume their per-

surface approximation. And remember that approximations are optional; if you don’t

include one, typically the Parametric technique approximation is used by default.

Using the Approximation Editor

The mental ray Approximation Editor window is used to add approximations to surfaces in

Maya. To open this window, choose Window ➔ Rendering Editors ➔ mental ray ➔ Approxi-

mation Editor. You’ll see the mental ray Approximation Editor (Figure 21).

30 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 30

To add an approximation, simply select the surface and then click the Create button for

the appropriate approximation type. For example, for a NURBS surface, under NURBS

Tesselation select the Surface type, and for a NURBS trim, select the Trim curve type

(NURBS), and both can be added to the same surface. Figure 22 shows a NURBS sur-

face in the Hypergraph that has connections to three different approximation types;

Surface, Trim, and Displacement. As you can see, mental ray approximations are nodes in

Maya that can connect to one or more surfaces. Here are a few additional points for using

the Approximation Editor:

1. When you create an approximation, it automatically loads into the Attribute Editor.

Also, when the Approximation Editor is open, if you select an object, its approxima-

tion is loaded into the Approximation Editor across from the relevant type (provided

you attached one). If the surface doesn’t have an approximation, it will just read the

default DeriveFromMaya option. When a mental ray approximation is present, you

can select Edit to load the it into the Attribute Editor.

2. Sometimes the Approximation Editor doesn’t update to show the relevant approxi-

mations for a given surface; just deselect and reselect the surface and it should appear.

3. You can also access approximations for a selected object by navigating through its

tabs in the Attribute Editor or by selecting it under the Hypergraph window, as seen

in Figure 22.

4. If you created several approximations in the scene and you would like to attach a

different approximation to a surface, simply select it from the Approximation Editor’s

type drop-down list and click the Assign button, essentially swapping it with the

previously assigned approximation.

5. If a surface has an attached approximation, the Approximation Editor type Create

button will appear grayed out, preventing you from creating a new one. If you want

to create a new one for that approximation type, you can re-enable the Create but-

ton by switching the approximation from the approximation type’s drop-down to

DeriveFromMaya and clicking Assign.

6. In the Approximation Editor, the Approx Nodes Created attribute provides two

options (radio buttons): Single and Multi (Per Selection). If you have selected several

Figure 21

Maya’s mental ray
Approximation Edi-
tor window enables
you to add the dif-
ferent approxima-
tion types to their
relevant surfaces.

host application approximation settings ■ 31

08547c16.qxd 10/24/07 5:45 PM Page 31

surfaces in the scene (of the same type), the Single attribute will attach one approxi-

mation to all these objects so they share the same settings. If you select the Multi (Per

Selection) attribute, a new approximation will be created and assigned to each surface.

7. The Show in Hypergraph attribute will load all the newly created approximations into

the Hypergraph for easy viewing.

Approximation Attributes

Once an approximation has been attached to a surface, you can review the approximation

attributes in the Attribute Editor. Figure 23 shows a NURBS Surface approximation in

Maya. Let’s review these settings, as well as some additional consideration, with a few

quick points:

• The Presets drop-down list offers a different range of settings with each technique,

using low- to high-quality settings. Essentially, the higher-quality presets provide

harsher conditions as well as higher subdivision settings. Note that when you’re using

the Displacement approximation, typically a good starting point is the Fine View Low

Quality preset, providing the fine view length approximation options as discussed

earlier.

• You can manually control the approximation techniques and styles with the Approx

Method and Approx Style drop-down lists, respectively.

• U and V Subdivisions are used by the parametric techniques (found under the Approx

Method drop-down) as discussed earlier in the section “Parametric and Regular

Parametric Techniques.”

• Min and Max Subdivisions are used with the LDA techniques, providing the base and

limit subdivision levels as discussed earlier.

• Max Triangles and Grading are used with the Delaunay style when enabled, as dis-

cussed earlier in “Approximation Styles.”

Figure 22

The mental ray
approximations are
nodes in Maya that

can be graphed in
the Hypergraph win-

dow, showing their
connections into

their relevant
surfaces.

32 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 32

• Length, Distance, and Angle attributes are the conditions for each of their respective

techniques, as discussed in the section “Length, Distance, and Angle Techniques.” If

Approx Method is set to Spatial, only Length will be available. If Approx Method is

set to Curvature, then both Distance and Angle (only) are available. And of course, if

Approx Method is set to Length/Distance/Angle, all three are available.

• When any of their conditions is set to zero, they are effectively disabled. Thus, if both

Distance and Angle are set to zero, then only Length will be utilized.

• The Any Satisfied and View Dependent check boxes and the Sharp attribute slider

correlate to the any, view, and sharp options, as discussed earlier.

• For NURBS surfaces, Fine Parametric is not an available option. Oddly enough, if you

do not explicitly attach an approximation, Maya by default exports NURBS surfaces

in Fine Parametric mode, as seen in the following approximation of a basic NURBS

surface that does not have a mental ray surface approximation attached:

approximate surface fine parametric 4.5 4.5 “Surface”

• DeriveFromMaya means that a surface receives its tessellation based on the settings

you apply within Maya. If advanced tessellation is enabled (under the shape node),

then different approximations are exported, which can be examined in .mi files.

Other types of approximations (Trim, Displace, Subdivision) all appear in the same

format; however, settings that are irrelevant to a type are grayed out:

• The Subdivision and Trim curve do not offer any styles. Styles are relevant only with

NURBS and Displacement approximations.

• Fine mode (found under the Approx Style drop-down list) is available only with

Displacement approximation, and you

can enable it only if Spatial has been

selected as the Approx Method setting.

• If you add a Subdivision approximation

to a (non subdivision) polygon surface,

Maya will export it for rendering as a

subdivision surface with an approxima-

tion, using the settings you provided.

Earlier in this chapter, I mentioned

that approximations without displace-

ment maps on polygon surfaces are

irrelevant, and that holds true, as Maya

conveniently converts the polygon sur-

face into a subdivision surface so the

approximation takes affect.

host application approximation settings ■ 33

Figure 23

Maya approximation
attributes for a sur-
face type (NURBS)
approximation

08547c16.qxd 10/24/07 5:45 PM Page 33

Global and Per-Object Attributes

In the Render Settings window, the mental ray tab ➔ Render Options ➔ Overrides rollout

provides some global overrides for the render, as seen in Figure 24. Under the Overrides ➔

Tessellation rollout, you can see the global approximation overrides. If you select to map

the checker box, a new mental ray approximation for Surface or Displace Approx. is cre-

ated and overrides all those local approximations. To resume your initial approximations,

simply remove the approximation from these global overrides, which re-enables per-surface

approximations.

The Max Displace attribute (seen in Figure 24) is equivalent to the mental ray option

discussed earlier in this chapter. This option is only enabled as an override to the entire

scene, when set to a value other than zero. On a per-object level, each surface has a displace-

ment bounding box derived from the surface attribute’s shape node tab under Displacement

Map ➔ Bounding Box Scale in the Attribute Editor seen in Figure 25.

If you click Calculate Bounding Box Scale, Maya will try to evaluate the limits for you.

If the value is set too low, you will see a clipping (cut-off) effect at a given distance from

the original (parent) level, where polygons don’t extrude past that bounding-box distance.

A value of 1 is equal to surface level and no extrusion occurs; any value above 1 then extends

in 3D units outward from the surface faces.

Figure 25

Maya’s displace-
ment bounding box

controls the maxi-
mum allowable dis-
placement distance
from a surface face.

Figure 24

Maya global
overrides for

approximations

34 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 34

The additional Maya attributes (under Feature Displacement) are not relevant with

mental ray displacement approximations. However, they are relevant if you have not

explicitly attached a Displacement approximation. In such a case, the Initial Sample Rate

setting will control the amount of tessellation for displacement and can be set fairly high.

You can read about these Maya base attributes in the help files.

XSI
In XSI, each surface is already connected to default mental ray approximations based on

their approximation type. Regardless of whether you edit a surface’s approximation, when

XSI exports an .mi file, it automatically attaches an approximation. The following excerpt

demonstrates a simple NURBS surface exported without editing any properties:

approximate surface parametric 1 1 “_s_0”

approximate displace parametric 0 0 “_s_0”

The surface is then exported using a Parametric technique with one level of subdivi-

sion, which for this (third-degree) surface produces a 3×3 grid of faces per surface patch.

Notice that although a displacement map has not been applied, it does export a displace

approximation, which clearly has no effect, demonstrating how XSI automatically attaches

approximations. For polygon surfaces, whether subdivision or not, the following is exported:
approximate parametric 0 0

As you know, a parametric setting of zero provides no additional subdivisions; each

face remains at its current resolution (only triangulated). Thus, the subdivision level you

are currently editing is set for rendering by precalculating the approximation and export-

ing the subdivision surface as a (high-resolution) polygon mesh. By doing so, no additional

subdivisions occur during the render, unless, of course, a displacement map is applied. Let’s

take a closer look at these settings.

The Geometry Approximation Property Editor

The default approximations attached to all surfaces can be edited globally for the scene as

shared properties or locally per object. To edit these approximations, open the Explorer

window, and for a given surface, find the Geometry Approximation properties under its

properties list as shown in Figure 26 for a sphere surface. (You can also navigate to the

Geometry Approximation properties from the Selection button under the Select panel in

the main Command panel.) When you initially select to edit these settings, you’re prompted

with the following question: “You are about to edit shared property(ies). Do you want to

make a local copy first?” If you choose No, any edits you apply are made global and will

apply thereafter as the global settings for the current scene. Choosing Yes allows you to

make local edits, on a per-surface basis.

With Maya, the Feature Displacement check box is not part of the mental ray’s approximations,

but you will find that it must be enabled for fine displacement approximation to work properly.

host application approximation settings ■ 35

08547c16.qxd 10/24/07 5:45 PM Page 35

The Geometry Approximation properties include a Hardware Display tab with options for

increasing the display resolution to handle NURBS surfaces and curves within the viewport.

However, our interest here is in the tabs that deal with render properties: Surface, Surface

Trim, Polygon Mesh, and Displacement. Each tab is equivalent to the respective approxi-

mation type discussed earlier in this chapter. Let’s quickly review these tabs and their options.

Surface properties tab Figure 27 shows the Geometry Approximation editor Surface tab,

which offers the different techniques. The Length / Distance / Angle radio button (which

appears selected) enables the LDA techniques. When it’s selected, the relevant settings appear

below.

• The Length, Distance, and Angle property sliders enable you to specify each tech-

nique’s condition. If the condition is set to 0, then the corresponding technique is

disabled. Thus, if both Length and Distance are set to 0, only Angle will be used.

• Stopping Condition corresponds to the any option; in the drop-down “and” dis-

ables the option and “or” enables it. Enabling this option enhances efficiency by

providing better render optimization.

• The View Dependent check box corresponds to the view option; when it’s

enabled, the condition values are view-dependent pixel values, as discussed ear-

lier under LDA approximations.

• Subdivision Limit - Recursive Steps Min and Max are the LDA subdivision start-

ing and ending limits, as discussed earlier in this chapter.

• If Parametric is selected, U Step and V Step properties will allow you to set the

per-surface patch subdivision level as discussed earlier. Regular Parametric is not

offered.

• Choosing Fine enables Fine mode and displays the same settings that you’ll see in

Figure 30 for the Displacement tab. The Fine mode is offered only as fine view

length or fine length approximations, not as a fine parametric approximation.

• The Surface tab and the Surface Trim tab offer the same settings for defining sur-

face and curve (trim) approximations, with the difference of only offering a para-

metric U Step option for curves under the Surface Trim approximation tab.

Figure 26

XSI’s Geometry
Approximation

property editor can
be opened from

under a surface’s
properties list.

36 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 36

Polygon Mesh properties tab With polygons and subdivision surfaces, the level of detail is

based on the current modeling level. Typically, if you want to render at the current subdi-

vision level, you should make sure that under the Polygon Mesh properties tab, seen in

Figure 28, the Subdivision ➔ Render Level values are equivalent to the subdivision surface’s

OGL Level value.

• OGL Level controls the subdivision level in the viewport, and Render Level rep-

resents the Parametric technique and its subdivision level during rendering.

• The Discontinuity ➔ Automatic property, when enabled, controls the vertex

normals, enabling the rendering of sharp-faceted appearances or smoother ones

based on the Angle option (discussed next). Discontinuity has a significant

meaning when a displacement map is applied. The displacement pushes vertices

outward in a given direction; Discontinuity determines whether those vertices

share normal vectors. As a surface displaces, each vertex normal may point in a

different direction. For example, if vertex normals are perpendicular to their

face, vertices do not share the same normal directions along face edges and

faces will appear to detach as they are displaced, as seen in Figure 29. How-

ever, if vertices are set to share the same normal vectors (directions), then as they

extend outward they will follow the same path and the surface will maintain its

continuity. When Discontinuity ➔ Automatic is disabled, all normals are aver-

aged for a smoother appearance. Also, if you do want hard edges to appear, use

the modeling tools to mark hard edges on subdivision surfaces. By using mod-

eling tools, you can still retrieve such hard edge appearances with more local

control compared to applying it based on an angle value and globally for the

entire mesh.

Figure 28

XSI’s Polygon Mesh/Subdivision approxima-
tion properties, available under the Polygon
Mesh properties tab

Figure 27

XSI’s NURBS surface technique properties,
available under the Surface properties tab

host application approximation settings ■ 37

08547c16.qxd 10/24/07 5:45 PM Page 37

• Angle determines the maximum angle for smooth interpolation of normals.

Greater values (ranging from 0 to 100) provide for a faceted appearance (sharp

edge) with the risk of breaking the surface when a displacement map is applied.

Note that if a displacement map is attached and you set a fine length displacement

approximation, continuity will be maintained regardless of the Angle value. Thus,

the discontinuity artifacts appear if the displacement approximation is set to

Parametric (default preset) and the Angle value is set to 100.

• As you see, there are no adaptive options for controlling subdivision objects

during the render, meaning the LDA techniques. Higher-level detail should

be modeled (adaptively) with the model because XSI exports the higher-level

mesh as a polygonal mesh using the current level set under the Render Level

for export.

Figure 29

Discontinuity of
vertex normals can

cause a surface
to detach as it

displaces outward.

38 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 38

Displacement properties tab Displacement approximations, like the Surface approxima-

tions, offer three techniques: Parametric, LDA, and Fine mode Length, as seen in Figure 30.

Note the significance of Discontinuity cited earlier with respect to displacement mapping

with the Parametric and LDA techniques but not in Fine mode. In Fine mode, if Angle is

set to 100 (discontinuity), the tessellated face borders become more apparent, a faceted

appearance.

• Max Displ. correlates to the equivalent mental ray option as

discussed earlier. This value limits the extent of displacement

from a given surface, acting as a scaling factor.

• Notice that in Fine mode you have the Length option for

determining the length condition.

• Sharpness correlates to the mental ray sharp option discussed

earlier in this chapter, providing sharper edges.

• Subdivision Limit Min and Max refer to the adaptive mini-

mum and maximum additional levels of subdivision with the

LDA and Fine mode techniques, as discussed throughout this

chapter. For clarification, Fine mode is the Length technique in

Fine mode, not a separate technique.

3ds Max
3ds Max does as much processing as possible using host-specific rather than render-specific

settings. Essentially, this means that geometry is always exported as approximated polygons

to mental ray, except for displacement maps, which are approximated

during rendering. All the techniques, styles, and types discussed in this

chapter are also similarly used by 3ds Max. Thus, all these settings exist

within the host application and even provide you with the benefit of

viewing the result within the viewport.

3ds Max offers control over NURBS Surface, Curve, and Trim

approximations on a per-surface basis and a global Displace approxima-

tion for all displacement maps. With respect to subdivision surfaces, the

modeling tools specify the appearance and subdivision of the surface,

which, as cited earlier, is then exported as a polygon mesh. Let’s look at

the approximation settings for NURBS-based approximation types.

Approximation Types and Settings

For a selected NURBS surface, Figure 31 shows the Modify Panel ➔

NURBS Surface (top level) ➔ Display Line Parameters and Surface

Approximation rollouts. Display Line Parameters enables previewing

host application approximation settings ■ 39

Figure 30

XSI displacement
Fine mode Length
technique proper-
ties under the Dis-
placement
properties tab

Figure 31

3ds Max Display Line
Parameters and Sur-
face Approximation
roll-outs

08547c16.qxd 10/24/07 5:45 PM Page 39

the tessellation within the viewport by enabling the Mesh Only radio button and display-

ing the viewport in wireframe mode. When it’s enabled, you can see the changes update in

the viewport in real time as you adjust approximation settings.

The Surface Approximation rollout controls all the tessellation settings for NURBS Sur-

face and Trim approximation types. Let’s review these options, with a few quick comments:

• The first two radio buttons, Viewports and Renderer, specify whether the settings

found in this rollout are applied as render approximations or viewport display. Essen-

tially, these two separate settings enable you to use lower-resolution tessellation within

the viewport and a higher resolution while rendering. Note that some additional

modifiers, such as surface modifications (Mesh modifiers), are affected by the view-

port tessellation, so it’s more than just a preview mode. If you toggle these two options,

you will see the same settings appear in both modes, with a difference in value. Clearly,

if you’re satisfied with your Viewports settings, you should copy them into the Ren-

derer settings, providing, if need be, additional higher subdivision levels for higher-

quality rendering.

Approximation types To select an approximation type for editing, you must select it from

the three buttons: Base Surface, Surface Edge, and Displaced Surface. These options corre-

spond to Surface, Trim, and Displace approximations, respectively. You edit the selected

approximation’s parameters using the parameters seen below.

• The Lock button, which appears selected in the figure (by default), synchronizes

the Base Surface (Surface approx.) and Surface Edge (Trim approx.) approxima-

tions, using the same settings for both types. As you can see, when Lock is enabled,

the Surface Edge button is grayed out, so its settings are derived directly from the

Base Surface settings.

• Displaced Surface can be enabled only when editing under the Renderer mode

(radio button enabled), as it correlates directly to render settings. With respect

to displacements, mental ray has its own global displacement approximations

that will override these settings, using the Fine mode and Length technique, as

you will soon see.

Approximation techniques and styles With respect to approximation techniques, as you

can see, all the remaining settings correspond to the different techniques and conditions

we discussed in this chapter. The Advanced Parameters button further provides control

over approximation styles. With 3ds Max, this is the primary area for optimizing tessella-

tion settings specific to mental ray and 3ds Max. Let’s quickly review these settings.

• Tessellation Presets offers preset options for examining different tessellation set-

tings. When you select one, you see its influence with the updated (changed) set-

tings and you can see the update in your viewport. If you don’t want to use these

presets, you can further customize the approximation using the settings found

under Tessellation Method.

40 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 40

• Tessellation Method corresponds to the techniques discussed earlier in this

chapter.

• The Regular and Parametric radio buttons, as well as their U Steps and V Steps

settings, correlate to the mental ray Regular Parametric and Parametric techniques

and options.

• Spatial, Curvature, and Spatial and Curvature correspond to the LDA techniques

using the Spatial and Curvature naming conventions, as discussed earlier in the

section “Length, Distance, and Angle Techniques.” Spatial is equivalent to the

Length technique, Curvature to the Distance and Angle techniques, and Spatial

and Curvature to all three LDA techniques combined.

• The Edge option is used with Spatial to limit the size of a polygon edge as with

the mental ray length option.

• Distance and Angle are also the same as their equivalent mental ray options, dis-

cussed earlier in the section “Length, Distance, and Angle Techniques.”

• View-Dependent corresponds to the mental ray view option, and is enabled only

in the Renderer mode.

• The Advanced Parameters button opens an additional window (Figure 32) that

provides further control over insert the LDA approximation styles and the mini-

mum and maximum subdivision limits.

• Under Subdivision Style, you can enable the

different styles discussed earlier in this chapter

in the section “Approximation Styles.”

• When using either the Tree or Grid styles, you

can then set the technique’s (LDA only) refine-

ment levels min and max limits using the Mini-

mum and Maximum Subdivision Levels settings.

• With Delaunay, you have the Maximum Number of Triangles setting, corre-

lating to our discussion earlier on the Delaunay max option. As this book is

begin written, the grading option does not appear available.

Displacement Mapping

Displacement approximations with mental ray are

automatically added to each surface as a global override.

Clearly, if no displacement map is applied, the approxi-

mation has no effect. To control the Displace approxima-

tion type, open the Render Scene window and locate

the Shadows & Displacement rollout found under the

Renderer tab, as seen in Figure 33.

host application approximation settings ■ 41

Figure 32

The 3ds Max
Advanced Surface
Approx. window
controls the approx-
imation styles dis-
cussed in this
chapter.

Figure 33

Global displacement
settings for mental
ray renders with
3ds Max

08547c16.qxd 10/24/07 5:45 PM Page 41

The settings in this rollout are fairly straightforward, corresponding directly to the

mental ray options. Let’s review them quickly:

• Note that 3ds Max exports this Displace approximation in Fine mode, even though

you don’t see a Fine option. Hence, these options provide two common displacement

techniques, fine length and fine view length, discussed earlier in this chapter.

• The View check box enables view dependency.

• Edge Length correlates to the mental ray Length technique and options, defining the

maximum length unit per edge.

• The Max. Subdiv. parameter specifies a number of per-polygon tessellations. Essen-

tially if we consider that one level of subdivision (as discussed for the LDA techniques)

divides a single face into four new faces, this would correspond to a Max. Subdiv. value

of 4 and level 2 corresponds to a value of 16 (16 new faces). As you can see, today’s

practices that allow for extreme displacement resolutions are present by the available

Max. Subdiv. values, which range from 4 to 64K of subdivided faces per face.

• Max. Displace correlates to the same mental ray per-surface option, limiting the dis-

placement extrusion distance from the surface.

• Smoothing correlates to the sharp option. When it’s enabled, the normals are inter-

preted as smooth, correlating to a value of 1, and when it’s disabled, this option corre-

lates to a value of 0, hence a faceted appearance.

• Note that under the Render Scene window, the Common tab ➔ Options ➔ Displace-

ment selection can be used to quickly disable or enable displacement rendering.

A P P L Y I N G A D I S P L A C E M E N T M A P

In the Material Editor, you can apply mental ray shaders or 3ds Max shaders; both enable

you to specify displacement mapping. When using a 3ds Max shader, under its settings

in the Material Editor window you will find the Maps rollout, and the mental ray Con-

nection rollout shown in Figure 34. If you select a mental ray material type from the

Material Library instead of the Standard material, you will see the parameters seen in

Figure 34 appear. The mental ray material is esentially a basic mental ray material model

that allows you to map in different types of shaders. Let’s review a few points for displace-

ment mapping.

• Under Extended Shaders you can apply a mental ray displacement shader by disabling

the Displacement mapping parameter’s lock. The lock forces mental ray to read the

displacement shader from under the Maps rollout, where you normally apply dis-

placements with 3ds Max.

42 ■ Surface Approximation Methods

08547c16.qxd 10/24/07 5:45 PM Page 42

• When you choose to map the displacement, either from under the Extended Shaders ➔

Displacement setting or from Maps ➔ Displace-

ment, you are prompted to select a displacement

type, and typically you should select the 3D

Displacement (3dsmax) option from the Mate-

rial/Map Browser that pops up.

• Under the 3D Displacement settings, you can

then map the displacement shader, such as a

checker, to the Extrusion Map option and use

the Extrusion Strength parameter to increase

the displacement scale, but you are obviously

limited by the global Max. Displace parameter

in the Render Scene window.

If you use the Displace NURBS (WSM) modifier, converting a NURBS surface into a displaced

mesh within the viewport, essentially the modifier creates a tessellated displaced surface in

the viewport. During rendering, mental ray settings output a displacement approximation as

well, and so with an already displaced surface, which does have a displacement shader applied,

the render result may become unpredictable.

host application approximation settings ■ 43

Figure 34

3ds Max mental ray
settings on a 3ds
Max shader, where
you can connect the
different mental
ray–based shaders
to surfaces

08547c16.qxd 10/24/07 5:45 PM Page 43

