
September ❘ October 2002 IT Pro 91520-9202/02/$17.00 © 2002 IEEE

Preventive
Risk
Management
for Software
Projects
Sanjay Murthi

Developing large software systems is risky
business.According to a report from The
Standish Group,“CHAOS:A Recipe for
Success,” only 28 percent of all software

projects in 2000 were on time and within budget
and had all their planned features—which means
the other 76 percent either failed or did not meet
original goals. This is scary in an economy where
software systems can make or break the organiza-
tion. Internet auction company eBay lost millions
of dollars when its systems were unavailable for

even a few hours. Software
product companies like Micro-
soft and Oracle lose millions of
dollars when product releases
are late or do not work as ex-
pected. Even small to medium-
size projects suffer costs from
delays.If the cost of each person
on a 10-person team is $100 per
hour,a company spends $40,000
for every week of delay.The cost
in terms of lost opportunities,
lost sales, and dissatisfied cus-
tomers could be even greater.

Many companies have adopted detailed and
heavily process-oriented methodologies, hoping
to reduce delays and the number of failures.
Unfortunately, these methods contribute their
own overhead and delays,and frequently provide
little guarantee of success.They are also generally
prescriptive in that the team takes action (imple-
ments a cure) when they find a problem (illness).
The cure is often worse than the disease. Senior
management becomes aware of a problem when
the team misses certain milestones or customers
report software problems.They scramble to fix the
problem by drastically reducing project scope,
replacing project managers,hiring expensive con-

tractors, or taking resources from other projects.
In the end, the company kills the project because
the cure has become too costly.

A better approach is preventive risk manage-
ment based on more flexible development prac-
tices. The idea is to identify potential steps in
development and deployment that can delay the
project or cause it to fail and devise strategies that
will mitigate the risk should it materialize. Unlike
prescriptive risk management, in which the team
identifies risks only when they occur and attempts
to mitigate them only after the fact, the team
identifies and evaluates risks and devises mitiga-
tion strategies throughout development. And
unlike prescriptive risk management, all project
stakeholders are intimately involved in identifi-
cation, evaluation, and mitigation.

IDENTIFYING AND EVALUATING RISKS
The first step in managing risks is to identify

them:What could possibly cause the project to be
late or to fail? Risk taxonomies can guide the
project team in identification, but although much
work has been done to develop such taxonomies,
they still tend to overlook risks that typically
plague actual projects.The Software Engineering
Institute’s taxonomy, for example, focuses on
internal project risks, such as design and integra-
tion,almost to the exclusion of the external events

A preventive
approach to
risk management
makes it part of
development
and emphasizes
flexible processes.

Resources

Risk Categories in Real Projects

Principles Behind the
Agile Manifesto

Inside

10 IT Pro September ❘ October 2002

S O F T W A R E D E V E L O P M E N T

that can derail a project—politics, changing business
requirements, platform deficiencies, and so on.The “Risk
Categories in Real Projects” sidebar describes how these
external events can also influence projects.

Risk identification must also acknowledge that risks
change with time. New risks arise that the team has not
planned for. The Microsoft solutions framework, which
suggests that managers continuously assess risks, is one of
few methodologies that acknowledge changing risks.

The second step in managing risks is to evaluate them.
Risk evaluation should start soon after the team has final-
ized project goals, and it should continue through the
entire project life cycle. Once the team identifies the risks,
they can take the following steps:

• Establish potential impact. If the risk materializes, what
items would fail or have problems? Suppose the risk is
that the infrastructure to test an application will be two
weeks late.The impact will be large if testing must start
earlier (before the delay), but minor if testing falls later
in the cycle. Some risk may remain if it takes time to set
up the infrastructure after delivery.

• Rank the risks according to potential impact. Ranking
can be as broad as high, medium, and low.

• Calculate the probability that the risk will occur. Again,
broad categories of high, medium, and low will suffice.
You do not need an exact percentage.

• Rank the risks by their combined impact and probabil-
ity of occurrence.The combinations of high impact-high
probability, high impact-medium probability, medium
impact-high probability, and medium impact-medium
probability are the ones to watch for.

• Develop contingency plans for major risks. Aim to have

more than one plan.
• Determine the resource requirements for the

contingency plans. This will give you the
cost impact of each contingency plan.

• Put this risk information in the review plan.
You can then communicate it to project
sponsors and development managers.Also
include information about likely contin-
gency plans and costs so that everyone will
be on the same page if the risks occur.

• Track risks as the project progresses. Some
risks may become moot. Other risks will
become less likely or their potential impact
will decrease. New risks can arise after the
previous review. Track risks in weekly
reports so that all players know what is
happening.

• Periodically evaluate and modify the risk
evaluation approach. Use post-project
meetings to review the effectiveness of risk
evaluation and management. Use feedback
to improve the process.

PROACTIVE PREVENTION
Preventive risk management is the proactive manage-

ment of three important areas: people, process, and con-
trol systems.

People
Of the three, people are probably the most important.

Unless they are committed and eager to work with each
other, projects frequently fail. In many projects I have
observed, teaching people better estimation, scheduling,
and risk management skills really helped.These skills pro-
duced better estimates and timelines, and people were less
likely to underestimate or miss work items. Consequently,
there were fewer 80-hour weeks,and stress levels dropped.
Meeting deadlines on target produced a solid team spirit,
which in turn produced a virtuous cycle of change—people
became more patient with each other and were willing to
help each other solve problems. Continuous firefighting
and struggling to meet deadlines, on the other hand, led to
a vicious cycle. Stress levels rose, people became irritable
and impatient, and the desire to help someone else disap-
peared,as each person totally focused on meeting his dates
and solving his personal mountain of problems. Things
went steadily downhill until management had to resort to
drastic surgery or terminate the project.

Processes
Processes also influence risk management.Flexible,adapt-

able processes let the team respond quickly to change.
Without them,it is hard to keep a project on track.If a change
control board must approve every requirement change,and
the board meets only once a month, how can the team try

➤ The Agile Manifesto, http://www.agilemanifesto.org: The re-
sults of a 2001 meeting of major practitioners of agile methods
brought these different methods under a common umbrella.

➤ Agile Modeling, http://www.agilemodeling.com: Site devoted
to applying agile methods to modeling.

➤ “CHAOS: A Recipe for Success,” http://www.pm2go.com/
sample_research/chaos1998.pdf: A report by The Standish
Group; it’s an old version, but it’s free.

➤ Lean Programming, Mary Poppendieck; http://www.
sdmagazine.com: Series of articles in Software Development
on an agile method that arose from experience in applying
total quality management to manufacturing.

➤ “The XP Paradigm Shift,” Ed Yourdon; http://www.cutter.
com/summit/read03.html: Valuable insight into Extreme
Programming from the Cutter Consortium.

Resources

September ❘ October 2002 IT Pro 11

Many risk taxonomies fail to consider the
external risks that affect real projects. This list
reflects the risk categories most projects are
likely to encounter. A flexible develop-
ment process will help mitigate risks in
the first three categories. The team is
better able to stay loose in defining
requirements, modify system designs or
platforms late in the process, or work around
failed partnerships that introduce business risk.

➤ Requirements. Unclear or uncertain requirements
introduce large risks. This is the most common type
of risk and is probably responsible for most failed or
delayed projects. Competitive forces and business
agreements with new partners force the organiza-
tion and its software systems to change. Users find it
hard to visualize software until they use it, which
makes requirements fuzzy and subject to change.

➤ Technology. At some point in development (usual-
ly late in the cycle), the team finds that the technol-
ogy can’t satisfy system requirements. For example,
team members could assume that the database they
use is not easily corrupted, but when they actually
build the system, they find that it has bugs that can
cause it to become corrupted frequently.

➤ Business. Business decisions introduce many risks.
A deal with a vendor does not get signed in time to
use the desired platform. A conflict with a partner
who supplies part of the solution stalls the project
or the partner goes out of business.

➤ Political. These are the most difficult risks to over-
come. Large organizations tend to behave like
large families. Members are busy jockeying for
power and influence over each other. Some groups
might find the project threatening, which means
that people do not cooperate, budgets get cut, or
the project gets cancelled. Contingency plans for
this risk are hard to define, because these plans can
cause embarrassment later, and if project oppo-
nents find out about the contingency plans, they
can sabotage them.

➤ Resources. When a project doesn’t get the required
people, money, facilities, or equipment, the short-
falls degrade both schedule and morale. Identifying
an alternative resource can help. For example,
another team might be willing to share some of its
servers until yours come in.

➤ Skills. These risks arise if, for example, the team is
unfamiliar with the technology or business process.
Providing training and bringing in consultants with
the missing skills, who can mentor the team, will
help mitigate this risk.

➤ Deployment and support. The team can’t deploy the
software on schedule because the required infra-

structure isn’t in place or the support team
isn’t ready for training or is already

stretched too thin. Sometimes this risk
occurs because the deployment and sup-
port teams have no idea what the proj-

ect team is doing, let alone what it needs.
In this case, communication will help miti-
gate the risk.

➤ Integration. Most applications must
integrate with other applications. Mis-

communication and misunderstand-
ings cause systems to miss sharing

accepted interfaces, so they don’t work together as
expected. Communication is key to reducing this
risk. Try to do integration in parallel with develop-
ment (using stubs that satisfy agreed-on interfaces).
Communicate variations and unexpected behavior
to all interested parties as soon as possible. A flexi-
ble development process will let the team try differ-
ent designs if it encounters intractable integration
issues.

➤ Schedule. These issues include components that
aren’t available when needed, delivery at an
extremely busy time, and so on. Communication
can help people see that timing a product upgrade
towards the end of a quarter is not a good idea
because the sales staff are trying to reach their quo-
tas. They don’t want to reprice products and reed-
ucate customers just when they’re about to close
deals. Good project planning can help prevent
schedule risk.

➤ Maintenance and enhancement. The company
can’t maintain and enhance the software properly
because the documentation is inadequate, the sup-
port team isn’t properly trained, or the platform
has become obsolete. Planning and setting aside
time for adequate training and documentation can
help reduce these risks. A flexible development
process can make things worse if managers don’t
allow enough time, money, and people for training,
documentation, and support.

➤ Design. Bad design decisions can degrade the soft-
ware’s usability and system performance. A flexible
development process that can accommodate user
input and changes late in the process can reduce
this risk.

➤ Miscellaneous. This is a catch-all category for risks
that are hard to foresee—a hurricane or fire shuts
down your offices for a week, a development serv-
er crashes, a virus attacks, and so on. Most of these
risks involve a loss of some resource, so a mitiga-
tion strategy is to arrange for back up. Set people
up to work at home, store project data in multiple
locations, or plan to use a spare server from anoth-
er team.

Risk Categories in Real Projects

12 IT Pro September ❘ October 2002

S O F T W A R E D E V E L O P M E N T

out new ideas? In some projects I have observed, the team
would work on certain requirements only to find the effort
wasted because the requirements changed at the next
monthly board meeting.In projects involving subcontracted
work, these delays caused major budget overruns.

Agile methods—such as Extreme Programming, feature-
driven development, and Lean Programming—can help
avoid this inefficiency because their mission is to cut items
that add no real value.As such, they provide low-cost ways
to work with requirements changes:
Instead of detailed requirements doc-
uments, they advise close interaction
between programmers and customers
to flesh out requirements. They also
recommend frequent iterative releases
so that usable code is available as soon
as possible.Users can then provide the team with valuable
feedback for further development. Finally, agile methods
concentrate heavily on automated test cases so that the
team can continuously check for bugs introduced from one
release to the next. Clearly, agile methods work extremely
well in situations where needs change quickly.

Software projects using agile methods tend to be
extremely flexible and have lower overhead. The focus on
continuous user input and the repeated demonstrations of
working software helps catch issues early and reduces wasted
time and effort.The emphasis on close stakeholder interac-
tion means that process decisions involve all stakeholders.
On one project I was responsible for,our releases came at the
same time as another project’s.This caused problems for the
support team, which was short staffed.We solved this con-
flict by modifying our release cycle and appointing some
team members to provide second-level support.

Control systems
Management control systems are important because the

team needs some mechanism for measuring and monitor-
ing all aspects of development, including risk management.
Poor measurement and monitoring can doom a project, just
as a good system can save it. I have sometimes seen project
teams try to downplay certain risks and ignore them,but the
control system forced them to address these issues before it
was too late. In one case, stakeholders from the software
company’s professional-services team questioned some of
the project team’s security assumptions.This caused the team
to revisit the items of concern and change the product. In
another case, senior management became quickly aware of
problems during a project to bring the company’s products
into an international market.Each project team was report-
ing different dates and risk issues. This triggered warning
bells that made the senior management look more deeply
into what the company was attempting.Each team was using
different techniques, and many were incorrect. If manage-
ment had missed this discrepancy, the whole effort would
have been a disaster and a costly waste of time.

ADDING FLEXIBILITY TO DEVELOPMENT
Traditional project management says that you must man-

age three dimensions of a project: scope (requirements),
resources (people, equipment, and money), and time. The
dimensions are interdependent; hence, a broader project
scope requires more resources or time. Less time requires
more resources or a smaller scope.

Project managers don’t often consider dealing with risk
on a par with these three dimensions, but it should be. If a

platform does not work as the team
expects, both time and resource needs
could balloon if the team is locked
into maintaining the scope. The
extreme and sudden effect of risk
argues for making risk management
another leg of the stool supporting

successful project management—equal in importance to
resources, scope, and time. Thus, each leg represents a
dimension that can greatly influence the project, and effec-
tive project management must consider all four legs simul-
taneously for the life of the project.

If risk management is to be an integral part of managing
a software development project, then traditional devel-
opment must become more flexible so that the team can
deal with risks if they arise. One way to achieve flexibility
is to break the project into a series of subprojects.Any proj-
ect that lasts more than a few months is a candidate.These
subprojects effectively form a series of small-project iter-
ations, each of which adds functionality to deliverables
from the previous iteration. Each iteration should last at
most two to three months.

I propose using an iterative model that follows these
ideas. Figure 1 shows the phases of a single iteration, which
could be from eight to 12 weeks.The concept of iterations
with increasing functionality borrows from the spiral devel-
opment model that Barry Boehm and others proposed in
the late 1980s.A similar focus on iterative development is
in the Rational Unified Process (RUP) and the more
recent agile methods.

The spiral model and my iterative model differ slightly,
however. In the spiral model, iterations build on function-
ality but do not necessarily end with usable software after
each subproject in the iteration. In my model, a single iter-
ation is itself a project, so the result is software that users
will actually use.Thus, the concept is more like agile meth-
ods, where the focus is on the early release of usable soft-
ware. If the team produces commercial software, a single
iteration would be a quarterly release. For a large in-house
project, a single iteration will release a new and enhanced
version of the software to internal users. Real feedback is
essential to improving the next release.

In my experience, most projects, even small ones, go
through four phases: definition, implementation, stabiliza-
tion, and deployment. The iterative development models
in agile methods recognize the first three phases, but most

Deployment issues
can cause a project

to fail.

September ❘ October 2002 IT Pro 13

Phase 1: Definition
Each iteration starts with an initial meeting of major

players to decide on project goals or high-level require-
ments for the iteration and to define initial priorities and
possible risks.Project team members then investigate what
they require to accomplish these goals.They get rough esti-
mates of work required, collect more information on risks,
plan the next iteration, and evaluate any new technologies
for potential problems. For the first iteration, the defini-
tion phase can be more elaborate because the team must
still define major goals and decide on the sequence and
length of subsequent iterations.

Remember that the iteration must provide usable soft-
ware, not a demo. Prototypes can help you better under-
stand project needs, but they should be as simple as
possible and created mainly within this phase. Elaborate
prototypes and demos eat up time and resources that the
team could use during the implementation phase; they
often create unrealistic expectations or requirements.
Unless properly targeted, these elaborate prototypes fail
to uncover potential problems with the technologies to be
used, interfaces, and so on. More than once I have seen
customers seduced by a prototype and then focus on defin-
ing must-have look-and-feel items like complex data entry
forms and cool widgets.When the realities of implement-
ing the application become more obvious, the team must
frequently drop these items, thus dashing the customer’s
expectations and wasting time.The phase ends with a
meeting to finalize the iteration’s goals, decide on the goal
priorities,evaluate risks,and accept contingency plans.The
team usually has more goals than appear feasible for the
iteration. Flag goals that look unlikely in light of time and

ignore deployment. This is shortsighted because deploy-
ment issues, such as an inadequate infrastructure or unpre-
pared support team, can cause a project to fail. Moreover,
killing a project at this stage is perhaps the most costly and
demoralizing: The team has seen the software through all
its implementation issues,but cannot see the fruit of all that
work. The model I propose includes a deployment phase
in each iteration of each subproject, as Figure 1 shows.

My model is suitable for both software development and
maintenance. It might be overkill for smaller maintenance
tasks,but it will work for any maintenance activity that takes
more than a few days. In some cases, such as a release to fix
a major bug, the team may have to collect a series of unre-
lated tasks to form the project’s activities.For example,some
bugs may require fixes to the installer; others will require
fixes to the documentation; and still others to the configu-
ration. All these might take more than a few weeks to
accomplish.Treating these maintenance activities as a proj-
ect with deliverables, risk management, and reporting will
help reduce problems and delays. Of course, the lengths of
each phase could vary with an organization’s and project’s
needs.For example,the stabilization phase could correspond
to the beta-test phase for a software company, which could
last a few weeks to a month or more.For an internal IT proj-
ect, the stabilization phase might last only a few days.

The team can start the next iteration as soon as they com-
plete the stabilization phase for the previous one. In such
cases, managers must ensure that this previous iteration
has enough time and resources to support deployment
issues.The team can use feedback from deployment issues
to improve the product in the next iteration’s implemen-
tation phase.

Milestone A:
• Set high-level goals
• Evaluate risks

Milestone B:
• Develop budget
• Finalize goals
• Prioritize goals
• Evaluate risks and

contingency plans

Milestone C:
• Implementation OK?
• Any items to drop?
• Evaluate risks and

contingency plans

Milestone D:
• OK to deploy?
• Finalize deployment

plan
• Set support plan
• Evaluate risks and

contingency plans

Milestone E:
• Close project
• Set review date

Definition Implementation Stabilization Deployment

Post-
project
review

Milestone A:
• Set high-level

goals
• Evaluate risks

Milestone B:
• Develop budget
• Finalize goals
• Prioritize goals
• Evaluate risks and

contingency plans

Definition ImplementationStart of
next

iteration

Figure 1. Four stages of a single iteration within
a software development project.

A single iteration could be a quarterly release or
an enhanced version of internal software. Unlike
other iterative development models, such as the spi-
ral model, each iteration produces software that
users actually use.

14 IT Pro September ❘ October 2002

S O F T W A R E D E V E L O P M E N T

resources and treat them as something to attempt if time
permits; otherwise, they should carry over into the next
iteration. Make sure that everyone reviews and accepts
contingency plans, because they represent an alternative
path for the project team if the expected risk occurs.

Phase 2: Implementation
Team members work closely with each other and with

user representatives to flesh out, implement, and test the
requirements defined in the previous phase.This is a good
time to use one of the agile methods such as Extreme
Programming, Scrum, and feature-driven development,
customizing practices as needed. When customizing,
remember the principles of agility described in the
“Principles Behind the Agile Manifesto” sidebar.

The team works on the requirements in order of prior-
ity.A weekly demo of the evolving software to interested
parties helps catch potential problems during this phase. I
have often seen stakeholders surprised by what they see.
Sometimes they have not recognized a problem until they
see it, or a miscommunication becomes clear in the demo.
On one of my projects, stakeholders realized during a
product demo that major pieces required to administer
and configure the application were missing. No one had
ever clearly defined them, and the developers never real-
ized this problem, because they always used the database
to make the changes when they needed to test the appli-
cation. These demos also help build trust because stake-
holders see the team’s timely response to their requests.
Demos also build a sense of urgency,as groups see the proj-
ect evolve toward its goals. Stakeholders start taking care

of items they are responsible for without waiting until the
last minute. In one case, stakeholders realized they had to
finalize the product name soon as they kept seeing an
unsuitable working name on the screens and in docu-
mentation.

Regular testing should also occur during this phase.
Because my model is limited by time, rather than require-
ments, the team must be able to switch to prior software
builds if some functionality will not be usable by the cut-
off date.This means that the team should do regular builds
and have effective version control. Best practices from
agile methods can be very useful. Doing daily builds can
catch problems early.Daily builds, in turn, require the team
to have a working configuration management system as
soon as possible. Project teams should report their goals
and risk status to stakeholders weekly. Stakeholders
should also have a time and place to raise issues they see
as risks. Stakeholders are a valuable source of identifying
risk because their universe is typically larger than that of
the team members. The stakeholder in the professional-
services group who had raised important security-related
questions, for example, was passing on what he had
learned from customer visits.

This phase ends with a review meeting to see if the
implementation is adequate and complete.

Phase 3: Stabilization
In this phase, the software undergoes extensive quality

assurance tests,and the team fixes major bugs.Many more
users use the software. Documentation and support plans
become final. This phase is crucial because the team will

➤ Our highest priority is to satisfy the customer
through early and continuous delivery of valu-
able software.

➤ Welcome changing requirements, even late
in development. Agile processes har-
ness change for the customer’s
competitive advantage.

➤ Deliver working software frequent-
ly, from a couple of weeks to a couple of
months, with a preference to the shorter
timescale.

➤ Business people and developers must work togeth-
er daily throughout the project.

➤ Build projects around motivated individuals. Give
them the environment and support they need, and
trust them to get the job done.

➤ The most efficient and effective method of convey-
ing information to and within a development team

is face-to-face conversation.
➤ Working software is the primary

measure of progress.
➤ Agile processes promote sustain-

able development. The sponsors,
developers, and users should be
able to maintain a constant pace
indefinitely.

➤ Continuous attention to techni-
cal excellence and good design

enhances agility.
➤ Simplicity—the art of maximizing the amount of

work not done—is essential.
➤ The best architectures, requirements, and designs

emerge from self-organizing teams.
➤ At regular intervals, the team reflects on how to

become more effective, and then tunes and adjusts
its behavior accordingly.

Principles Behind the Agile Manifesto

have a truly representative sample of users.On a project to
create a new product,we found that the install program did
not work properly on dual-processor machines from a well-
known manufacturer. We had not discovered this during
implementation, despite extensive tests. These machines
were fairly new, and we soon found that much of our cus-
tomer base was planning to upgrade to them. The stabi-
lization phase gave us the opportunity to make fixes before
we went into highly expensive disk duplication and docu-
mentation printing.

This phase ends with a review meeting to see if the soft-
ware is stable and ready for deployment. When stabiliza-
tion ends, a new iteration can begin in parallel with the
next phase of the old one.

Phase 4: Deployment
In this phase the team deploys, or releases, the software

to its users. Although it is hard to pinpoint the end of this
phase, since a company can continue to deploy the software
long after its first release, this phase is generally over once
all stakeholders get together for a final project acceptance
meeting.When the project is to build subcontracted appli-
cations for an external customer, the acceptance meeting is
a crucial milestone for the release of payments. It may also
represent the end of a support period.

As part of the meeting, it is a good idea to set a date in
the immediate future for the post-project review, in which
the team will go over everything, good and bad, about the
project with an eye toward improving the next one. The
two meetings address different needs, so it is best to keep
them separate.The acceptance meeting marks the accept-
ance of the project deliverables and closes the project.The
post-project review is primarily to look at lessons learned
and future improvements in project management.

U nexpected risks can cause major delays and escalat-
ing costs. Preventive risk management can help
reduce unpleasant surprises,and I have seen it imple-

mented successfully in many instances. Flexible develop-
ment practices using proactive risk management make it
easier to plan for and handle risks as they occur.To imple-
ment flexible development practices, companies must
improve team skills,and review and improve their processes
for software definition,development,and deployment.They
must also put in place the management systems to effec-
tively plan,measure,and share information about software
definition,development,and delivery.With these practices,
they can deliver better applications with fewer delays in
spite of unexpected problems and the many requirements
and strategy changes that can happen along the way. �

Sanjay Murthi is president of SMGlobal Inc., a firm that
helps companies review and improve their software defini-
tion, development, and delivery. Contact him at smurthi@
smglobal.com.

800-872-7423
us.cambridge.org/computerscience

Available in bookstores or from

Innovative New IT Titles

The Elements of UML Style
Scott W.Ambler
0-521-52547-0, Paperback, $15.00

Anytime, Anywhere
Entrepreneurship and the
Creation of a Wireless World

Louis Galambos and
Eric John Abrahamson
0-521-81616-5, Hardback, $29.00

The Simplicity Shift
Innovative Design Tactics in a
Corporate World

Scott Jenson
0-521-52749-X, Paperback, $28.00

UML Xtra-Light
How to Specify Your Software
Requirements

Milan Kratochvil and
Barry McGibbon
0-521-89242-2, Paperback, $21.00

Numerical Recipes in C++
The Art of Scientific Computing
Second Edition

William H. Press, Saul A.Teukolsky,William T.Vetterling, and
Brian P. Flannery
0-521-75033-4, Hardback, $70.00

Numerical Recipes in C and C++ Source Code
CDROM with Windows, DOS, or Macintosh
Single Screen License
The Art of Scientific Computing
Second Edition
0-521-75037-7, CD-ROM, $50.00

Numerical Recipes Example Book [C++]
0-521-75034-2, Paperback, $35.00

Numerical Recipes Multi-Language Code
CDROM with LINUX or UNIX Single Screen
License
Source Code for Numerical Recipes in C, C++, Fortran 77,
Fortran 90, Pascal, BASIC, Lisp and Modula 2 plus many extras
0-521-75036-9, CD-ROM, $150.00

Numerical Recipes Multi-Language Code
CDROM with Windows, DOS, or Macintosh
Single Screen License
Source Code for Numerical Recipes in C, C++, Fortran 77,
Fortran 90, Pascal, BASIC, Lisp and Modula 2 plus many extras
0-521-75035-0, CD-ROM, $90.00

Business Services Orchestration
The Hyper-Tier of Information Technology

Waqar Sadiq and Felix Racca
0-521-81981-4, Hardback, $45.00

