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Do Algorithms Dream
About Artificial Alphas?

Michael Kollo

1.1 INTRODUCTION

The core of most financial practice, whether drawn from equilibrium economics,
behavioural psychology, or agency models, is traditionally formed through the mar-
riage of elegant theory and a kind of ‘dirty’ empirical proof. As I learnt from my
years on the PhD programme at the London School of Economics, elegant theory is
the hallmark of a beautiful intellect, one that could discern the subtle tradeoffs in
agent-based models, form complex equilibrium structures and point to the sometimes
conflicting paradoxes at the heart of conventional truths. Yet ‘dirty’ empirical work
is often scoffed at with suspicion, but reluctantly acknowledged as necessary to
give substance and real-world application. I recall many conversations in the windy
courtyards and narrow passageways, with brilliant PhD students wrangling over
questions of ‘but how can I find a test for my hypothesis?’.

Many pseudo-mathematical frameworks have come and gone in quantitative
finance, usually borrowed from nearby sciences: thermodynamics from physics, Eto’s
Lemma, information theory, network theory, assorted parts from number theory, and
occasionally from less high-tech but reluctantly acknowledged social sciences like
psychology. They have come, and they have gone, absorbed (not defeated) by the
markets.

Machine learning, and extreme pattern recognition, offer a strong focus on
large-scale empirical data, transformed and analyzed at such scale as never seen before
for details of patterns that lay undetectable to previous inspection. Interestingly,
machine learning offers very little in conceptual framework. In some circles, it boasts
that the absence of a conceptual framework is its strength and removes the human
bias that would otherwise limit a model. Whether you feel it is a good tool or not, you
have to respect the notion that process speed is only getting faster and more powerful.
We may call it neural networks or something else tomorrow, and we will eventually
reach a point where most if not all permutations of patterns can be discovered and
examined in close to real time, at which point the focus will be almost exclusively on
defining the objective function rather than the structure of the framework.

Big Data and Machine Learning in Quantitative Investment, First Edition.
Tony Guida.
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2 BIG DATA AND MACHINE LEARNING IN QUANTITATIVE INVESTMENT

The rest of this chapter is a set of observations and examples of how machine
learning could help us learn more about financial markets, and is doing so. It is drawn
not only from my experience, but from many conversations with academics, practition-
ers, computer scientists, and from volumes of books, articles, podcasts and the vast sea
of intellect that is now engaged in these topics.

It is an incredible time to be intellectually curious and quantitatively minded, and
we at best can be effective conduits for the future generations to think about these
problems in a considered and scientific manner, even as they wield these monolithic
technological tools.

1.2 REPLICATION OR REINVENTION

The quantification of the world is again a fascination of humanity. Quantification here
is the idea that we can break down patterns that we observe as humans into component
parts and replicate them over much larger observations, and in a much faster way.
The foundations of quantitative finance found their roots in investment principles, or
observations, made by generations and generations of astute investors, who recognized
these ideas without the help of large-scale data.

The early ideas of factor investing and quantitative finance were replications of
these insights; they did not themselves invent investment principles. The ideas of value
investing (component valuation of assets and companies) are concepts that have been
studied and understood for many generations. Quantitative finance took these ideas,
broke them down, took the observable and scalable elements and spread them across a
large number of (comparable) companies.

The cost to achieving scale is still the complexity in and nuance about how to apply
a specific investment insight to a specific company, but these nuances were assumed to
diversify away in a larger-scale portfolio, and were and are still largely overlooked.! The
relationship between investment insights and future returns were replicated as linear
relationships between exposure and returns, with little attention to non-linear dynam-
ics or complexities, but instead, focusing on diversification and large-scale application
which were regarded as better outcomes for modern portfolios.

There was, however, a subtle recognition of co-movement and correlation that
emerged from the early factor work, and it is now at the core of modern risk man-
agement techniques. The idea is that stocks that have common characteristics (let’s call
it a quantified investment insight) have also correlation and co-dependence potentially
on macro-style factors.

This small observation, in my opinion, is actually a reinvention of the investment
world which up until then, and in many circles still, thought about stocks in isolation,
valuing and appraising them as if they were standalone private equity investments. It
was a reinvention because it moved the object of focus from an individual stock to

!Consider the nuances in the way that you would value a bank or a healthcare company, and
contrast this to the idea that everything could be compared under the broad umbrella of a single
empirical measure of book to price.
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a common ‘thread’ or factor that linked many stocks that individually had no direct
business relationship, but still had a similar characteristic that could mean that they
would be bought and sold together. The ‘factor’ link became the objective of the invest-
ment process, and its identification and improvement became the objective of many
investment processes — now (in the later 2010s) it is seeing another renaissance of inter-
est. Importantly, we began to see the world as a series of factors, some transient, some
long-standing, some short- and some long-term forecasting, some providing risk and to
be removed, and some providing risky returns.

Factors represented the invisible (but detectable) threads that wove the tapestry of
global financial markets. While we (quantitative researchers) searched to discover and
understand these threads, much of the world focused on the visible world of companies,
products and periodic earnings. We painted the world as a network, where connections
and nodes were the most important, while others painted it as a series of investment
ideas and events.

The reinvention was in a shift in the object of interest, from individual stocks to a
series of network relationships, and their ebb and flow through time. It was subtle, as it
was severe, and is probably still not fully understood.> Good factor timing models are
rare, and there is an active debate about how to think about timing at all. Contextual
factor models are even more rare and pose especially interesting areas for empirical and
theoretical work.

1.3  REINVENTION WITH MACHINE LEARNING

Reinvention with machine learning poses a similar opportunity for us to reinvent the
way we think about the financial markets, I think in both the identification of the invest-
ment object and the way we think of the financial networks.

Allow me a simple analogy as a thought exercise. In handwriting or facial recog-
nition, we as humans look for certain patterns to help us understand the world. On a
conscious, perceptive level, we look to see patterns in the face of a person, in their nose,
their eyes and their mouth. In this example, the objects of perception are those units,
and we appraise their similarity to others that we know. Our pattern recognition then
functions on a fairly low dimension in terms of components. We have broken down the
problem into a finite set of grouped information (in this case, the features of the face),
and we appraise those categories. In modern machine learning techniques, the face or a
handwritten number is broken down into much smaller and therefore more numerous
components. In the case of a handwritten number, for example, the pixels of the picture
are converted to numeric representations, and the patterns in the pixels are sought using
a deep learning algorithm.

We have incredible tools to take large-scale data and to look for patterns in the
sub-atomic level of our sample. In the case of human faces or numbers, and many other

2We are just now again beginning to prod the limits of our understanding of factors by considering
how to define them better, how to time them, all the meanwhile expanding considerable effort
trying to explain them to non-technical investors.
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things, we can find these patterns through complex patterns that are no longer intuitive
or understandable by us (consciously); they do not identify a nose, or an eye, but look
for patterns in deep folds of the information.? Sometimes the tools can be much more
efficient and find patterns better, quicker than us, without our intuition being able to
keep up.

Taking this analogy to finance, much of asset management concerns itself with
financial (fundamental) data, like income statements, balance sheets, and earnings.
These items effectively characterize a company, in the same way the major patterns of
a face may characterize a person. If we take these items, we may have a few hundred,
and use them in a large-scale algorithm like machine learning, we may find that we are
already constraining ourselves heavily before we have begun.

The ‘magic’ of neural networks comes in their ability to recognize patterns in atomic
(e.g. pixel-level) information, and by feeding them higher constructs, we may already
be constraining their ability to find new patterns, that is, patterns beyond those already
identified by us in linear frameworks. Reinvention lies in our ability to find new con-
structs and more ‘atomic’ representations of investments to allow these algorithms to
better find patterns. This may mean moving away from the reported quarterly or annual
financial accounts, perhaps using higher-frequency indicators of sales and revenue (rely-
ing on alternate data sources), as a way to find higher frequency and, potentially, more
connected patterns with which to forecast price movements.

Reinvention through machine learning may also mean turning our attention to
modelling financial markets as a complex (or just expansive) network, where the
dimensionality of the problem is potentially explosively high and prohibitive for our
minds to work with. To estimate a single dimension of a network is to effectively
estimate a covariance matrix of 7 X #n. Once we make this system endogenous,
many of the links within the 2D matrix become a function of other links, in which
case the model is recursive, and iterative. And this is only in two dimensions.
Modelling the financial markets like a neural network has been attempted with
limited application, and more recently the idea of supply chains is gaining popular-
ity as a way of detecting the fine strands between companies. Alternate data may
well open up new explicitly observable links between companies, in terms of their
business dealings, that can form the basis of a network, but it’s more likely that
prices will move too fast, and too much, to be simply determined by average supply
contracts.

1.4 AMATTER OF TRUST

The reality is that patterns that escape our human attention will be either too subtle,
or too numerous, or too fast in the data. Our inability to identify with them in an
intuitive way, or to construct stories around them, will naturally cause us to mistrust
them. Some patterns in the data will be not useful for investment (e.g. noise, illiquid,

3Early experiments are mixed, and adversarial systems have shown some of these early patterns
to be extremely fragile. But as technology grows, and our use of it too, these patterns are likely
to become increasingly robust, but will retain their complexity.
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and/or uninvestable), so these will quickly end up on the ‘cutting room floor’.# But many
others will be robust, and useful, but entirely unintuitive, and perhaps obfuscated to us.
Our natural reaction will be to question ourselves, and if we are to use them, ensure
that they are part of a very large cohort of signals, so as to diversify questions about a
particular signal in isolation.

So long as our clients are humans as well, we will face communication challenges,
especially during times of weak performance. When performance is strong, opaque
investment processes are less questioned, and complexity can even be considered a pos-
itive, differentiating characteristic. However, on most occasions, an opaque investment
process that underperforms is quickly mistrusted. In many examples of modern invest-
ment history, the ‘quants’ struggled to explain their models in poor performance periods
and were quickly abandoned by investors. The same merits of intellectual superiority
bestowed upon them rapidly became weaknesses and points of ridicule.

Storytelling, the art of wrapping complexity in comfortable and familiar anecdotes
and analogies, feels like a necessary cost of using technical models. However, the same
can be a large barrier to innovation in finance. Investment beliefs, and our capability
to generate comfortable anecdotal stories, are often there to reconfirm commonly held
intuitive investment truths, which in turn are supported by ‘sensible’ patterns in data.

If innovation means moving to ‘machine patterns’ in finance, with greater complex-
ity and dynamic characteristics, it will come from a leap of faith where we relinquish
our authorship of investment insights, and/or from some kind of obfuscation such as
bundling, where scrutiny of an individual signal is not possible. Either way, there is a
certain additional business risk involved in moving outside the accepted realm of stories,
even if the investment signals themselves add value.

If we are to innovate signals, we may very well need to innovate storytelling as
well. Data visualization is one promising area in this field, but we may find ourselves
embracing virtual and augmented reality devices quicker than the rest of finance if we
are to showcase the visual brilliance of a market network or a full factor structure.

1.5 ECONOMIC EXISTENTIALISM: A GRAND DESIGN OR AN ACCIDENT?

If I told you that I built a model to forecast economic sector returns, but that the model
itself was largely unintuitive and highly contextualized, would this concern you? What
if I told you that a core component was the recent number of articles in newspapers
covering the products of that industry, but that this component wasn’t guaranteed to
‘make’ the model in my next estimation. Most researchers I have encountered have a
conceptual framework for how they choose between potential models. Normally, there
is a thought exercise involved to relate a given finding back to the macro-picture and
ask: Is this really how the world works? Does it make sense?” Without this, the results
are easily picked apart for their empirical fragility and in-sample biases. There is a subtle
leap that we take there, and it is to assume that there is a central ‘order’ or design to

4There is an entire book that could be written on the importance of noise versus signal, but I would
suggest we suspend our natural scepticism and allow for the possibility that unusual patterns do
exist and could be important.
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the economic system. That economic forces are efficiently pricing and trading off risks
and returns, usually from the collective actions of a group of informed and rational
(if not pseudo-rational) agents. Even if we don’t think that agents are informed, or fully
rational, their collective actions can bring about ordered systems.

Our thinking in economics is very much grounded in the idea that there is a ‘grand
design’ in play, a grand system, that we are detecting and estimating, and occasionally
exploiting. I am not referring to the idea that there are temporary ‘mini-equilibria’
that are constantly changing or evolving, but to the notion that there are any
equilibria at all.

Darwinian notions of random mutations, evolution, and learning challenge the very
core of this world view. Dennett® elegantly expresses this world view as a series of
accidents, with little reference to a macro-level order or a larger purpose. The notion
of ‘competence without comprehension’ is developed as a framework to describe how
intelligent systems can come out of a series of adaptive responses, without a larger order
or a ‘design’ behind them. In his book, Harari® describes the evolution of humans as
moving from foraging for food to organized farms. In doing so, their numbers increase,
and they are now unable to go back to foraging. The path dependence is an important
part of the evolution and constrains the evolution in terms of its future direction. For
example, it is unable to ‘evolve’ foraging practices because it doesn’t do that any more
and now it is evolving farming.

Machine learning, and models like random forests, give little indication of a bigger
picture, or a conceptual framework, but are most easily interpreted as a series of
(random) evolutions in the data that has led us to the current ‘truth’ that we observe.
The idea of a set of economic forces working in unison to give rise to a state of
the economy is instead replaced by a series of random mutations and evolutionary
pathways. For finance quantitative models, the implication is that there is strong path
dependency.

This is challenging, and in some cases outright disturbing, for an economically
trained thinker. The idea that a model can produce a series of correlations with little
explanation other than ‘just because’ is concerning, especially if the path directions
(mutations) are random (to the researcher) — it can seem as though we have mapped
out the path of a water droplet rolling down glass, but with little idea of what guided
that path itself. As the famous investor George Soros’ described his investment philos-
ophy and market: a series of inputs and outputs, like an ‘alchemy’ experiment, a series
of trails and failures.

1.6 WHATIS THIS SYSTEM ANYWAY?

Reinvention requires a re-examination of the root cause of returns and, potentially,
abnormal returns. In nature, in games, and in feature identification, we generally know
the rules (if any) of an engagement, and we know the game, and we know the challenges

3‘From Bacteria to Bach and Back: The Evolution of Minds’ by Daniel C. Dennett, 2018, Penguin.
¢Homo Deus: A Brief History of Tomorrow’ by Yuval Noah Harari, 2015, Vintage.
7The Alchemy of Finance by George Soros, 2003.
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of identification of features. One central element in financial markets, that is yet to be
addressed, is their dynamic nature. As elements are identified, correlations estimated,
returns calculated, the system can be moving and changing very quickly.

Most (common) quantitative finance models focus more on cross-sectional identi-
fication and less on time-series forecasting. Of the time-series models, they tend to be
continuous in nature, or have state dependency with usually a kind of switching model
embedded. Neither approach has a deeper understanding, ex ante, of the reasons why
the market dynamics may change, and forecasting (in my experience) of either model
tends to rely on serial correlation of states and the occasional market extreme environ-
ment to jolt’ the system.® In this sense, the true complexity of the financial markets is
likely grossly understated. Can we expect more from a machine learning algorithm that
can dig into the subtle complexities and relationships of the markets? Potentially, yes.
However, the lack of clean data, and the likelihood of information segmentations in
the cross-section, suggest some kind of supervised learning models, where the ex-ante
structures set up by the researcher are as likely to be the root of success or failure as the
parameters estimated by the model itself.

One hope is that structures of relationships suggested by machine learning models
can inspire and inform a new generation of theorists and agent-based simulation models,
that in turn could give rise to more refined ex-ante structures for understanding the
dynamic complexities of markets. It is less likely that we can learn about latent dynamic
attributes of markets without some kind of ex ante model, whose latent characteristics
we may never be able to observe, but potentially may infer.

One thought exercise to demonstrate this idea is a simple 2D matrix, of 5 x §
elements (or as many as it takes to make this point). Each second, there is a grain
of sand that drops from above this plane and lands on a single square. Over time,
the number of grains of sand builds up in each square. There is a rule whereby if the
tower of sand on one square is much greater than on another, it will collapse onto its
neighbour, conferring the sand over. Eventually, some of the sand will fall over one of
the four edges of the plane. The system itself is complex, it builds up ‘pressure’ in various
areas, and occasionally releases the pressure as a head of sand falls from one square to
another, and finally over the edge. Now picture a single researcher, standing well below
the plane of squares, having no visibility of what happens on the plane itself. They can
only observe the number of sand particles that fall over the edge, and which edge. From
their point of view, they know only that if no sand has fallen for a while, they should be
more worried, but they have no sense as to the system that gives rise to the occasional
avalanche. Machine learning models, based on prices, suffer from a similar limitation.
There is only so much they can infer, and there is a continuum of complex systems that
could give rise to a given configuration of market characteristics. Choosing a unique or
‘true’ model, especially when faced with natural obfuscations of the complexities, is a
near impossible task for a researcher.

8 Consider, for example, a classic state switching model, where the returns to a factor/signal persist
until there is an extreme valuation or return observed, perhaps a bubble, where the state of the
future returns turns out to be negative. Most forecasting models for momentum will have some
similar structures behind them, where the unconditional returns are assumed to persist and are
positive, until an extreme event or condition is observed.
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1.7 DYNAMIC FORECASTING AND NEW METHODOLOGIES

We return now to the more direct problems of quantitative asset management. Asset
pricing (equities) broadly begins with one of two premises that are usually reliant on
your chosen horizon:

1. Markets are composed of financial assets, and prices are fair valuations of the
future benefit (cash flows usually) of owning those assets. Forecasting takes place of
future cash-flows/fundamentals/earnings. The data field is composed of firms, that
are bundles of future cash-flows, and whose prices reflect the relative (or absolute)
valuation of these cash-flows.

2. Markets are composed of financial assets that are traded by agents with imper-
fect information based on a range of considerations. Returns are therefore simply
a ‘trading game’; to forecast prices is to forecast future demand and supply of
other agents. This may or may not (usually not) involve understanding fundamental
information. In fact, for higher-frequency strategies, little to no information is nec-
essary about the underlying asset, only about its expected price at some future date.
Typically using higher frequency micro-structures like volume, bid-ask spreads, and
calendar (timing) effects, these models seek to forecast future demand/supply imbal-
ances and benefit over a period of anywhere from nano-seconds to usually days.
There’s not much prior modelling, as the tradeoff, almost by design, is too high
frequency always to be reacting to economic information, which means that it is
likely to be driven by trading patterns and to rebalance frequencies that run parallel
to normal economic information.

1.8  FUNDAMENTAL FACTORS, FOREGASTING AND MACHINE LEARNING

In the case of a fundamental investment process, the ‘language’ of asset pricing is one
filled with reference to the business conditions of firms, their financial statements, earn-
ings, assets, and generally business prospects. The majority of the mutual fund industry
operates with this viewpoint, analyzing firms in isolation, relative to industry peers, rel-
ative to global peers, and relative to the market as a whole, based on their prospective
business success. The vast majority of the finance literature that seeks to price systematic
risk beyond that of CAPM, so multi-factor risk premia, and new factor research, usually
presents some undiversifiable business risk as the case of potential returns. The process
for these models is fairly simple: extract fundamental characteristics based on a com-
bination of financial statements, analysis, and modelling, and apply to either relative
(cross-sectional) or total (time-series) returns.

For cross-sectional return analysis, the characteristics (take a very common measure
like earnings/price) are defined in the broad cross-section, are transformed into a z-score,
Z ~ N(0,1), or a percentile rank (1-100), and then related through a function /* to some
future returns, 7, , ,,, where ‘n’ is typically 1-12 months forward returns. The function f*
finds its home in the Arbitrage Pricing Theory (APT) literature, and so is derived through
either sorting or linear regressions, but can also be a simple linear correlation with
future returns (otherwise known as an information coefficient, IC), a simple heuristic
bucket-sorting exercise, a linear regression, a step-wise linear regression (for multiple Z
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characteristics, and where the marginal use is of interest), or it can be quite complex,
and as the ‘Z’ signal is implanted into an existing mean-variance optimized portfolios
with multitude of characteristics.

Importantly, the forecast of ‘Z’ is typically defined so as to have broad-sectional
appeal (e.g. all stocks should be measurable in the cross-section). Once handed over to
a well-diversified application (e.g. with many stocks), any errors around the linear fit
will (hopefully) be diversified away. However, not much time is typically spent defining
different f* functional forms. Outside of the usual quadratic forms (typically used to
handle ‘size’) or the occasional interaction (e.g. Quality *Size), there isn’t really a good
way to think about how to use information in ‘Z’. It is an area that largely has been
neglected in favour of better stock-specific measurements, but still the same standard-
ization, and the same f*.

So our objective is to improve f*. Typically, we have a set of several hundred fun-
damental ‘Z’ to draw from, each a continuous variable in the cross-section, and at best
around 3000 stocks in the cross-section. We can transform the Z into indicator vari-
ables for decile membership for example, but typically, we want to use the extreme
deciles as indicators, not the middle of the distribution. Armed with fundamental vari-
ables ‘Z’ and some indicators Z! based on ‘Z’, we start to explore different non-linear
methodologies. We start to get excited now, as the potential new uber-solving model
lies somewhere before us.

The first problem we run into is the question: “What do I want to forecast?’
Random forests, neural networks, are typically looking for binary outcomes as
predictors. Returns are continuous, and most fundamental outcomes are equally so
(A percentage by which a company has beat/miss estimates, for example). Before we
choose our object, we should consider what kind of system we are looking to identify.

1. I want to forecast a company’s choice to do something, e.g. firms that ‘choose’ to
replace CEOs, to buy or sell assets, to acquire competitors. I then hope to benefit
from returns associated from these actions. But how do firms make these choices?
Do they make them in isolation from economic factors, is there really unconditional
choice, or are these firms already conditioned by some kind of latent economic
event? For example, firms rarely cancel dividends in isolation. Typically, the choice
to cancel is already heavily influenced by very poor market conditions. So our model
may well be identifying firms that are under financial duress, more than those that
actually ‘choose’ to cancel dividends. Think hard as to what is a ‘choice’ and what
is a ‘state’, where certain choices are foregone conclusions.

I want to forecast wrongdoing by the firm and then make money by shorting/
avoiding those firms. Intentional or not, firms that misreport their financials but
then are ultimately discovered (we hope!), and therefore we have a sample set. This
is especially interesting for emerging economies, where financial controls, e.g. for
state-owned enterprises, could have conflicting interests with simply open disclo-
sure. This feels like an exciting area of forensic accounting, where ‘clues’ are picked
up and matched by the algorithm in patterns that are impossible to follow through
human intuition alone. I think we have to revisit here the original assumption: is
this unintentional, and therefore we are modelling inherent uncertainty/complexity
within the organization, or is it intentional, in which case it is a ‘choice’ of sorts.

N



10

BIG DATA AND MACHINE LEARNING IN QUANTITATIVE INVESTMENT

The choice of independent variables should inform both ideally, but the ‘choice’
idea would require a lot more information on ulterior motives.

. Tjust want to forecast returns. Straight for the jugular, we can say: Can we use fun-

damental characteristics to forecast stock returns? We can define relative returns
(top decile, top quintile?) over some future period ‘n” within some peer group and
denote this as ‘1’ and everything else as ‘0’. It is attractive to think that if we can
line up our (small) army of fundamental data, re-estimate our model (neural net or
something else) with some look-back window, we should be able to do crack this
problem with brute force. It is, however, likely to result in an extremely dynamic
model, with extreme variations in importance between factors, and probably not
clear ‘local maxima’ for which model is the best. Alternately, we can define our
dependent variable based on a total return target, for example anything +20%
over the future period ‘n’ (clearly, the two choices are related), and aim to iden-
tify an ‘extreme movers’ model. But why do firms experience unusually large price
jumps? Any of the above models (acquisition, beating forecasts, big surprises, etc.)
could be candidates, or if not, we are effectively forecasting cross-sectional volatil-
ity. In 2008, for example, achieving a positive return of +20% may have been
near impossible, whereas in the latter part of 2009, if you were a bank, it was
expected. Cross-sectional volatility and market direction are necessarily ‘states’ to
enable (or disqualify) the probability of a +x% move in stock prices. Therefore,
total return target models are unlikely to perform well across different market cycles
(cross-sectional volatility regimes), where the unconditional probability of achiev-
ing a +20% varies significantly. Embedding these is effectively transforming the
+20% to a standard deviation move in the cross-section, when you are now back
in the relative-return game.

. If you were particularly keen on letting methodology drive your model decisions,

you would have to reconcile yourself to the idea that prices are continuous and
that fundamental accounting data (as least reported) is discrete and usually highly
managed. If your forecast period is anywhere below the reporting frequency of
accounting information, e.g. monthly, you are essentially relying on the diverg-
ing movements between historically stated financial accounts and prices today to
drive information change, and therefore, to a large extent, turnover. This is less of
a concern when you are dealing with large, ‘grouped’ analytics like bucketing or
regression analysis. It can be a much bigger concern if you are using very fine instru-
ments, like neural nets, that will pick up subtle deviations and assign meaningful
relationships to them.

. Using conditional models like dynamic nested logits (e.g. random forests) will prob-

ably highlight those average groups that are marginally more likely to outperform
the market than some others, but their characterization (in terms of what deter-
mines the nodes) will be extremely dynamic. Conditional factor models (contextual
models) exist today; in fact, most factor models are determined within geographic
contexts (see any of the commercially available risk models, for example) and in
some case within size. This effectively means that return forecasting is conditional
based on which part of the market you are in. This is difficult to justify from an
economic principle standpoint because it would necessitate some amount of seg-
mentation in either information generation or strong clientele effects. For example,
one set of clients (for US small cap) thinks about top-line growth as a way of driving
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returns, while another set of clients (Japan large cap) looks for something totally
different. If the world was that segmented, it would be difficult (but not impossible)
to argue for asset pricing being compensation for some kind of global (undiversi-
fiable) risk. In any case, conditional asset pricing models, whatever the empirical
methodology, should work to justify why they think that prices are so dynami-
cally driven by such different fundamentals over the relatively short period between
financial statements.

In summary, the marriage of large-scale but sensitive instruments like machine
learning methodologies to forecasting cross-sectional returns using fundamental infor-
mation must be done with great care and attention. Much of the quantitative work in
this area has relied on brute force (approximations) to sensitivities like beta. Researchers
will find little emphasis on error-correction methodologies in the mainstream calcu-
lations of APT regressions, or of ICs, which rely on picking up broad, average rela-
tionships between signals (Z) and future returns. Occasionally (usually during high
cross-sectional volatility periods) there will be a presentation at a conference around
non-linear factor returns, to which the audience will knowingly nod in acknowledge-
ment but essentially fail to adjust for. The lure of the linear function f* is altogether too
great and too ingrained to be easily overcome.

In the past, we have done experiments to ascertain how much additional value
non-linear estimators could add to simulation backtests. For slower-moving signals
(monthly rebalance, 6-12-month horizons), it is hard to conclusively beat a linear model
that isn’t over-fitted (or at least can be defended easily). Similarly, factor timing is an
alluring area for non-linear modelling. However, factor returns are themselves calcu-
lated with a great amount of noise and inherent assumptions around calculation. These
assumptions make the timing itself very subjective. A well-constructed (which usu-
ally means well-backtested) factor will have a smooth return series, except for a few
potentially catastrophic bumps in history. Using a time-series neural network to try
to forecast when those events will happen will, even more than a linear framework,
leverage exceptionally strongly on a few tell-tale signs that are usually non-repeatable.
Ironically, factors were built to work well as buy-and-hold additions to a portfolio. This
means that it is especially difficult to improve on a buy-and-hold return by using a con-
tinuous timing mechanism, even one that is fitted. Missing one or two of the extreme
return events through history, then accounting for trading costs, will usually see the
steady-as-she-goes linear factor win, frustrating the methodologically eager researcher.
Ultimately, we would be better served to generate a less well-constructed factor that had
some time-series characteristics and aim to time that.

At this point, it feels as though we have come to a difficult passage. For funda-
mental researchers, the unit of interest is usually some kind of accounting-based metric
(earnings, revenue, etc.), so using machine learning in this world seems analogous to
making a Ferrari drive in London peak-hour traffic. In other words: it looks attractive,
but probably feels like agony. What else can we do?

1.9 CONCLUSION: LOOKING FOR NAILS

It is for scientifically minded researchers to fall in love with a new methodology and
spend their time looking for problems to deploy it on. Like wielding your favourite
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hammer, wandering around the house looking for nails, machine learning can seem
like an exciting branch of methodology with no obviously unique application. We are
increasingly seeing traditional models re-estimated using machine learning techniques,
and in some cases, these models could give rise to new insights. More often than not,
if the models are constrained, because they have been built and designed for linear
estimation, we will need to reinvent the original problem and redesign the experiment
in order to have a hope of glimpsing something brand new from the data.

A useful guiding principle when evaluating models, designing new models, or just
kicking around ideas in front of a whiteboard is to ask yourself, or a colleague: “What
have we learnt about the world here?’ Ultimately, the purpose of empirical or anecdotal
investigation is to learn more about the fantastically intricate, amazing, and inspiring
way in which the world functions around us, from elegant mathematics, to messy com-
plex systems, and the messiest of all: data. A researcher who has the conviction that
they represent some kind of ‘truth’ about the world through their models, no matter
what the methodology and complexity, is more likely to be believed, remembered, and,
ultimately, rewarded. We should not aggrandize or fall in love with individual models,
but always seek to better our understanding of the world, and that of our clients.

Strong pattern recognition methodologies, like machine learning, have enormous
capability to add to humanity’s understanding of complex systems, including financial
markets, but also of many social systems. I am reminded often that those who use and
wield these models should be careful with inference, humility, and trust. The world
falls in and out of love with quantification, and usually falls out of love because it has
been promised too much, too soon. Machine learning and artificial intelligence (Al) are
almost certain to fail us at some point, but this should not deter us; rather, it should
encourage us to seek better and more interesting models to learn more about the world.



2

Taming Big Data

Rado Lipu$ and Daryl Smith

2.1 INTRODUCTION: ALTERNATIVE DATA — AN OVERVIEW

Around 20 years ago alternative data and machine learning techniques were being
used by a select group of innovative hedge funds and asset managers. In recent years,
however, both the number of fund managers using alternative data and the supply of
new commercially available data sources have dramatically increased.

We have identified over 600 alternative datasets which have become commercially
available in the past few years. Currently, around 40 new and thoroughly vetted alter-
native datasets are added to the total number of alternative datasets on the Neudata
platform per month. We expect the total number of datasets to increase steadily over
the next few years as (i) more data exhaust firms monetize their existing data, and
(ii) new and existing start-ups enter the space with fresh and additional alternative data
offerings.

2.1.1 Definition: Why ‘alternative’? Opposition with conventional

For the uninitiated, the term ‘alternative data’ refers to novel data sources which can be
used for investment management analysis and decision-making purposes in quantitative
and discretionary investment strategies. Essentially, alternative data refers to data which
was, in the main, created in the past seven years and which until very recently has not
been available to the investment world. In some cases, the original purpose for creating
alternative data was to provide an analysis tool for use by non-investment firms — entities
across a wide range of industries. In many other cases alternative data is a by-product of
economic activity, often referred to as ‘exhaust data’. Alternative data is mainly used by
both the buy side and the sell side, as well as to some degree by private equity, venture
capital, and corporate non-investment clients.

2.1.2 Alternative is not always big and big is not always alternative

The terms ‘big data’ and ‘alternative data’ are often used interchangeably and many use
both in the context of unstructured data and in some cases to refer to large volumes
of data.

Big Data and Machine Learning in Quantitative Investment, First Edition.
Tony Guida.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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The term ‘alternative data’ was initially used by data brokers and consultants in
the US and it found widespread acceptance around five years ago. The meaning of
alternative data is much more widely understood by the asset management industry in
the US than in other regions: in Europe, for example, the term has become more widely
recognized only as recently as 2017.

The large number of conferences and events hosted in 2016 and 2017 by the sell
side, traditional data vendors, and other categories of conference organizer has certainly
helped to proliferate the awareness of alternative data. In addition, many surveys and
reports on alternative data and artificial intelligence by sell-side banks, data providers
and consultants in the past year have helped to educate both the buy side and the
wider industry.

What exactly do we mean by alternative data sources, how many sources are avail-
able, and which ones are most applicable?

2.2 DRIVERS OF ADOPTION

2.2.1 Diffusion of innovations: Where are we now?

The financial industry is still in the early adoption stages with regards to alternative
data (Figure 2.1). This is evidenced by the number of buy side firms actively seeking
and researching alternative data sources. However, the adoption of alternative data is
at the cusp of transitioning into an early majority phase as we observe a larger number
of asset managers, hedge funds, pension funds, and sovereign wealth funds setting up
alternative data research capabilities.

100
Q
=
jul
(2]
50 ®
@
By
25
| 0
Innovators Early Early Late Laggards
2.5% adopters majority majority 16%
135% 34% 34%

FIGURE 2.1 The law of diffusion of innovation.
Source: Rogers, 1962.
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The majority of innovators and early adopters are based in the US, with a small per-
centage of European and an even lower number of Asian funds. Most of the innovators
and early adopters have systematic and quantitative investment strategies, and, to a
significant degree, consumer-focused discretionary funds.

In 2017 we saw a proliferation of interest from funds using fundamental strategies.
However, despite the increased interest from these more traditional managers in using
alternative data, the uptake for quantitative strategies is at a notably more rapid pace.
We suspect one of the main reasons for this is operational know-how. Put simply, it is
more challenging for firms driven by fundamental strategies to integrate and research
alternative datasets given that the required technical and data infrastructure needed is
often not adequate, and that research teams frequently have significant skill set gaps.
As a result, the task of evaluating, processing, ensuring legal compliance, and procuring
a large number of datasets requires an overhaul of existing processes and can represent a
significant organizational challenge.

For large, established traditional asset managers, one significant obstacle is the slow
internal process of providing the research team with test data. This procedure often
requires (i) due diligence on the new data provider, (ii) signing legal agreements for
(in most cases free) test data, and (iii) approval by compliance teams. The framework
for these internal processes at an asset manager, and hence the time required to organize
a large number of new datasets for research teams, varies significantly. It can take from a
few days/weeks at an innovative hedge fund to several months at a less data-focused and
less efficiently organized asset manager.

The adoption of alternative data within the investment community has been driven
by the advancements of financial technology and has improved technological capabili-
ties for analyzing different datasets. Many investors, hedge funds, and asset managers
alike view these developments as a complementary tool alongside conventional invest-
ment methodologies, offering an advantage over investment managers that have not
deployed such capabilities.

Today, despite many investment professionals claiming that alternative data is
something of a new investment frontier, arguably, this frontier is already fairly well
established, given that the presence of industry practitioners is now fairly common. As
noted by EY’s 2017 global hedge fund and investor survey,! when participants were
asked “What proportion of the hedge funds in which you invest use non-traditional or
next-generation data and “big data” analytics/artificial intelligence to support their
investment process?’, the average answer was 24%. Perhaps most interestingly, when
asking the same participants what they expected that proportion to be in three years,
the answer increased to 38%.

Indeed, according to Opimas Analysis,” global spending by investment managers
on alternative data is forecast to grow at a CAGR of 21% for the next four years and
is expected to exceed $7 billion by 2020 (Figure 2.2).

Thttp://www.ey.com/Publication/vwLUAssets/EY-2017-global-hedge-fund-and-investor-survey-
press-release/$File/EY-2017-global-hedge-fund-and-investor-survey-press-release.pdf
2http://www.opimas.com/research/267/detail
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FIGURE 2.2 Spending on alternative data.

Source: Opimas Analysis.

Source: https://www.ft.com/content/0e29ec10-f925-11e7-
9b32-d7d59aacel67

2.3  ALTERNATIVE DATA TYPES, FORMATS AND UNIVERSE

The classification of alternative data sources is challenging for several reasons. First,
the information provided by the data providers describing their offering can often be
inconsistent and incomplete, and not sufficiently relevant for investment management
purposes. Second, the nature of alternative data can be complex and multi-faceted, and
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Social media Transactional Weather Web scraping Web tracking

FIGURE 2.3 Alternative dataset types.
Source: Neudata.
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sources cannot easily be classified or described as a single type. Traditional sources such
as tick or price data, fundamental or reference data are less complex and easier to define.

We categorize each data source into 20 different types and for most alternative
data examples, multiple categories apply. For instance, an environmental, social, and
governance (ESG) dataset could have components of ‘Crowd sourced’, “Web scraped’,
‘News’, and ‘Social media’ (Figure 2.3). To complicate things further, a dataset could
also be a derived product and be made available in different formats:

1. Raw, accounting for 28% of our feed type.
2. Structured or aggregated, 35%.
3. Signal (derived metric), 22 %.

4. Report, 15%.

2.3.1 Alternative data categorization and definitions
TABLE 2.1 Data categorization types

Dataset category

Definition

Crowd sourced

Economic

ESG

Event

Financial products

Fund flows
Fundamental

Internet of things
Location

News

Price

Surveys and Polls

Satellite and aerial

Search
Sentiment

Social media

Data has been gathered from a large group of contributors,
typically using social media or smartphone apps

Data gathered is relevant to the economy of a particular region.
Examples include trade flow, inflation, employment, or consumer
spending data

Data is collected to help investors identify environmental, social,
and governance risks across different companies

Any dataset that can inform users of a price-sensitive event for
equities. Examples include takeover notification, catalyst
calendar or trading alert offerings

Any dataset related to financial products. Examples include options
pricing, implied volatility, ETF, or structured products data

Any datasets related to institutional or retail investment activity

Data is derived from proprietary analysis techniques and relates to
company fundamentals

Data is derived from interconnected physical devices, such as Wi-Fi
infrastructures and devices with embedded internet connectivity

Dataset is typically derived from mobile phone location data

Data is derived from news sources including publicly available news
websites, news video channels or company-specific
announcement vendors

Pricing data sourced either on or off exchange

Underlying data has been gathered using surveys, questionnaires or
focus groups

Underlying data has been gathered using satellites, drones or other
aerial devices

Dataset contains, or is derived from, internet search data

Output data is derived from methods such as natural language
processing (NLP), text analysis, audio analysis, or video analysis

Underlying data has been gathered using social media sources

(Continued)
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TABLE 2.1 (Continued)

Dataset category Definition

Transactional Dataset is derived from sources such as receipts, bank statements,
credit card, or other data transactions

Weather Data is derived from sources that collect weather-related data, such
as ground stations and satellites

Web scraping Data is derived from an automated process that collects specific
data from websites on a regular basis

Web and app tracking Data is derived from either (i) an automated process that

archives existing websites and apps and tracks specific changes
to each website over time or (ii) monitoring website visitor
behaviour

Source: Neudata.

2.3.2 How many alternative datasets are there?

We estimate that there are over 1000 alternative data sources used by the buy side
today. The majority of these — 21% (Figure 2.4) — fall into the category of web- and
apps-related data, 8% macro-economic data, which consists of several subcategories
such as employment, gross domestic product (GDP), inflation, production, economic
indicators, and many others (Figure 2.4).
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FIGURE2.4 Breakdown of alternative data sources used by the buy side.
Source: Neudata.
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The first six data categories make up 50% of all data sources. It is important to
note that a dataset can be classified in multiple categories. One dataset could consist of
multiple sources and be applicable for different use cases.

However, the way of using these data sources in investment management is not
uniform and does not mirror the supply-side of the data sources.

2.4 HOW TO KNOW WHAT ALTERNATIVE DATA IS USEFUL
(AND WHATISN'T)

The ultimate question for many fund managers is which data source to select for
research or to backtest. One of the key questions is, which dataset is easily actionable?
How much data cleaning, mapping, and preparation work has to be carried out to
prepare and to integrate a dataset within a research database?

One way we attempt to answer these questions is by scoring each dataset on the
eight factors in Table 2.2. Understandably, each fund manager will have a different
opinion on which are the most important of the factors in Table 2.2. Many will have
particular ‘hard stops’. For example, one may want to backtest a dataset only if it has
at least five years of history, costs less than $50 000 per year, is updated at least daily,
and is relevant to at least 1000 publicly listed equities.

Of course, the above factors are only an initial overview in order for institutional
investors to ascertain exactly how one dataset varies from the next. Beyond this, there
are numerous qualitative factors that need to be taken into account in order to gauge
whether a dataset is worth investigating further. This is carried out through a thorough
investigation process, which attempts to answer between 80 and 100 questions which
reflect the queries we most frequently receive from the investment community. Examples
include:

1. What are the underlying sources of the data?

2. Exactly how is the data collected and subsequently delivered?
3. Was the data as complete three years ago as it is today?

TABLE 2.2 Key criteria for assessing alternative data usefulness

Factor Description

Data history length The earliest point from which historical point in time data is available

Data frequency The frequency with which data can be delivered

Universe coverage How many investable companies the dataset relates to

Market obscurity Neudata’s assessment of how well-known this dataset is to institutional
investors

Crowding factor Neudata’s estimate of how many hedge funds and asset management
clients are using this dataset

Uniqueness Neudata’s assessment of how unique this specific dataset is

Data quality A function of Neudata’s assessment of completeness, structure,
accuracy and timeliness of data

Annual price Annual subscription price charged by the data provider

Source: Neudata.
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. How has the panel size changed over time and what are the biases?

. How timely is the data delivery?

. Is the data ‘point-in-time’?

. Is the data mapped to identifiers or tickers, and if so, how?

. How is this dataset differentiated from similar offerings?

. What institutional investors have so far been interested in the offering, if any?
. What is the geographical coverage and how might this expand?

. What is the specific list of investable companies related to this dataset?

—_ O 00NN N
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We find answers to these questions by holding multiple meetings with the data
provider, reviewing sample data (which is often shared with interested clients), and
reviewing independent relevant sources (e.g. academic papers). In carrying out these
steps, not only is a comprehensive and unique dataset profile created, but suggested use
cases can be provided which can be applied to the backtesting process.

2.5 HOW MUCH DOES ALTERNATIVE DATA COST?

One of the most challenging questions for both the data providers and purchasers of
alternative data is how to determine the price of a dataset.

For many new data provider entrants to the financial services industry it can be
very difficult to work out a price, for two reasons. The first is that in many cases new
providers’ understanding and knowledge of peer or comparable data subscription pric-
ings is non-existent or very limited. Second, data providers do not know how their data
will be used by the buy side and how much value or alpha a dataset provides to an
asset manager. To an asset manager, the value-add of a dataset will be dependent on
many factors, such as investment strategy, time horizon, universe size, and many other
factors that will be unique to a fund manager strategy. The marginal alpha of a new
alternative dataset could be too small if the new data source is highly correlated with
datasets already used by an asset manager.

For asset managers starting to research alternative data, the challenge is in
budgeting for data subscriptions. Annual data subscription prices will vary widely
depending on the data formats (as described in Section 2.3), data quality, and other
data provider-specific factors. The price of alternative datasets ranges from free to
$2.5 million annual subscription fees. About 70% of all datasets are priced in the
range of $1-150 000 per year. There are also several free alternative datasets. However,
for some free data sources there might be the indirect cost of data retrieval, cleaning,
normalizing, mapping to identifiers, and other preparations to make these data sources
useful for research and production at a fund manager (Figure 2.5).

2.6 CASE STUDIES

Five examples are shown below which have been sourced by Neudata’s data scout-
ing team in the past year. Only summarized extracts from full reports are given, and
provider names have been obfuscated.
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FIGURE2.5 Breakdown of dataset’s annual price.
Source: Neudata.

2.6.1 US medical records

Provider: an early-stage data provider capable of delivering healthcare brand sales data
within three days of prescription.

2.6.1.1 Summary The group provides insights into the healthcare sector derived from
medical records. For the past seven years the firm has partnered with medical transcrip-
tion companies across the US and uses natural language processing (NLP) techniques
to process data.

The dataset offers around 20 million medical transcription records covering all
50 states, with 1.25 million new records added every month (250 000 every month in
2016), 7000 physicians covering every specialty, and 7 million patients. Data becomes
available as quickly as 72 hours after the patient leaves the doctor’s office and can be
accessed in either unstructured or structured format (CSV file).

2.6.1.2 Key Takeaways The group claims to be the only company commercializing this
data. To date the offering has been used for (i) tracking a medication immediately fol-
lowing launch, (ii) investigating the reasons behind the underutilization of particular
brands, and (iii) spotting adverse events involving a company product and label expan-
sion before FDA approval.

2.6.1.3 Status The company has worked with two discretionary hedge funds in the
past six months and is now looking to strike an exclusive deal (Figure 2.6).

2.6.2 Indian power generation data

Provider: an established data provider yet to launch a daily data delivery pertaining to
the Indian power sector.
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FIGURE2.6 Neudata’s rating for medical record dataset.
Source: Neudata.

2.6.2.1 Summary This data provider’s core business involves supplying data analytics
and research services to a client base of hedge funds, brokers, and commercial banks.
One such offering (yet to be launched) will provide daily updates on the Indian power
sector. Specifically, this includes quantity (energy met in million units) and quality (peak
shortage in megawatts) data on electricity provision, by region and state. The dataset
will also include a split of electricity generation across both state and source (i.e. coal,
solar, wind, and hydro energy). In total, around 10 000 data points will be updated on
a daily basis.

2.6.2.2 Key Takeaways We believe this is a unique offering given the granularity of data
and delivery frequency. Comprehensive granularity, such as power generation at the
plant level, can be provided from 2014. Less detailed datasets can be provided from as
early as 2012. Once launched, the dataset can be delivered through an API feed.

2.6.2.3 Status No clients to date are using this dataset and the group is actively seeking
out institutions that would find such a dataset useful. On finding interested parties, we
understand it would take around four weeks to set up an API feed (Figure 2.7).

2.6.3 US earnings performance forecasts

Provider: the data services division of an investment bank, which provides earnings
performance forecasts for 360 US companies, predominantly within the retail sector.
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FIGURE 2.7 Neudata’s rating for Indian power generation dataset.
Source: Neudata.

2.6.3.1 Summary Launched in September 2016, this offering combines (i) online user
search data, (ii) geolocation data from a panel of 65 million devices, and (iii) point-of-
sale transaction data. The output is a quarterly signal designed to give clients an idea
of how well a given company has performed relative to previous quarters. The earnings
signals are delivered between 3 and 10 days after a given company’s fiscal quarter end

via FTP or the group’s website. Historical data for the entire universe is available from
late 2012.

2.6.3.2 Key Takeaways Prospective users should be aware that (i) rather than an abso-
lute earnings figure, only relative earnings measures are provided for each company
on an arbitrary scale compared with previous periods, (ii) out-of-sample data for the
recently expanded universe is only four months old, (iii) until recently this offering cov-
ered only around 60 US stocks; in August 2017, the universe was widened to 360 stocks
and expanded beyond the retail sector to include cinema, restaurant, and hotel chains.
Since this time the group has informed us that client interest has picked up significantly.

2.6.3.3 Status Around eight clients are using this dataset, of which half are quant
funds. Despite the increased interest in recent months, we understand that the group
is keen to limit access (Figure 2.8).

2.6.4 China manufacturing data

Provider: a data provider using advanced satellite imagery analysis in order to assist
users in tracking economic activity in China.
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FIGURE2.8 Neudata’s rating for US earnings performance forecast.
Source: Neudata.

2.6.4.1 Summary This offering is a manufacturing index, which is calculated based on
images of around 6000 industrial sites across mainland China, covering 500 000 km?.
Datapoints that are used to construct the index are delivered to clients via CSV file three
times per week with a two-week delay. History is available from 2004.

2.6.4.2 Key Takeaways The group claims that this product is both the fastest and the
most reliable gauge of Chinese industrial activity. Specifically, the group claims this
index is more accurate than the Chinese Purchasing Managers Index (PMI), which has
often been questioned by observers for a lack of accuracy and reliability.

2.6.4.3 Status The group began selling the underlying data to the quantitative division
of a large multinational bank in early 2017. Other quants more recently have become
interested, and to date the group has four clients receiving the same underlying data.
Due to client demand, the group is undergoing a mapping process of specific industrial
sites to underlying companies using CUSIPs, which is expected to be completed by early
2018 (Figure 2.9).

2.6.5 Short position data

Provider: this company collects, consolidates and analyzes ownership data for publicly
traded securities held by over 600 investment managers globally.

2.6.5.1 Summary The group collects disclosures from regulators in over 30 countries
which detail long and short positions for around 3200 equities. These disclosures are
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FIGURE 2.9 Neudata’s rating for China manufacturing dataset.
Source: Neudata.

consolidated by an investment manager and allow clients to perform their own analytics
on the aggregated output. For example, clients can discover how many other managers
have entered the same short position on a given stock over a particular time period and
how large their position is. Updates are provided on a daily basis and historical data is
available from 2012.

2.6.5.2 Key Takeaways Ownership data is presented in a simple, standardized format
that is easy to analyze. Conversely, data presented by regulators often isn’t standardized
and at times can be misleading. For example, many asset managers disclose short
positions under different names, which may be an attempt to understate their position.
The data collection methodology behind this offering, however, is able to recognize
this activity and aggregate disclosures accordingly, presenting a global, accurate,
manager-level holding for a given security.

2.6.5.3 Status The group expanded in 2017, in terms of both coverage (in 2H17
Nordic and additional Asian countries, including Taiwan, Singapore, and South Korea

were added) and asset management clients (from none in 1H17 to 12 in 2H17)
(Figure 2.10).

2.6.6 The collapse of carillion — a use case example for alt data

Which alternative data providers could have identified the collapse of Carillion, the
British construction services company that entered liquidation in January 2018?
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FIGURE 2.10 Neudata’s rating for short positions dataset.
Source: Neudata.

Below we describe five very different alternative data offerings and the read-across
between the output from their data and Carillion.

2.6.6.1 One Procurement Data Provider Identified Carillion's Growing Debt Burden As has been
highly publicized, one of Carillion’s biggest issues in 2017 was that of increasing debt.
By the end of the year, average net debt reached £925 million, +58% year over year, as
depicted in Figure 2.11.

What we find most interesting, however, is the fact that between Carillion’s ini-
tial profit warning in July 2017 and liquidation in January 2018, the group (and its
subsidiaries) won 10 public sector awards worth a total value of £1.3 billion — further
adding to the group’s debt burden and potentially revealing a failure by the government
to appreciate just how much financial difficulty Carillion was in.

One data provider would have not only spotted these contract awards (and as such
the ever-growing debt burden) but also provided additional analytics. This provider’s
database covers public procurement notices going back over five years and provides
details on more than 62 000 suppliers. Updated daily, it contains tender notices worth
over £2 trillion and contract award notices worth £799 billion. By searching for specific
names like Carillion, users can obtain indicators such as:

1. Volume and value of contracts expiring in the future.

2. Ratio of contracts won to contracts expiring over any period.

3. Trends in market share, average contract size, revenue concentration, and customer
churn.
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FIGURE 2.11 Carillion’s average net debt.
Source: Carillion. *Estimated by Carillion as of November 2017.

2.6.6.2 This Trade Aggregator Provides Detailed Short Position Analytics Carillion’s failure
has also put under the spotlight hedge funds that made bearish bets (e.g. Marshall
Wace and CapeView Capital), and that started taking short positions on the group as
early as 2013. Before the group’s 39% share price fall on 10 July 2017, Carillion was
one of the most shorted stocks on the FTSE 250. Despite this significant short interest
being relatively well known, it was still difficult and time consuming to ascertain from
public disclosures exactly (i) who had what stake, (ii) for how long, and (iii) what each
short holder’s profit and loss (P&L) was at any point in time.

In our view this is where one particular data vendor would have proved extremely
useful. The group collects, consolidates and analyzes ownership data for publicly traded
securities held by over 600 investment managers globally. Moreover, this company con-
solidates these disclosures by investment manager and allows clients to perform their
own analytics on the aggregated output. In the case of Carillion, users would have
known how long, for example, Marshall Wace had been in their position, how that had
changed over time and the current P&L of all open trades. Data is updated daily and
historical data is provided from 2012 (Figure 2.12).

2.6.6.3 Another Provider Could Have Helped Identify a History of Late Invoice Payments The
Carillion case also highlighted the issue of late payments after it was revealed the group
paid subcontractors with a 120-day delay. As highlighted in the FT article ‘Carillion
failure adds to subcontractors’ case against late payment’, the UK government passed
regulations in 2017 which mean big companies are required to report their payment
terms twice a year (most of which will do so for the first time in April 2018). However,
a more granular analysis, with more frequent updates, can be found from observing
company invoice data, such as that offered by another provider.

While the group was not able to confirm to us it had invoice data specific to
Carillion, we believe the group, along with other discounted invoicers, is worth a
mention as a useful source to help identify the initial stages of companies in financial
difficulty on which companies are undergoing (Figure 2.13).
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FIGURE 2.12 Neudata’s rating for short positions dataset.
Source: Neudata.
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FIGURE 2.13 Neudata’s rating for invoice dataset.
Source: Neudata.
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2.6.6.4 This Salary Benchmarking Data Provider Flagged Up that the Ratio of Executive Pay to
Average Pay Was Higher vs that of Peers After the collapse, the Institute of Directors,
the main lobby group representing UK bosses, called the pay packets awarded to
Carillion’s directors ‘highly inappropriate’, noting that ‘effective governance was lack-
ing at Carillion” and adding that one must now ‘consider if the board and shareholders
have exercised appropriate oversight prior to collapse’.

Indeed, the relaxation of clawback conditions for executive bonuses at Carillion in
2016 does, with hindsight, seem to be rather inappropriate.

We asked the CEO of a particular salary benchmarking data provider whether any
red flags could have been found by simply studying Carillion’s remuneration data.

According to this provider’s records, although the average employee salary at
Carillion was roughly in line with its competitors, the ratio of executive pay was
higher than average when compared with executive pay in the same sector (Figure 2.14
and 2.15).

On further discussions with this data provider, it became clear that its fund manager
clients would have been able to ascertain that the ratio of executive to average pay was
on an upward trend from 2015 onwards. Moreover, referring to the CEO’s pay hike in
2014, signs of questionable executive remuneration appear to have been noticed several
years ago:

Having seen Enron, Valeant and other debacles of management, when the com-
pany needs two pages to disclose a pay rise for their CEO, things are not
adding up.

History: 3

Data quality: 5 Universe coverage: 9

Market obscurity: 3

FIGURE 2.14 Neudata’s rating for salary benchmarking dataset.
Source: Neudata.
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FIGURE 2.15 Ratio of CEO total compensation vs employee average, 2017.
Source: Neudata.

2.6.6.5 This Corporate Governance Data Provider Noted Unexplained Executive Departures
When asked about its view on Carillion, a corporate governance data provider noted
that one of the biggest red flags for them was the fact that several executives left the
company without any explanation.

For example, in September 2017 Carillion finance director Zafar Khan stepped
down after less than one year in the position, with no explanation for his abrupt exit.
Carillion also embarked on a series of management reshuffles which saw the exit of
Shaun Carter from his position as strategy director — again with no explanation in the
announcement.

‘These unexplained exits raise potential governance flags in our opinion,’ stated the
data provider’s CEO.

. as well as an undiversified board composition.

In addition, the same provider highlighted that one could challenge the mix of the
board composition as well as question whether board members had the appropriate
skills/expertise to manage the company or had a robust risk management and corporate
governance practice in place (Figure 2.16).

2.7 THE BIGGEST ALTERNATIVE DATA TRENDS

In this section we briefly introduce some of biggest trend that we are seeing in the
alternative data space.

2.7.1 s alternative data for equities only?

One of the surprising findings on analyzing alt data is that it is applicable to all
asset classes and not just to listed equities, as is most commonly assumed. Twenty
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FIGURE 2.16 Neudata’s rating for corporate governance dataset.
Source: Neudata.

per cent of all alt datasets are applicable for non-listed equities or privately held
firms.

Data on privately held firms and their brands and products is being used for com-
parison analysis by discretionary managers and also by private equity firms (Figure 2.4).

2.7.2 Supply-side: Dataset launches

In 2017 we saw a large increase in location, web, and app tracking sources. Forty per
cent of all new commercially available sources in 2017 were from these three data
categories.

The other data group worth mentioning is transactional datasets, particularly cov-
ering non-US regions (Figure 2.5).

2.7.3 MNost common gueries

With regard to demand, the top categories enquired about were ESG, Transactional,
Sentiment, and Economic data in the majority of months in 2017.

2.8 CONCLUSION

The alternative data landscape is very fragmented, with new data providers and exist-
ing providers launching new datasets at an accelerating rate. The largest percentage of
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datasets is applicable to US markets. However, providers of non-US data are catching
up with offerings of alternative datasets. We believe alternative data applicable to pub-
lic equities represents nearly 50% of all data, and the availability of data for non-listed
equities, fixed income, foreign exchange, and commodities is wider than the buy-side
community realizes.

Use cases for alternative data are well guarded, and evidence of alpha and the use-
fulness of a dataset is generally difficult to come by.

The adoption of alternative data is still in an early phase. However, systematic
and quant strategies have been most aggressively exploring alternative data sources
with significant data budgets and research teams. In 2017 we observed a significant
increase in alternative data research projects and efforts by fundamental or discretionary
strategies. Overall, compared with usage of traditional data sources by the buy side, the
usage of alternative sources is still minuscule. In addition to the limited use of alternative
data by the buy side, it is important to point out that alternative data in most cases is
used as part of a multi-factor approach. The same dataset could be used for different
time horizons, plus, the use-case and approach vary widely.

There are clear advantages and opportunities for early adopters. Furthermore, there
is strong evidence that certain datasets will replace, or substitute, existing widely used
sources and will become the new mainstream data sources of the future.

REFERENCE
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State of Machine Learning Applications
in Investment Management

Ekaterina Sirotyuk

3.1 INTRODUCTION

Excited by applications of artificial intelligence (Al) used daily via smartphone apps,
home products like Alexa and Google Home, as well as matching algorithms used in
services of Uber and Facebook,! industry professionals outside of financial services and
academia wonder why not more, if not the overwhelming majority, of the investment
management industry is run on algorithmic principles used by the above-mentioned
tech companies. Quite often I have had conversations with professionals and clients
who speculated that if AlphaGo can learn to beat the human so fast, then in a matter of
years, it is predominantly the AlphaGos of the world that will be managing institutional
and retail investor money. However, aside of questions of trading costs, data collection
and processing and execution infrastructure, financial markets represent a much more
complex eco system of players with continuous feedback loops that continually rewrite
the rule book.

3.2 DATA, DATA, DATA EVERYWHERE

In this context, a common assumption has been that access to proprietary data or
big data would a priori create a long-lasting competitive advantage for an investment
strategy. For example, at conference presentations it has been discussed that corporate
treasury and finance departments of global businesses with access to customer data
(the likes of Ikea) hired quants to make sense out of company global information feed
and to create proprietary trading signals. Possessing information on customers’ purchas-
ing behaviour and e-commerce/website analytics/‘check-in status’ on social media as a
base alone has proven to be not enough to generate superior signals. For better trad-
ing results, signals with macro information (interest rates, currencies), technical data

Face and voice recognition, aggregating and analyzing data feed in real time.

Big Data and Machine Learning in Quantitative Investment, First Edition.
Tony Guida.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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(trading patterns) and fundamental sources (company earnings information) have to be
incorporated. The number of traditional and alternative mandate searches for exter-
nal asset managers by global corporate pension plans and financial arms of companies
like Apple quasi confirm the point that data access is not a sufficient condition for an
investment strategy success.

These results are not surprising. Financial data is different to the data on which
99.9% of Al has been taking place. Also, wider access to big data for financial profes-
sionals has opened fairly recently. Increasingly, data scientists have been transforming
emerging datasets for financial trading purposes. What makes processing and utilizing
of big data different from financial data? For a start, let’s compare data behind the image
(one can pick an image from a publicly available library of CIFAR (n.d.) or take a photo-
graph) and daily share price data of Apple stock since inception (TechEmergence 2018).
What becomes obvious is that the (CIFAR) image datasets are static and complete —
relationships between their elements are fixed for all time (or any photograph for that
matter). In the CIFAR case, the image has 100% labelling. In contrast, upon calcula-
tion (TechEmergence 2018), Apple’s daily share price has >~10k data points — one per
day of trading since it listed on 12 December 1980. Even if one took minute-to-minute
resolution (TechEmergence 2018), the number of data points would be similar to a sin-
gle low-resolution photograph and would have fundamentally different relationships
between data points than there are in pixels of normal photos. Financial data series of
a stock are not a big data. Data scientists can create an Apple big data analysis problem
when projecting from various data sources such as price of raw materials of electron-
ics, exchange rates or sentiment towards Apple on Twitter. Yet, one has to realize that
there will be many combinations of variables in the big data which can coincidentally
correlate with Apple’s price. Therefore, successful application of AI methods in finance
would depend on data scientists’ work of transforming data about Apple into features.
An integral part of the value chain features engineering is the process of transform-
ing raw data into features that better represent the underlying problem to predictive
models, resulting in improved model accuracy on unseen data. Doing well in artificial
intelligence ultimately goes back to representation questions, where the scientist has to
turn inputs into things the algorithm can understand. That demands a lot of work in
defining datasets, cleaning a dataset and training as well as economic intuition.

While mentioned less often, Al generally has been used for years at some asset man-
agement firms (initially high-frequency trading firms) (Kearns and Nevmyvaka 2013),
mostly in execution (to decrease overall trading costs) rather than in investment signal
generation and portfolio management. Increases in processing power speed as well as
decreases in costs of data processing and storage have changed the economics for finan-
cial firms to apply artificial intelligence techniques in broader parts of the investment
management process. Yet, differences remain which relate to modelling the financial
market state that prompted a cautious approach to incorporating Al in finance vs other
industries (NVIDIA Deep Learning Blog n.d.):

(a) Unlike in some other settings with static relationships (as in the case of a photo),
the rules of the game change over time and hence the question is how to forget
strategies that worked in the past but may apply no longer.

(b) The state of the market is only partially observable — as a result, even fairly similar
market configurations can lead to opposite developments.
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(c) Signal objective is not as simple as a cats and dogs classification problem and one
cannot immediately verify validity of the signal.

Further parts of this chapter will walk readers through the spectrum of Al applica-
tions in finance, elaborate on the interconnectedness of industries and Al enablers, and
open the debate on scenarios of future industry developments. We will conclude with
advice for practitioners, students and young professionals.

3.3 SPECTRUM OF ARTIFICIAL INTELLIGENCE APPLICATIONS

3.3.1 Al applications classification

To better understand potential developments in investing through Al and utilization of
big data (Sirotyuk and Bennett 2017), Al specialists at Credit Suisse classified the indus-
try in Figure 3.1. When the reader moves up the y-axis, data complexity increases in line
with the four Vs of big data (velocity, variety, volume, veracity). Lower columns imply
utilization of standard price data (contracts price feed), fundamental metrics (P/E, P/B,
Div Yield) and sentiment data. Higher columns use more complex data (incorporation
of unstructured data such as text and speech) and include data collected or processed
in proprietary ways (for example, market impact, counterparts bid-ask on short time
frames). The top level on the y-axis represents big data like tracking of marine flows
and parking lots occupancy through satellite images.

On the x-axis, the authors gradually introduce more advanced data processing tech-
niques that are better equipped to interpret and react to these complex datasets — from
traditional tools (like analytical statistics) to Al-based research systems (e.g. natural
language processing, NLP) to fully autonomous Al trading systems.

A common denominator — McDonald’s stock trading — is introduced as an example
to illustrate how algorithm design and trading would evolve in each of the boxes.
The McDonald’s case is followed by an example of investment management industry
application.

Increasing alpha from Al applications in the short to medium term is projected
to happen in the medium column of the table, represented by ‘advanced trading’,
‘competitive data scientists’ and ‘master data scientists’.

3.3.1.1 Advanced Trading What is classified as ‘advanced trading’ tends to use sophis-
ticated analytical techniques to process existing data and enable faster reaction times.
Those traders are able to process large datasets or text and to extract valuable infor-
mation. A good example is where you have different footnotes in company statements

(balance sheets or income statements) and the Al system is able to pick it up systemati-
cally (Allison 2017).

3.3.1.2 Competitive Data Scientists Competitive data scientists represent portfolios
which utilize public and proprietary, structured and unstructured datasets — for
example, a portfolio manager who would try to use NLP techniques to analyze

whether media is positive or negative on a group of stocks in a region or country
(Allison 2017).
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Source: Sirotyuk and Bennett (2017).

3.3.1.3 Master Data Scientists Master data scientists are the ones who probably already
use things like very advanced satellite images to understand the position of vessels on
the sea or in harbours, in order to understand the flows in the market.

As systems get access to more data, have been trained and tested, the evolution
moves further to the right (Allison 2017). Looking into the future we should expect to
see the investment industry going from structured data and limited Al to incorporating
some elements of less structured data and more advanced data processing techniques.
The way participants do it will obviously depend on their skill set, as well as the
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availability of certain data or developing their own proprietary datasets and/or
economics of big data incorporation.

3.3.2 Financial analyst or competitive data scientist?

To demonstrate how an Al system puts itself in the role of a financial analyst (aka
‘competitive data scientist’, as per Figure 3.1), one can look at cases where graphic pro-
cessing units (GPUs) and translators facilitate implementation of deep learning (family
of machine learning methods based on learning data representations) (NVIDIA Deep
Learning Blog n.d.). For many years it would be the job of financial analysts to screen
news articles routinely, listen to company conference calls, get in touch with investor
relations departments, draw conclusions from qualitative discussions and pass recom-
mendations to traders. This process is time consuming and quite manual. It also requires
specialization as analysts are divided by sector and/or geography and are required to pos-
sess either local language knowledge or ‘home’ industry understanding via prior working
credentials. Now imagine that, using GPUs and the deep neural network library, the
‘virtual analyst’ — The Machine — could feed news from public and proprietary databases
into a deep learning system (NVIDIA Deep Learning Blog n.d.). After the training the
machine can dissect an article every three milliseconds (in comparison, a financial ana-
lyst skims an article in 2—-3 minutes); this way the machine churns through hundreds of
thousands of articles per day. The process works in the following way. The Al system
identifies hundreds of keywords within articles. Then, ‘an unsupervised learning algo-
rithm gives each keyword a number value that the rest of the system’s models can then
interpret and work with. The outcome of the deep learning system consists of:

(a) linking articles to appropriate stocks and companies;

(b) discerning a sentiment score ranging from positive to neutral to negative for each
article; and

(c) accessing the likelihood of the news to impact the market. The system is also aware
of ‘fake news’ as reputable sources are weighted higher to boost reliability of the
outcome’ (NVIDIA Deep Learning Blog n.d.).

3.3.3 Investment process change: An ‘Autonomous Trading' case

The introduction of Al processing influences investment team organization and
subsequently investment process flow. Take the case of an equities portfolio manager
(fundamental stock picker), who has final authority for the stocks in the portfolio. He
used to rely on inputs from the research team, execution traders and his own under-
standing of the market he trades. Analysts tend to have multiple years of experience
in niche industries, possessing large networks of industry contacts and having spoken
with key C-level executives multiple times. Analysts’ tasks have gravitated towards
building and maintaining sophisticated models, talking to senior management, records,
set-up of key dates and notifications alerts, among others. Essentially, there has been
an iterative decision-making process in place, such as:

® Step 1: analyst research, then
® Step 2: provide input to the portfolio manager, then
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® Step 3: portfolio manager constructs the portfolio, e.g. weights on stock inclusion/
exclusion, then

m Step 4: portfolio manager implements the portfolio, focusing e.g. on trade sizing
and trade structuring, then

® Step 5: go back to Step 1.

Now imagine that we can give the process of stock selection and portfolio con-
struction to a machine and we ask the machine to make a joint decision on research
and portfolio construction. Joint decision making gives plenty more data to work with
and moves into the big data/Al problem domain. If the machine then also starts to
trade securities to implement the portfolio, we move to ‘autonomous trading’ as per
Figure 3.1. This problem design results in the example of a deep learning framework,
as illustrated in Figure 3.2.

3.3.4 Artificial intelligence and strategies development

Asset managers with big libraries of models and histories of trading are well positioned
to take advantage of automated capital allocation policies. It happened quite often in
investor conversations that when an allocator discussed the multi-strategy offering with
the systematic firm, they heard the sales pitch saying that the allocation between styles
or clusters of models was 1/3, 1/3, 1/3, or whichever N was relevant in the portfolio
context. Often naive styles or clusters of models allocation strategy were explained by
diversification benefits and limited ability to do model timing. Firms are increasingly
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Company 0 Company N

Risk
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Preprocessing ‘ Preprocessing
Constraints
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FIGURE 3.2 Deep Learning Framework Example
Source: NVIDIA Deep Learning Blog (n.d.).
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testing deployment of neural networks on the library of models to see whether some
timing is actually possible. Therefore, asset management firms with stronger infrastruc-
ture and models registry could potentially come up with automated capital allocation
strategies.

Faster information gathering will only support further evolution of the investment
management industry on the Al-big data track. Looking at well-known leading indica-
tors, investment managers historically have taken into account purchasing managers’
indexes (PMlIs), employment, dry bulk index for decision making, among others. The
arrival of so-called nowcasting techniques would potentially allow a view on gross
domestic product (GDP) and other benchmarks earlier (before the release) (Bjornfot
2017). The basic principle behind nowcasting is that signals about the direction of
change in GDP can be extracted from a large and heterogeneous set of information
sources (for example, industrial orders and energy consumption) before GDP itself is
published. Not only GDP but also manufacturing activity can be measured differently.
Thus, SpaceKnow, a US company, has launched a dedicated China Satellite Manufac-
turing index, which uses 2.2 billion satellite observations of over 500 000 km? and 6000
industrial facilities across China (Kensho Indices n.d.).

3.4 INTERCONNECTEDNESS OF INDUSTRIES AND ENABLERS
OF ARTIFICIAL INTELLIGENCE

3.4.1 Investments in development of Al

Advancements in Al usage in financial markets have been enabled by the broader
penetration of Al in service industries as well as the interconnectedness of industries
development.

The concept of Al, or neural nets, in particular isn’t new; however, vast computa-
tional power finally enables sophisticated processing of enormous databases — image,
video, audio and text files — that create enough feed for the Al to operate on (Parloff
2016). Venture capital investing in Al start-ups has also increased. According to CB
insights (CB Insights n.d.), in 2017, the top 100 Al start-ups raised $11.7 billion, with a
total of 367 deals. For comparison, the total funding for start-ups using Al as a core part
of their products was $5 billion five years ago. Since 2012, deals and money committed
to the sector have been on a rise.

The numbers cited above exclude tech giants’ internal investments in their own
AT capabilities. At the company level, Google had two deep learning projects under
way in 2012 (Parloff 2016), whereas presently the company is pursuing more than
1000, in all its major product sectors, including search, Android, Gmail, translation,
maps, YouTube and self-driving cars. For a discretionary thematic investor, looking
for local insights into foreign markets, the obvious route is to read the online press
or forums in foreign languages (with the help of local analysts) or to listen to C-suite
comments for a differentiated take on investments, as we discussed earlier. Naively, one
could use Google Translate for translation services plus 1-2 key analysts instead of
local analysts. Nowadays Google Translate (Parloff 2016) is able to transform spoken
sentences in one language into spoken sentences in another for 32 (!) pairs of languages
while offering text translations for 103 tongues. At the moment, the quality of such
language transformation could be questioned but the direction is there.
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3.4.2 Hardware and software development

NVIDIA made a hardware revolution in 2000s with the introduction of GPUs, the chips
that were first designed to give gamers a rich experience of visual 3D, which were flex-
ible enough for other workloads. For the tasks they are suited for, GPUs are many
times more efficient than traditional central processing units (CPUs) used previously.
Competitors have been catching up as well. For example, Intel bought a deep learning
start-up, Nervana Systems, in August 2016, and chipmaker Movidius and vision spe-
cialist Mobileye in March 2017. Those acquisitions enabled the company to create a
family of chips designed especially for artificial intelligence. This development will cer-
tainly support the big data providers industry. Furthermore, in 2016 Google announced
that it was utilizing a tensor processing unit (TPU) (Google Cloud 2017) inside its data
centres (the unit is designed for a high volume of comparably low-precision calculations
and used in particular in conjunction with Google’s open source library TensorFlow).
Essentially it meant that Google services such as Google Search, Street View, Google
Photos, Google Translate were all using TPUs to accelerate their neural network com-
putations behind the scenes. Google is now rolling out the second generation of these
chips in its cloud offerings, thus creating far wider ability.

In addition to hardware development, software development and in particular open
source frameworks have helped big data providers (Financial Stability Board 2017). The
concept of open source has been around for many years in the software industry. Essen-
tially, it means that the source code of a particular technology or a solution is open for
everyone to add to and improve (Shujath 2017). It has been shown that this approach
speeds product innovation and improves product quality through a community of devel-
opers working together to address bugs. It enables the development of new features to
original product. Vendors including Microsoft, Google and Amazon have open sourced
their Al solutions (Shujath 2017).

3.4.3 Regulation

While less frequently outlined, market regulation in the United States and some other
countries allowed publicly traded firms to use social media for public announcements,
which contributed to events datasets creation (Financial Stability Board 2017). So far,
geospatial data aggregators have been able to aggregate and resell their aggregated ana-
lytics. What came with computational power and decreased costs was precision and
timeliness — until recently, the challenge with satellite imagery was that the data was
simply not frequent enough to react to crop stress in a timely manner. Daily imagery is
becoming a game changer (Anon n.d.-a). Big data providers have boomed over the past
few years; however, one has to be mindful of the young nature of these companies — they
have been in existence only a few years. Cases in point are Terra Bella (formerly Skybox),
which offers analytics into the number of cars in a retailer’s parking lot or the size of
stockpiles of natural resources in ports, and Orbital Insights, another satellite imagery
provider (Anon n.d.-b).

2https://gputechconf2017.smarteventscloud.com/connect/search.ww#loadSearchsearchPhrase=
&searchType=session&tc=0&sortBy=dayTime&i(38737) = 107 050&i(40701) = 109 207 &p=.
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3.4.4 Internet of things

When it comes to specific industries, for example agriculture or energy, big data col-
lection has been enabled by wireless sensors and other monitoring devices deployment
(Financial Stability Board 2017; Anon n.d.-b). New technologies commonly bundled
under the Internet of Things (IoT) umbrella are deeply in many industries, as those tech-
nologies allow us to know (i) precisely and in real time which problem arises in the field,
and (ii) rapid and effective intervention and therefore a prompt solution to the problem.
IoT solutions were again enabled by tech companies such as Microsoft and Amazon as
well as by ever cheaper chips. Increased interest and applicability of IoT in agriculture
can be demonstrated by the number of start-ups operating in the field (e.g. Farmobile
Device, OnFarm, CropX, FarmX, Farmlogs; robotics/material handling — Harvest Al,
DroneSeed; dairy — Farmeron, Anemon, eCow; mapping — HoneyComb, AgDrone;
end-to-end — The Yield). As digitalization advances,> and as more commodity mar-
kets approach hyper-liquidity, the sources of competitive advantage in understanding
the state of crops, for example, are changing. Information is becoming more vast in
scale and scope and, simultaneously, more widely available. If one looks at historical
charts of certain agricultural markets, one can see that over the past few years, the price
range has been particularly tight. Although there are many forces at work, smooth data
collection enables better planning by big firms and thus smooths the curve, which in the
end suggests that going forward, alpha plays are likely to be restricted to the short term
in general.

3.4.5 Drones

Speaking about commodity markets, one can’t ignore the influence of the drones indus-
try as it contributes to making movements over large distances such as fields observed
and quantifiable (Goldman Sachs Equity Research 2016). As Goldman Sachs showed
in its Drones Industry Report, the industry has made a huge leap from military to con-
sumer use in recent years, and unmanned vehicles are expected to see their next leg
of growth from commercial to civil and government applications. On the government
side, NASA announced plans to build up the unmanned airspace management system
(UAS) over the next five years, and test flights are already taking place. This consti-
tutes an important requirement for broader commercial and consumer use of drones.*
NASA estimates that the commercial drone aircraft fleet in the US will increase from
42000 to 420 000 units between 2016 and 2021 (for the US). On the corporate side,
companies like Northrop Grumman are developing a range of affordable unmanned
vehicles; however, there are constraints on the power usage/altitude/flight cost.’ Inde-
pendent research is actively progressing in the area, where scientists are trying to address
the cost and life span of autonomous aircraft. Most recently, Massachusetts Institute of
Technology (MIT) researchers have come up with a much less expensive UAS design that

Shttps://www.bcg.com/publications/2017/commodity-trading-risk-management-energy-
environment-capturing-commodity-trading-billion-prize.aspx
“https://oig.nasa.gov/audits/reports/FY17/1G-17-025.pdf
Shttp://uk.businessinsider.com/nasa-drones-could-provide-better-weather-data-2017-22r=US&
IR=T
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can hover for longer durations — researchers designed, built and tested a UAS resembling
a thin glider with a 24 ft wingspan.® The vehicle is reported to carry 10-20 pounds of
communications equipment while flying at an altitude of 15000 ft with weight under
150 pounds, where the vehicle is powered by a 5 horse power gasoline engine and can
keep itself aloft for more than five days. Such vehicles could be used not only for dis-
aster relief but also for other purposes, such as environment monitoring (i.e. watch on
wildfires, outflow of a river).

Drones matter due to efficiency, cost reduction and safety. For example, regarding
the clean energy industry, drones can decrease the time, risk and labour involved in wind
turbine inspection, which currently involves workers being hoisted off the ground to
rappel down turbines and inspect their blades (Goldman Sachs Equity Research 2016).

Furthermore, what started as consumer drones (in some cases, toys even) are getting
ever more powerful — refer to manufacturers such as DJI.

3.4.6 Digital transformation in steps — case study

In order to demonstrate the commodities digitalization process and iterations between
established and start-up companies and their implications for market structure, we can
move from the ‘macro’ view of the market to the ‘micro’ view. Let’s take the corn mar-
ket for this illustrative study — a market where there are individual farmers, established
local companies and international players. Big players are likely to have installed ana-
lytics capabilities already. Hence, the question becomes, what might be the impact of
small farmers around the world getting access to real-time data management to wield
their influence collectively? For the value chain process, we should also consider storage
places and elevator providers as well as expeditors who work with logistics.

Looking at the seeding/harvesting cycle, at the start of the season all players look
at soil, weather conditions and inventories from the year before (surplus or deficit)
and start projecting seeding and harvesting goals. During the season all participants
check again on weather, diseases, draught/precipitation and other metrics, and adjust
forecasts. Harvesting start tends to be the busiest period because it is when all market
participants look at progress, conditions around harvesting, weather, crop quality and
volumes. Final data on the harvest appears in a month’s time, after harvest ends. After-
wards, focus shifts to the consumption side — micro and macro factors, consumer shifts
and patterns. Re-evaluation of inventories starts as well as next season planning.

Government agencies and trade associations collect information on commodity
markets and share it with farmers. As land is regulated all over the world as well as
food security, government reporting will remain an important part. Historically, small
farmers collected information about their business manually and passed on this infor-
mation to government agencies. Satellites and drones improve the process of monitoring
of businesses and information transfer on to government agencies (hence, making the
process faster, which potentially leads to faster price discovery). Improvements in mete-
orology (take IBM Watson) create conditions to improve farm management. Currently,
tractors going into the fields are driven by a human. In the future, as tractors become

6http://www.uasmagazine.com/articles/1710/mit-engineers-unveil-drone-that-can-fly-for-5-
days
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smart agents (without human guidance), the machines would monitor land on their
own. Drones connected to tractors can set the parameters and alert if the field is uneven
or there are damaged crops — a la Google cars but in commodities. The hurdle so far has
been in the price of such integrated technologies; however, as price declines, adoption
is likely to rise. During the season agronomists study fields, take representative samples
and decide which additional measures the land needs. If representation sampling was
much cheaper to get, that would potentially lead to a bigger harvest as farmers would
be able to react to field conditions. With limited information on far away regions in
Eastern Europe and China, where farming is done the old way, some participants tend
to underestimate the effect of new technologies and benefits of scale they could bring
to smaller farm businesses and the effect on markets. We could further speculate that
with data collection done in real time and more transparent commodity prices, volatility
would decrease even further, yet very short-term volatility can increase as well. Impli-
cations for portfolio management are plentiful — from the requirement to capture very
short-term frames in analysis to trading on shorter time frames.

3.5 SCENARIOS FOR INDUSTRY DEVELOPMENTS

3.5.1 Lessons from autonomous driving technology

Having outlined the plausible cases of Al applications in financial markets, let’s look
at some scenarios of investment industry developments and cases from industries
where Al usage has advanced further. For a start, autonomous driving technologies
present a good comparative base due to research and development lasting over
decades — Carnegie Mellon University recently celebrated its 30-year anniversary of
faculty engagement with self-driving technology (Carnegie Mellon University n.d.).
Applying the self-driving car technology process to financial markets, one can see
how the rigid domain rules can limit opportunities rather than expand them. The
concept of ‘shadow risk’ in machine learning has been introduced by the specialists
from Artemis Capital Management (Cole 2017). They describe the process of the
programmer using artificial intelligence to develop a self-driving car. It can be done by
‘training’ the Al algorithm by driving the car thousands of miles through the desert. Al
learns the route fast and can drive at a high speed of 120 miles per hour with precision
and safety. Now imagine you take the car for a cross-country trip in the United States,
with highways, forest curves, mountain passes, hills, congested towns. As results show,
when the car reaches hilly and twisted roads, the car can’t handle the route safely any
more — it goes off the cliff or undertakes unforeseen manoeuvres. The key assumption
behind the thought experiment is that the driving algorithm has never seen a hilly road
or a mountain pass. Limitations of Al-based learning in this case become obvious.
Of course, as a step further, the algorithm will be trained in other surroundings and
eventually will learn what a mountain pass, hilly road or severe traffic jam looks like
(Soper 2017; Isidore 2015). Enthusiasts of the autonomous vehicle technologies would
point to a number of cross-country test drives completed in the US fairly recently,
but most often they neglect the fact that 99% of the ride was autonomous, which
leaves 1% discretion. One percentage of discretion for the 2000-4000-mile trip is a big
number for decision making: taking discretionary decisions for 20-40 miles of your
road trip, probably key ones.
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Let’s take Google’s experience with self-driving cars. In the early days, 2009 to
be precise, the Google car couldn’t get through a four-way stop because its sensors
kept waiting for other (human) drivers to stop completely and to let it go (Richtell and
Dougherty 2015). The human drivers kept inching forward, looking for the advantage,
and paralyzed Google’s algorithm. Researchers in the field of autonomous vehicles say
that one of the biggest challenges facing automated cars is blending them into a world in
which humans don’t behave by the book. Creating a rule book for self-driving vehicles
also shows that generally it results in more cautious behaviour on the part of the cars (at
least, as demonstrated by the Google example). Researchers point to a part of the driving
process when a self-driving car leaves a safe distance between itself and a car ahead.
There tends to be enough space for a car in an adjoining lane to squeeze into. In another
test by Google (Richtell and Dougherty 2015), the driverless car performed a few evasive
manoeuvres that simultaneously displayed how the car stayed on the cautious side. In
one manoeuvre, the car turned sharply in a residential neighbourhood to avoid a car
that was poorly parked. In another manoeuvre, the Google car approached a red light
in moderate traffic. The laser system mounted on top of the driverless car sensed that a
vehicle coming in the other direction was approaching the red light at higher-than-safe
speeds. In this case, the Google car moved to the right side in case it had to avoid
a collision. However, it is nothing uncommon with cars approaching a red light this
way — the other car wasn’t approaching a red light cautiously enough but the driver did
stop well in time.

Drawing parallels to financial markets, it is obvious that markets are much more
complicated than the desert surroundings used for the test drive and furthermore that
the rules change. So far, discretionary traders have co-existed with quant investing
approaches. However, let’s assume that more and more machines will be trading against
the machines and not against human traders. Then, as Artemis specialists suggest,
self-reflexivity risk becomes exacerbated (Cole 2017). In economics, reflexivity refers
to the self-reinforcing effect of market sentiment. For example, rising prices attract
buyers whose actions drive prices higher until the process becomes unsustainable
and the bubble pops. This is the case of a positive feedback loop. Yet, there is also
a scenario for a negative feedback loop, when the process can lead to a catastrophic
collapse in prices.

The common saying that 90% of the world data has been generated over the last
two years poses the question of generated data quart and how actionable it can be.
What if an Al trading system training dataset goes back only 10 years, and even less?
Post the financial crisis of 2008, as investment processionals know, investing in a stock
market from the long side has been one of the best trades. Most likely the Al system
trading US stocks would have stayed long and hasn’t had much experience in volatil-
ity regime shifts. In that case, this Al trading system, which has been implicitly short
volatility and has significant long exposure in stocks, will eventually come across the
signal to start selling, resulting in downward pressure on prices. What if a number of
Al trading systems had similar short training set-up? Some sceptics would point to the
precedents of ‘flash crashes’, their potential chain effect on the markets and the possi-
bility of systematic investors exacerbating the moves (BIS Markets Committee Working
Group 2017; Condliffe 2016; Bullock 2017). Taking a more recent example, which
was covered extensively in the news, on 7 October 2016 the British pound fell by 6%
in a matter of minutes, touching $1.18, which was a 31-year low, before recovering to
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$1.24. Some experts attributed such a sudden sell-off to the algorithm picking up com-
ments by Francois Hollande addressed to Theresa May: ‘If Theresa May wants hard
Brexit, they will get hard Brexit.” As more and more algorithms trade on the news feed
and even on what is trending on social media, a negative Brexit headline could have
led to a significant sell signal by an algorithm (Bullock 2017). Yet, the official report
by the Bank for International Settlements (Condliffe 2016) concluded that the sell-off
could not be attributed to algorithmic trading alone but to a confluence of factors which
catalyzed the move, including time of day and mechanistic amplifiers such as options,
related to hedging flows as contributing factors.

3.5.2 New technologies — new threats

Many tests of autonomous vehicle technology still sort out hypothetical risks like
hacking/cybersecurity crime and real-world challenges (e.g. what happens when an
autonomous car breaks down on the highway). These operational questions are
extremely relevant for financial market participants as well. In fact, in numerous
interviews with ICE, Eurex NYSE heads, cyber security is mentioned as one of the key
risks to financial stability (Accenture on Cybersecurity 2017). Cybersecurity experts
confirm that they have seen a number of cases targeted at gaining access to automated
trading models.

The transition from small data to big data also opens a variety of concerns about
privacy, ownership and use of data (Sykuta 2016), not only from the perspective of
buying data as a financial player and trading but also from the perspective of under-
lying market organization. If the underlying market organization changes in favour of
some providers having substantially superior information, it will have effects on price
dynamics. Again, looking at agriculture, precision farming practices have existed for a
while and utilized technologies such as GPS guided equipment and variable rate planting
and spraying equipment, on-board field monitors and grid oil sampling. While vol-
ume, velocity and variety of data have been available for years, the ability to aggregate,
analyze and discern important information tools has been in the early stages of devel-
opment. As incumbents such as Monsanto and agricultural technology providers enter
the market, there is more focus on aggregating individual farmers’ data and concerns
over data ownership become more apparent. Who owns data? Who is entitled to the
value of data? How will data be shared? I would argue that at some point we will see
government agencies having a much more thorough look at those practices. In the case
of commodity markets, we can take a closer look at players like DuPont and Monsanto,
which have interest in selling their own agronomic products in addition to the data ser-
vices. How will it evolve for product recommendations based on the knowledge of local
farm operations? Would continued development of automated agricultural equipment,
driven by big data analytics, fundamentally change the organization and management
of production agriculture? Would it mean more tailored-to-needs production? Does it
mean commodities volatilities would decrease further? These are all open questions with
huge ramifications for financial markets and for society at large.

3.5.3 Place for discretionary management

Even if there are more and more automated processes and more and more machines will
be trading more against machines, the case for discretionary high-conviction investing
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Source: Lazard Asset Management (2015).

remains plausible (Lazard Asset Management 2015). By design, concentrated strategies
facilitate investing in the highest-conviction ideas and therefore limit overlap with the
index — leading to high active share, which in turn gets linked to potential outperfor-
mance. Both theoretical and empirical evidence supports the notion that concentrated
portfolios are well positioned to generate alpha. In its paper, Lazard Asset Management
summarizes empirical results of diversified stock portfolios (of mutual funds) vs concen-
trated portfolios. The authors conducted the study in which they were able to confirm
the outperformance of more concentrated institutional mandates by examining separate
account data in e-vestment. They grouped actively managed strategies in the US large
cap universe into concentrated strategies (which they defined as those with 30 holdings
or less) and diversified strategies (which they defined as those greater than 30 holdings).
Then they measured the average three-year and five-year rolling returns of the con-
centrated and diversified manager groups, as well as the S&P 500 Index over the last
15 years. They found that concentrated managers outperformed diversified managers
and the respective index (after costs). Finally, marrying proprietary data sources with
human intuition suggests having a substantial competitive advantage (Figure 3.3).

3.6 FOR THE FUTURE

3.6.1 Changiny economic relationships

Taking finance lectures at universities most often implies studying the well-known mix
of formulas and papers (Black Scholes option pricing, Fama—French factors, corpo-
rate finance signalling theories, etc.). While some concepts remain relevant today in
construction of financial products, for example risk premia, some other concepts have
undergone a significant change. Thus, the relationship between inflation and unem-
ployment seems to change partially due to technology and partially due to unorthodox
economic policies. Over the years, post-financial crisis central banks and economists
focused on growth and its link to inflation, yet, after the period of significant quanti-
tative easing, the core inflation rate in the US, Europe and Japan is below 2%. This
empirical observation suggests that central banks can no longer rely on traditional



State of Machine Learning Applications in Investment Management 47

models for managing inflation rates such as the Phillips curve (a measure developed
in 1958 for outlining the inverse relationship between unemployment and inflation).

The technology infrastructure of financial firms enables much faster processing,
making old investment models to decay faster and to switch out of trading relationships
which don’t hold (i.e. inflation/unemployment). While appreciating the financial history,
it is imperative to keep an eye open for new paradigms. Most likely general university
courses still lag financial industry developments; however, the industry needs talent with
a fresh look at the business problems. Al libraries of technology giants such as Google,
NVIDIA, Microsoft and Amazon offer a good education base for understanding the key
concepts.

3.6.2 Future education focus

It is clear that discretionary portfolio management will be greatly enhanced by big data
and usage of Al as described in Figure 3.1. Quant investing will undergo a similar trans-
formation (Figure 3.4). Looking at the evolution of quant investing, in late 1980s CTA
started to gain traction and the models behind generated buy and sell signals which were
usually not more complicated than prices crossing moving averages or exiting a channel.
Yet, these models sometimes covered more than 100 markets over different time frames,
suggesting a big differentiation in execution practices and contract allocation strategies.
Early CTAs tended to take into account only price data. Classical medium-term CTAs
have a holding horizon of 80-120 days, so can be classified as long-term investors. Fur-
ther along, short-term CTAs appeared. As computer speed progressed, the industry saw
the appearance of statistical arbitrage strategies, which used sophisticated mathematical
models to identify potential profit opportunities from a pricing inefficiency that existed

First time data-science was used for
Buying the winners, selling the losers. short term prediction

Trend following

Statistical
arbitrage

Pairs trading, basket vs constituents
Machine learning algorithm that can
handle different kinds of data and extract
alphas - In short, this would mean, we
don’t need to hire traders any more!

FIGURE 3.4 Evolution of Quant Investing
Source: Qlum, www.qplum.co/
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between two or more securities. Further advancements in technology led to the appear-
ance of high-frequency trading — a type of algorithmic trading characterized by high
speeds and high turnover rates. High-frequency traders move in and out of short-term
positions at high volumes and high speeds, aiming to capture sometimes a fraction of a
cent in profit on every trade. Paradigms influenced each other and with further advance-
ments in technology, a new paradigm becomes applicable — artificial intelligence.
When one looks at the historical performance of trend-following programs, the
early days of trading were characterized by significant volatility of underlying instru-
ments. When more and more industry professionals kept on trading, those markets’
volatility decreased. Furthermore, quantitative easing by central banks post financial
crisis essentially ‘killed’ volatility in key FX forwards and interest rates futures markets
as well as equity index futures, which resulted in muted performance of trend-following
programs. It was the alternative markets, such as over-the-counter (OTC) derivatives,
that kept on delivering returns in the post-quantitative easing era. A decrease in the
overall level of volatility also reduced the opportunity set for statistical arbitrage and
high-frequency firms. Total volumes of trading went down, prompting some players to
opt for consolidation (high-frequency trader Virtu Financial-KCG Holdings), to close
all together (Teza Technologies) or to team up on resources pooling (such as the Go
West venture, where top traders including DRW, IMC, Jump Trading and XR Trading
have opted to pool resources to build an ultrafast wireless and cable route between the
financial centres of Chicago and Tokyo rather than each paying for its own network).

3.7 CONCLUSION

Every new paradigm has a period of alpha where first-mover advantage prevails. Over
time this alpha predictably diminishes. It is not only the number of players that leads
to crowdedness and a decrease in the pie for all participants but also broader monetary
and fiscal developments which have implications for financial markets. The points above
and the accelerating pace of data creation demonstrate the potential for Al in finance
and warrant a deep dive into individual algorithms. With more Al being adopted in
finance, features engineering and extraction would take centre stage as the differences
in the process design would result in differences in performance outcomes.
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Implementing Alternative Data in an
Investment Process

Vinesh Jha

4.1 INTRODUCTION

In August 2007 there was a wakeup call in systematic investing when many quants
across the Street suffered their worst losses — before or since — over a three-day period
that has been called the ‘Quant Quake’. The event wasn’t widely reported outside of the
quant world, but it was a worldview-changing week for portfolio managers who traded
through it. In a sense, the search for alternative data sources started during those days.

In this chapter, we look at this foundational event and how it motivated the search
for alternative datasets, the degree to which alternative data has in fact been adopted
and explanations for why adoption has been gradual, and some prescriptions for fund
managers to adopt alternative data more widely. We then examine some important
issues with alternative data, including data quality and quantity; we examine how alter-
native data can realistically help a traditional quantitative or fundamental process; and
we look at techniques for finding alpha in alternative datasets. Finally, we provide four
examples of alternative data along with backtest results.

4.2 THE QUAKE: MOTIVATING THE SEARCH FOR ALTERNATIVE DATA

After poor but not hugely unusual performance in July 2007, many quantitative
strategies experienced dramatic losses — 12 standard deviation events or more by some
accounts — over the three consecutive days of 7, 8 and 9 August. In the normally highly
risk-controlled world of market-neutral quant investing, such a string of returns was
unheard of. Typically secretive quants even reached out to their competitors to get a
handle on what was going on, though no clear answers were immediately forthcoming.

Many quants believed that the dislocations must be temporary since they were devi-
ations from what the models considered fair value. During the chaos, however, each
manager had to decide whether to cut capital to stem the bleeding — thereby locking in
losses — or to hang on and risk having to close shop if the expected snapback didn’t arrive
on time. And the decision was sometimes not in their hands, in cases where they didn’t
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have access to steady sources of capital. Hedge funds with monthly liquidity couldn’t be
compelled by their investors to liquidate, but managers of separated managed accounts
(SMAs) and proprietary trading desks didn’t necessarily have that luxury.

On 10 August, the strategies rebounded strongly, as shown in a postmortem paper
published soon after the event (Khandani and Lo 2008). By the end of the week, those
quants that had held on to their positions were nearly back where they had started;
their monthly return streams wouldn’t even register anything unusual. Unfortunately,
many hadn’t, or couldn’t, hold on; they cut capital or reduced leverage — in some cases
to this day. Some large funds shut down soon afterwards.

4.2.1 What happened?

Gradually a consensus emerged about what had happened. Most likely, a multi-strategy
fund which traded both classic quant signals and some less liquid strategies suffered
some large losses in those less liquid books, and they liquidated their quant equity books
quickly to cover the margin calls. The positions they liquidated turned out to be very
similar to the positions held by many other quant-driven portfolios across the world,
and the liquidation put downward pressure on those particular stocks, thereby nega-
tively affecting other managers, some of whom in turn liquidated, causing a domino
effect. Meanwhile, the broader investment world didn’t notice — these strategies were
mostly market neutral and there were no large directional moves in the market at
the time.

With hindsight, we can look back at some factors which we knew to have been
crowded and some others which were not and see quite clearly the difference in perfor-
mance during the Quake. In Table 4.1, we look at three simple crowded factors: earnings
yield, 12-month price momentum and 5-day price reversal. Most of the datasets we
now use to reduce the crowdedness of our portfolios weren’t around in 2007, but for
a few of these less-crowded alphas we can go back that far in a backtest. Here, we use
components of some ExtractAlpha models, namely the Tactical Model (TM1)’s Season-
ality component, which measures the historical tendency of a stock to perform well at
that time of year (Heston and Sadka 2008); the Cross-Asset Model (CAM1)’s Volume
component, which compares put to call volume and option to stock volume (Fodor et al.
2011; Pan and Poteshman 2006); and CAM1’s Skew component, which measures the
implied volatility of out-of-the-money puts (Xing et al. 2010). The academic research
documenting these anomalies was mostly published between 2008 and 2012, and the
ideas weren’t very widely known at the time; arguably, these anomalies are still relatively
uncrowded compared with their ‘smart beta’ counterparts.

Table 4.1 shows the average annualized return of dollar-neutral, equally-weighted
portfolios of liquid US equities built from these single factors and rebalanced daily.
For the seven-year period up to and through the Quant Quake, the less crowded
factors didn’t perform spectacularly, on average, whereas the crowded factors did
quite well — their average annualized return for the period was around 10% before
costs, about half that of the crowded factors. But their drawdowns during the Quake
were minimal compared with those of the crowded factors. Therefore, we can view
some of these factors as diversifiers or hedges against crowding. And to the extent that
one does want to unwind positions, there should be more liquidity in a less-crowded
portfolio.
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TABLE 4.1 Average annualized return of dollar-neutral, equally-weighted portfolios of liquid US

equities
More crowded factors Less crowded factors
Earnings Simple ™1 CAM1 CAM1
yield  Momentum reversal Average seasonality volume Skew Average
(%) (%) (%) (%) (%) (%) (%) (%)
2001-2007
Avg. Ann 11.00 14.76 35.09 20.28 8.64 3.60 17.10 9.78
return
Daily factor return in August 2007
7 Aug. -1.06 -0.11 -0.34 —-0.50 -0.06 0.33 -0.85 -0.19
2007
8 Aug. -2.76 -4.19 0.23 =2.24 -0.21 -0.04 0.21 -0.01
2007
9 Aug. -1.66 -3.36 -3.41 -2.81 -0.29 -1.27 -0.23 -0.60
2007
10 Aug. 3.91 4.09 12.45 6.82 0.71 -0.01 1.70 0.80
2007

The inferior performance of the factors which we now know to have been crowded
was a shocking revelation to some managers at the time who viewed their methodology
as unique or at least uncommon. It turned out that they were all trading very similar
strategies. Most equity market-neutral quants traded within a similar universe, control-
ling risk-similar risk models and for the most part betting on the same alphas built on
the same data sources.

4.2.2 The next quake?

Quant returns were generally good in the ensuing years, but many groups took years
to rehabilitate their reputations and assets under management (AUMs). By early 2016,
the Quant Quake seemed distant enough and returns had been good enough for long
enough that complacency may have set in. Quant returns remained fairly strong until
the more recent quant drawdowns in the 18 months up to mid-2017, by which time at
least one sizeable quant fund had closed and several well-known multi-manager firms
had shut their quant books. Meanwhile, many alternative alphas have predicted returns
well. The recent underperformance may have been due to recent crowding in common
quant factors, in part as a consequence of the proliferation of quant funds, their decent
performance relative to discretionary managers over the prior decade, and the rise of
smart beta products. One clear prescription seems to be for managers to diversify their
alpha sources.

With so much data available today — most of which was unavailable in 2007 - there
is a clear move towards alternative data adoption by top-tier investment managers,
but many managers’ portfolios are still dominated by classic, likely crowded factors.
The most forward-thinking quantitative fund managers have very actively pursued
alternative data, based on extensive conversations with systematic portfolio managers.
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However, most quant managers still rely on the same factors they always have, though
they may trade them with more attention to risk, crowding and liquidity. There are
several possible explanations for our current point on the adoption curve. Chief among
them is that figuring out which datasets are useful is difficult and turning them into
alphas is difficult.

To put it another way, as of the time of writing, alternative data hasn’t ‘crossed
the chasm’. Moore (1991) details the life cycle of a product from the perspective of
innovative technology vendors — noting that the toughest part of the adoption cycle
is moving from visionary ‘early adopters’ to the more pragmatic ‘early mainstream’
adopters, who are more risk averse in their adoption of new technologies (Figure 4.1).

The concept is well known among tech start-ups but hasn’t been widely thought
about in the institutional investment landscape — yet it applies equally well. It is clear
to alternative data participants that we are currently at the early stage of adoption but
perhaps at the tail end of the early stage — at the edge of the chasm. A Greenwich
Associates survey (McPartland 2017) notes that 80% of buy-side respondents would
like to adopt alternative data as part of their process. In our experience, relatively few
have made significant progress, though the ranks continue to grow. The early adopters
tend to be those quantitative fund management companies that are already especially
data-savvy and that command the resources to experiment with new datasets.

News stories about alternative data can, unfortunately, be misleading and
hype-filled. Only a tiny proportion of the returns of funds run by multi-trillion-dollar
AUM managers are likely driven by advanced machine learning techniques (Willmer
2017). Very few truly Al-based funds exist, not enough to know whether such tech-
niques lead to outperformance (Eurekahedge 2017). It’s unclear how much scalable
alpha is there, really, in counting cars in Walmart’s parking lots using satellite images,
to take one commonly cited example (Hope 2016).

So, the adoption has fallen a bit short of the hype, even though data and quantitative
techniques are far more prevalent currently than at the time of the Quant Quake. Some
fund managers have expressed concern about crowdedness in alternative datasets, but at
least according to reasonable estimates of adoption as of the current date, these concerns
are so far unfounded.
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Perhaps the holdouts who have not embraced alternative data are hoping that value,
momentum and mean reversion aren’t very crowded, or that their take on these factors
is sufficiently differentiated — which would be a bold bet in the absence of better infor-
mation about one’s competitors. It’s also true that there were many more quants and
quant funds in the market in 2017 than there were in 2007, across more geographies
and styles, and so some institutional memory has faded.

It is possible that a behavioural explanation is at work: herding. As with allocators
who invest primarily in the largest funds despite large funds’ underperformance rela-
tive to emerging funds, or sell-side research analysts who move their forecasts with the
crowd to avoid a bold, but potentially wrong, call, perhaps fund managers prefer to
have their bets proven wrong at the same time as their competitors’ bets. In all of the
aforementioned cases, stakeholders cannot fault the herding actor for a decision which
many of their peers have also already made. This may seem to some managers to be
a better outcome than adopting an alternative data strategy that is innovative but has
a short track record and is potentially harder to explain to an allocator or to internal
bureaucracy, particularly if it doesn’t go well.

Whatever the rationale, it seems clear that another Quant Quake may be more
likely in 2017 than in 2007. The particular mechanism might be different, but a
crowdedness-driven liquidation event seems very possible in these competitive markets.

4.3 TAKING ADVANTAGE OF THE ALTERNATIVE DATA EXPLOSION

We have observed in many conversations with fund managers that they have generally
become better at reaching out to data providers and working through the evaluation
process in terms of vendor management. Increasingly, many larger funds have data
sourcing teams. Many of these groups are not yet efficient at evaluating the datasets
in the sense of finding alpha in them.

Some possible prescriptions for improving this efficiency could include:

1. Allocating increased research resources specifically to new datasets, setting a clear
time horizon for evaluating each (say, 4-6 weeks), and then making a definitive
decision about the presence or absence of added value from a dataset. This requires
maintaining a pipeline of new datasets and holding to a schedule and a process.

2. Building a turnkey backtesting environment which can efficiently evaluate new
alphas and determine their potential added value to the existing process. There will
always be creativity involved in testing datasets, but the more mundane data pro-
cessing, evaluation and reporting aspects can be automated to expedite the process
in (1).

3. Assigning an experienced quantitative analyst to be responsible for evaluating new

datasets — someone who has seen a lot of alpha factors before and can think about

how the current one might be similar or different. Alternative data evaluation
should be viewed as a core competency of any systematic fund.

Increasing outreach to innovative data suppliers rather than what’s available from

the big data providers, whose products are harder to consider truly alternative.

5. Giving priority to datasets which are relatively easy to test, in order to expedite
one’s exposure to alternative alpha. More complex, raw or unstructured datasets

>
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can indeed get one to more diversification and more unique implementations, but
at the cost of sitting on one’s existing factors for longer — so it may be best to start
with some low hanging fruit if one is new to alternative data

6. Gaining more comfort with the limited bistory length that we often see with
alternative datasets. With many new datasets, one is ‘making a call’ subject to a
short history. One can’t necessarily judge these datasets by the same criteria of
20-year backtests as we can with more traditional factors, both because the older
data simply isn’t there and because the world 20 years ago has little bearing on the
crowded quant space of today. But the alternative, not evaluating these datasets,
can be considered riskier. Below, we address some techniques which can be used to
account for limited history.

The process of turning alternative data into a trading strategy is not straight
forward. Furthermore, it competes for attention and time with the core activities of
a portfolio manager, including day-to-day portfolio management, capital raising and
an ever-increasing compliance burden. But with careful planning, alternative data
strategies can be built on top of an existing framework which is used to evaluate
traditional datasets such as pricing or fundamentals. This is particularly true for
quantitative fund managers.

4.4 SELECTING A DATA SOURCE FOR EVALUATION

Here we examine some issues with selecting data for evaluation within the context of a
quant equity process.

First, one must collect the data, or source it from data providers. Most funds will
not expend significant capital on direct data collection unless they have large resources
at their disposal. Even working with data vendors requires dedicated resources, given
the explosion in the number of providers today.

It’s unclear to most managers which providers’ datasets have investment value at
first glance. Most data providers do not have the capability to rigorously backtest their
own data or signals in a way which is consistent with the methodologies of top practi-
tioners. Many vendor backtests ignore transaction costs; backtest using an unrealistic
universe where illiquid assets drive the returns; compare an equally weighted portfo-
lio against a capitalization weighted benchmark; use only current index constituents or
currently live stocks; are not point in time; or do not consider the holdings’ risk expo-
sures. And, of course, vendors’ backtests rarely show poor performance, so they are
often viewed skeptically. As a result, vendor evaluation is typically an in-house process.

At a minimum, a dataset should have sufficient history and breadth; it should be
possible to transform the data into something approximating point in time; and it should
be tagged, or taggable, to securities. Traditional quant backtesting techniques tend to be
less effective for datasets with coverage narrower than a few hundred assets, and with
lengths of history shorter than three years, particularly if the datasets are to be used to
predict quarterly fundamentals.

Once a vendor is chosen for evaluation, one needs to carefully examine their
datasets. Because many of them were collected by vendors with limited experience in
the capital markets, they may not be designed for easy consumption or backtesting.
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For example, the records may not be tagged to security identifiers, or they may be
tagged only to a non-unique identifier such as a ticker. The history may be relatively
short, particularly if the dataset is based on mobile or social media activity, and the
older years of the history may not be representative of the current state of technology
usage. They may exhibit survivorship bias, especially if the data was backfilled, and
vendor datasets are only rarely truly point in time. The time stamps provided may not
be accurate and may need to be verified.

These datasets have not been as thoroughly combed over as those provided by the
large data vendors such as Bloomberg, FactSet and Thomson Reuters. Because of this,
data errors and gaps are more likely.

Typically, there is not much academic research on such datasets, so one must
develop one’s own hypotheses on why these datasets may be predictive or useful rather
than leveraging published or working papers. In some cases, sell-side research groups
have looked at the better-known data providers’ datasets.

The dataset may be in ‘signal’ form, in other words processed to the point where
it can be easily incorporated into a multifactor quantitative process. Signals are gener-
ally easier to test, and to interpret, but their use effectively entails research outsourcing
by the portfolio manager to the vendor. As such, evaluating the pedigree of the ven-
dor and the rigour with which the model was built is paramount. More often, the
data is provided in a relatively raw form, which allows for more flexibility but sig-
nificantly increases the amount of time required to evaluate the data’s efficacy. Many
larger quant funds will prefer raw data, whereas more resource-constrained quants,
or non-quantitative managers, will be happy with a signal product, though there are
exceptions to both statements.

A majority of alternative datasets simply do not contain investment value, or their
value is naturally limited. The datasets often sound intuitively appealing, but may lack
breadth; for example, many vendors have recently emerged that use satellite imagery to
count the number of cars in the parking lots of big box retailers, especially in the United
States, or to gauge the contents of oil containers. However, the total number of assets
for which this information may be relevant is naturally limited.

As another example, datasets which capture sentiment from online activity, perhaps
the earliest form of what we now consider alternative data, have exploded, with many
dozens of providers, the majority of which mine Twitter for sentiment. Beyond the
obvious observation that Twitter contains significant noise, some empirical studies of
microblog sentiment have shown that the predictive power in such signals does not last
beyond a few days and therefore is difficult to incorporate into a scalable investment
strategy (Granholm and Gustafsson 2017).

Finally, one should aim to formulate at least a general hypothesis for why one might
find value in a dataset, whether that value comes from predicting stock prices, volatility,
fundamentals or something else.

4.5 TECHNIQUES FOR EVALUATION

For quantitative managers, the evaluation process of an alternative dataset may look
very similar to what is used in evaluating non-alternative data such as fundamentals.
One can formulate hypotheses for why something in the data should predict returns — or
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earnings, or something else which investors care about — and then draw up a set of
formulations which will allow for in-sample testing of those hypotheses. This is espe-
cially true if the data is structured and has a lengthy history. The formulations can
then be tested for their predictive power within backtests or event studies, subject to
risk exposures and transaction costs; optimized, or chosen simply, in an in-sample con-
text to generate an as strong as possible univariate prediction; checked against existing
(often non-alternative) predictors for uniqueness and contribution to a broader strat-
egy; and then, assuming the results are intuitive, robust and unique, validated out
of sample.

Nothing in the preceding paragraph differs from what most quantitative equity
portfolio managers do when evaluating a traditional dataset. Although machine learn-
ing and artificial intelligence are often mentioned in conjunction with alternative data, it
is very often unnecessary to bring in these techniques when the data is somewhat struc-
tured, and doing so may result in less intuitive results than one might desire — especially
in the hands of researchers who are not as well versed in such techniques.

But in some cases, alternative datasets have characteristics which make parts of that
process more difficult. For example, unstructured data, or data with a more limited
history, may require newer approaches to processing data and to creating formula-
tions. The most common example is sentiment analysis, the details of which are beyond
the scope of this chapter, but it deals with using natural language processing or other
machine learning techniques to condense human-generated text or speech information
into measures of optimism or pessimism which are then relatively easy to roll up to the
asset level.

Some alternative datasets may be poorly tagged with robust security iden-
tifiers such as CUSIP, SEDOL and ISIN. Many data vendors begin their tagging with
tickers, but tickers can change and can be reused. And some more raw datasets are
tagged simply by company or entity name. For these, a robust technique for company
name matching needs to be built that properly considers abbreviations, misspellings
and so on. Once built, these tools can be applied to multiple datasets.

Many alternative datasets are not provided with clear timestamps indicating when
the data would have been available historically, thereby making backtesting difficult.
Often the only solution is to watch the vendor collect data for some amount of time
and to assess the typical lag between the date provided and the date on which the data
was available, assume this lag was the same back in history and apply it to older data.

As mentioned, anyone working with alternative datasets will eventually come
across an otherwise appealing dataset which has less historical data availability than
one would prefer. A short history has several implications:

1. The history may not encompass multiple different macroeconomic
environments such as both high- and low-volatility times.

2. With less data, backtest results are naturally noisier and cannot be subdivided (say,
by sector) with the same robustness as one could do with longer histories.

3. Traditional in-sample and out-of-sample techniques, such as using the first 10 years
for in-sample and the remaining 5 years for out-of-sample, may not apply.

There isn’t much of a solution to the first problem, but the second and third can be
addressed to some degree.
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Short backtests are noisy because stock prices are noisy. This is especially true
for predictions of lengths of a day or more, and those are the lengths of the great-
est interest to large institutional investors. A very intuitive approach to addressing this
problem — and the related problem of too-narrow cross-sectional coverage, as with
sector-specific datasets — is to build a forecast not of stock prices or returns but of some-
thing more fundamental, such as earnings or revenues, or of simple derivatives of those
values, such as earnings surprises or revenue growth. Because asset volatility — which
can be driven by sentiment and exogenous shocks — exceeds earnings volatility in the
long run, fundamental predictions tend to be more stable than asset price predictions.
Therefore, one can potentially build a robust prediction of fundamental values with a
relatively short history.

Fundamental predictions are not new in the academic literature. For example, a
well-known paper (Sloan 1996) showed that accruals-driven earnings are less persis-
tent than cash flow-driven earnings, and that the differential persistence is subsequently
reflected in share prices. Studies from the late 1990s and early 2000s also showed that
individual analysts have different abilities to make earnings forecasts and that these
differences can be translated into trading strategies (Mozes and Jha 2001). This work
on earnings forecasting has more recently been extended to an alternative dataset of
crowdsourced earnings estimates collected by Estimize (Drogen and Jha 2013).

Of course, making a fundamental prediction wuseful in a portfolio
management context assumes that an accurate prediction of fundamentals leads
to portfolios which outperform, in other words that the market cares about fun-
damentals. Although evidence shows that over the long haul that is true, there are
not-infrequent market conditions in which asset prices are primarily driven by other
effects. We have seen this several times in the last few years, including the ‘risk-on’
rally after the global financial crisis and during 2016 when stock prices were buffeted
by changing expectations around macro events such as Brexit and the US presidential
elections. Identifying these environments as they occur can help to make a fundamental
prediction more robust.

Asset volatility itself tends to be fairly stable, so one relatively unsung
application of alternative datasets with a limited history is to improve volatility
forecasts. Later in this chapter we explore one such example.

In-sample and out-of-sample methodologies might have to change to account
for the shorter history and evolving quant landscape. For example, one can alternate
between in- and out-of-sample months, thereby allowing the backtest to include more
recent in-sample dates, measure how well the factor has performed in current market
conditions, and ensure a similar split between in- and out-of-sample periods for any
length of historical data. Such an approach must be handled very carefully to avoid
any leakage from the in-sample into the out-of-sample and to avoid seasonal biases.

As another consideration, many alphas derived from alternative data, especially
those based on sentiment, are relatively short horizon compared with their crowded
peers; the alpha horizons are often in the one-day to two-month range. For large AUM
asset managers who cannot move capital too nimbly, using these faster new alphas in
unconventional ways such as determining better entry and exit points for longer-term
trades (Jha 2016) — or trading them separately in faster trading books — can allow
them to move the needle with these datasets. We have observed a convergence to the
mid-horizon as quants that run lower-Sharpe books look to enhance their returns and
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simultaneously higher-frequency quants look for additional capacity, making the need
for differentiated mid-horizon alphas even greater.

When evaluating alternative data which is event-based — for example,
a crowdsourced collection of forecasts from the web, or a dataset of company
events which is separate from the usual earnings surprises, mergers and so on — event
studies can be an enormously helpful technique. A typical event study involves tracking
an asset’s return in a window before and after the event. These studies can demonstrate
whether an event is preceded by or is followed by large returns, of course, but they
can also tell you the horizon over which those returns are realized, which will give the
researcher a sense of whether the event can be used in the context of short-horizon or
longer-horizon alpha generation and how quickly one must act in response to a new
event. One can also partition the events into different types along many dimensions:
events for large versus small-cap stocks, or at different times in the earnings cycle,
or those generated by different types of forecasters, for example. Finally, instead of
using raw asset returns, one can residualize the returns, that is, control for exposures
to common risk factors, thereby allowing the researcher to determine whether any
outperformance they see following an event is the result of an inherent bet within the
event dataset, for example a small-cap or momentum bias.

The above possible adjustments can account for some of the idiosyncrasies
of alternative data, but the fundamentals of basic quantitative research are still
relevant: one should build point-in-time databases of intuitive factors and test
them rigorously in a carefully designed in-sample period while considering risk and
transaction costs.

4.6  ALTERNATIVE DATA FOR FUNDAMENTAL MANAGERS

Although quantitative funds, and especially systematic hedge funds, have been the earli-
est adopters of alternative data, discretionary and fundamental managers have begun to
embrace alternative data as well. This move towards ‘quantamental’ investing mirrors
some other trends in the market, including increased flows into quant strategies and
away from equity long/short strategies and a greater acceptance of mechanical ‘smart
beta’ or risk-premium investing styles.

Quantamental takes many forms, including a growth in the usage of traditional
quantitative techniques such as backtesting, risk management and portfolio attribution
in the context of a fundamental analysis-driven portfolio. Here we will focus primarily
on alternative data adoption among discretionary analysts and portfolio managers.

The increase in quantamental means that funds which previously had limited expe-
rience in data science will need to understand some of the fundamentals of quantita-
tive research. The challenge is reconciling these broad data-driven approaches with an
investing philosophy which has always emphasized depth rather than breadth. Grinold
(1989) captured this distinction in ‘The fundamental law of active management’:

IR =IC* VN

Here, a manager’s information ratio (IR), a measure of his or her risk-adjusted
active return, is shown to be a function of two things:
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® The information coefficient (IC), which is the correlation between the manager’s
predictions and subsequent realized returns; a measure of skill.
® The number of independent bets (N); a measure of breadth.

Simplistically, discretionary managers focus on IC and quant managers focus on
breadth; a quant strategy is replicable across many assets, but rarely provides high con-
viction on any particular trade, whereas a fundamental analyst theoretically can provide
a high, but unscalable, IC through in-depth research.

Therefore, one use for alternative data among fundamental managers is to gather
even deeper insights about a company, without necessarily increasing the number of
total bets. It is generally left to the individual analyst to determine whether a new piece
of data ought to be helpful for providing such insights. Because the data does not need to
be produced broadly or very efficiently across many stocks or for automated ingestion, it
is often delivered in the form of reports, which may contain sector-specific information.
This is probably the simplest way for a fundamental analyst to use alternative data and
can only loosely be considered quantamental.

A little further up the data-adoption curve, some fundamental teams are
ingesting data through user interfaces (Uls) designed to provide visualization, screening
and alerts regarding alternative datasets. For example, a fundamental portfolio
manager may input their watchlist into such a tool and look for stocks where recent
trends in consumer or social media behaviour suggest upcoming problems which
would inform position sizing, or an analyst may wish to screen for trade ideas driven
by these datasets. These Ul tools can fit well into a fundamental portfolio manager’s
or analyst’s workflow, which historically has been dominated by Bloomberg terminals
and Excel models.

Finally, some fundamental teams have recently brought in teams to both
manage vendor relationships and provide data science tools in-house. These tools can
include visualization similar to what’s described above, but they can also include the
development of quantitative models which leverage new datasets to create rankings
and scores on stocks. Some asset managers have had quantitative teams fulfilling this
role using traditional data for many years, but it is relatively newer in the equity
long/short hedge fund space.

One challenge in both cases is getting the portfolio managers and analysts to pay
attention to the in-house products generated by the data science team. The fundamental
users may not fully buy into a quantitative approach and may not want a quant pro-
cess dictating their decisions to a significant degree. Therefore, a manager might prefer
to design a quant approach in collaboration with the fundamental teams, taking into
account their desires, feedback and workflow, with continual coordination between the
data science team and the fundamental teams.

Another issue is that fundamental teams are often not well versed in the subtle issues
of sample sizes, backtesting, robustness and so on. Because of their reliance on IC and
not N, fundamental portfolio managers and analysts seek high-conviction information,
but empirical evidence in capital markets rarely provides such a level of conviction.
Quantitative bets can be wrong a large proportion of the time yet still make money on
average, but a single wrong bet can sour a fundamental analyst on quant techniques.
Here, there is little substitute for continued education in quant techniques to increase
familiarity.
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On a practical level, new quantamental teams will realistically also have to mod-
ify the tools they use. Historically, discretionary managers’ workflows have relied upon
some blend of written reports, Excel models and Bloomberg terminals. A traditional
quant process does not use any of these tools; instead it relies on data feeds. New quan-
titative and alternative data sources will have to be delivered to fundamental teams
using the aforementioned workflow tools such as visualization, screening and email
alerts, which will enable greater adoption, and the quantamental teams will need to
shift some of their attention away from the typical tools in order to best leverage new
datasets.

4.7 SOME EXAMPLES

Here we work through four examples of using alternative data to generate a signal
which can be used in a portfolio management process. Although in some cases the
details of the signal generation are somewhat proprietary, we hope to provide enough
information on these techniques to motivate the study of other datasets.

4.7.1 Example 1: Blogger sentiment

We begin with the analysis of a financial blogs dataset provided by TipRanks. TipRanks
collects online advice from a variety of sources, including news articles and several
financial blog sites. Its proprietary Natural Language Processing algorithm, which was
trained using manual classification of a training set of articles, is employed to generate
sentiment for each article. In particular, the algorithm categorizes articles as Bullish
vs Bearish (or Buy vs Sell). Articles which cannot be classified with a high degree of
confidence are sent back to a human reader in order to be classified and to better train
the algorithm in the future.

News articles include bullish or bearish comments by sell-side analysts, which are
often redundant with analysts’ Buy and Sell recommendations that are already captured
in widely used structured datasets as provided by data vendors such as Thomson Reuters
and FactSet. Therefore, here we focus on the less well-known data source of financial
blogs. The content of financial blogs such as Seeking Alpha and the Motley Fool differs
from microblogs such as Twitter in that they typically involve long-form writing and
contain significant analysis of a company’s business and prospects; as such, they are
more like sell-side research reports than either microblog posts or news articles.

We begin our research by looking at event studies in order to understand stock price
behaviour before and after the publication of a blog article which has been categorized
as a Buy or a Sell. We can partition our data in a variety of ways, but the most important
finding in-sample seems to be that certain blog sites contain articles which are predictive
whereas others do not. This is likely due to the varying editorial standards of the various
sites. Of the sites which prove to have predictive value, we see event studies like the one
in Figure 4.2 around the publication dates.

Note that here we are plotting the average cumulative residual returns, that is,
returns controlled for industry and risk factor, as a function of trading days before
and after the article publication date. One can see from the chart that there is a large
effect on the day of publication, which could be a combination of the article’s effect on
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FIGURE 4.2 Cumulative residual returns to blogger recommendations.

the market and the fact that article publication may coincide with significant company
events. We also see a large runup effect, in that Buy articles are typically preceded by a
price increase and Sell articles are typically preceded by a price drop.

We also see a continued drift in the expected direction for several weeks after the
article publication, consistent with the articles’ authors either continuing to move the
market and/or their ability to predict future price movements.

We can then wrap these Buy and Sell signals into a simple stock-scoring algorithm
which has scored more than 2000 US equities each day since late 2010. The approach
taken by the TRESS algorithm, built as a collaboration between TipRanks and Extract-
Alpha, was straightforward and involved taking a sum of the recent article-level Buy
or Sell (+1 or —1) signals for a given stock, weighted by the number of days since that
article’s publication. This way, the highest-scoring stocks are those with the most recent
Buy recommendations and the lowest-scoring stocks are those with the most recent
Sell recommendations. In order to have comparable scores between stocks with many
recommendations (typically larger or more popular stocks) and those with few, we scale
by the frequency of blog articles for that stock.

Financial blogs are typically aimed at an audience of individual investors and traders
who have concentrated long portfolios and so usually are looking for Buy ideas rather
than Sell ideas. As a result, about 85% of blogger recommendations end up categorized
as Buys. This means that once we aggregate to the stock level, we end up with relatively
few stocks with net Sell sentiment across a majority of bloggers.

That being said, we see that when most bloggers are bearish, the stocks tend to
significantly underperform, as shown Figure 4.3 which plots the average annualized
returns of those stocks with low scores (TRESS values of 1-10) versus those with high
scores (TRESS values of 91-100), so the Sell or short signals are rare, but powerful.

The difference in performance between low-TRESS scores and high-TRESS scores
has been consistent across time, including the in-sample period (ending in mid-2013),
the go-live date (in late 2014) and the ensuing three years of live data (Figure 4.4). This
suggests that financial blog sentiment is a consistent predictor of returns. There are many
ways to slice this performance to demonstrate its robustness, but a simple long/short
portfolio, rebalanced each day and consisting of a long book of stocks scored 91-100
and a short book of stocks scored 1-10, is a handy visual tool.
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In this case, we have plotted the returns before considering transaction costs, but
subject to minimum requirements of market capitalization (US$100 million), average
daily dollar trading volume (US$1 m), and nominal price (US$4). The daily turnover of
each side of the portfolio is approximately 6% each way, so these results should survive
reasonable transaction cost assumptions.

4.7.2 Example 2: Online consumer demand

The above example looks at the predictive power in an alternative source of senti-
ment from intermediaries — in this case bloggers — who may have insights about a
company’s fundamentals. Some alternative datasets look more directly at proxies for
a company’s fundamentals, such as panel transactional data — we show one example in
item 3 below. In between these two extremes, we can examine data which gives us
insights into consumer preferences. Web-based demand data can help provide these
insights.

As an increasing share of time is spent online, consumers don’t just buy products
online, they also research those products prior to making purchasing decisions. This is
true of retail consumers as well as business-to-business (B2B) buyers. Therefore, demand
for a company’s products can be proxied by the amount of attention which is paid to
the company’s web presence. Although attention can be a negative sign (as in the case
of a scandal), literature has shown that on average more attention is a good thing for a
company’s prospects.

This type of attention data has been used for some time in the digital marketing
space but is relatively new to stock selection models. Here we examine a dataset col-
lected by alpha-DNA, who are experts in digital demand data. The alpha-DNA dataset
includes attention measures across three categories:

® Web search: are consumers searching for a company’s brands and products online
via search engines?

m Website: are consumers visiting a company’s various websites?

® Social media: are consumers expressing their attention by Liking, Following, etc. a
company’s various social media pages on multiple platforms?

In order to map the relevant terms and properties up to the company level,
alpha-DNA maintains a Digital Bureau, which is an evolving, point-in-time database
of each company’s brand and product names, websites and social media handles
(Figure 4.5). A significant amount of the upfront work required for this analysis is in
producing this Digital Bureau.

alpha-DNA has developed a proprietary scoring system to rank approximately
2000 companies on their overall performance strength across digital platforms (site,
search, social) and consumer effectiveness (penetration, engagement, popularity). The
ranking is done each day and historical data starts in 2012. A “poll of polls’ approach
is used to combine many different digital dimensions sourced from multiple datasets to
create weighted performance scores.

Using this poll of polls, digital strength measures for each company are built rela-
tive to its peers. alpha-DNA’s Digital Revenue Signal (DRS), built in collaboration with
ExtractAlpha, measures this digital strength as a function of its ability to predict revenue
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FIGURE 4.6 Percentage revenue beat by DRS decile.

surprises; when consumer demand increases, companies are more likely to beat their
sell-side consensus revenue targets and when consumer demand slows, companies are
more likely to miss. As such, high-scoring DRS stocks tend to exhibit positive revenue
surprises as well as positive revenue growth. In Figure 4.6 we plot the percentage of
stocks which beat their revenue targets by decile of the DRS, subject to the same universe
constraints used above for TRESS (and further excluding financials stocks for which
alpha-DNA did not collect data at the time of writing), shown for the combined in-
and out-of-sample period 2012-2015, and for each subsequent quarter since DRS has
been live.

It seems clear that one can use the digital demand data embedded in DRS to predict
revenue surprises with regularity. As one might expect, that prediction also leads to
profitable portfolios built with the DRS. In Figure 4.7 we plot the cumulative return of
a portfolio based on DRS, using the same technique used above for TRESS.

The returns annualize to 11.4% with a Sharpe ratio of 1.64. A further look reveals
that the results are consistent across capitalization ranges and most other reasonable
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FIGURE 4.7 DRS gross dollar-neutral cumulative returns.

cross-sectional slices of the universe, and easily survive transaction costs and various
rebalancing rules, given the daily turnover which is similar to TRESS at 6% per day per
side, each way. Thus, it seems that an accurate revenue surprise prediction, in this case
based on a combination of online alternative datasets, yields a potentially profitable
investment strategy.

4.7.3 Example 3: Transactional data

One of the early examples of alternative data used in the United States was credit card
transaction data. These datasets are used to get an early view into an industry’s rev-
enues ahead of corporate earnings announcements. With the recent increase in consumer
activity in China has come the realization that transactional data in the world’s most
populous economy can be informative for the revenues of companies with significant
customer bases in China, wherever those companies are headquartered and listed.

Sandalwood Advisors is the first alternative data platform focused on the Chinese
consumer market. The company has collected several unique high-value datasets which
capture both online and offline mainland Chinese retail transactions. In this study, we
focus on one of its datasets, from the largest business-to-consumer (B2C) e-commerce
site in China, Tmall.com, which as of 2016 had a 57% market share. Chinese and inter-
national consumer goods producers use Tmall to gain access to the Chinese consumer
market. A wide variety of products is available for sale on Tmall, including cloth-
ing, footwear, home appliances and electronics. Foreign companies must meet strict
requirements — in particular, a minimum amount of annual revenue — before being able
to list their products on Tmall.

In this study, we examine company-level metrics in the Tmall data, which is col-
lected monthly with a lag of five business days. The underlying data includes total sales
value in RMB and number of units sold each month. We are able to map the Tmall data
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to 250 liquid securities which trade in five markets: China, Hong Kong, Japan, Korea
and the United States. The length of the Tmall historical data is somewhat limited,
spanning March 2016 to June 2017.

We examine a very simple alpha, the change in month-over-month sales. This mea-
sure allows us to score any stock in the Tmall dataset, but it is subject to some noise
due to companies increasing or decreasing their sales efforts on the platform, jumps due
to promotional activity, the effects of currency fluctuations on stocks which may have
differing international exposures, and seasonal effects which might affect sales for each
stock differently.

An alternative formulation would be to look at the monthly change in market share.
For each category, we can calculate a particular brand’s market share compared with
that of all other companies, whether or not we are able to map those companies to liquid
public equities (for example, private companies). We can then aggregate the market
share up to the company level, weighted by the contribution of that category to the
company’s overall revenues from Tmall. This may be a cleaner measure than change
in monthly sales, but there are a few shortcomings. The revenue split for the company
may not reflect its revenue split on Tmall and, perhaps most importantly, we do not
have category-level data yet mapped for all companies, thus our sample size is too low
for this metric, so we leave market share analysis for future research.

Following our earlier remarks on looking at the short-history datasets to predict
fundamentals, we first observe that stocks with month-over-month Tmall revenue
growth less than —10% have lower actual reported quarterly growth rates (1.8%) than
those with Tmall revenue growth greater than 10% (6.1%). This analysis provides
reassurance that the Tmall dataset is representative of company revenues.

We then follow our earlier approach of building long-short portfolios from monthly
sales growth, which essentially results in a monthly turnover strategy (although we do
rebalance daily). We look at each region independently: the United States, China and
Developed Asia — which in this case means Hong Kong, Japan and Korea. We use local
currency returns for each market. Because the data is fairly sparse within each region
compared with the earlier model examples, we cut the data into terciles (thirds) rather
than deciles and simply go long the top third of stocks in a region and short the bottom
third. The result is portfolios which are still fairly concentrated in each region.

In Figure 4.8 we show cumulative returns within each region and then a simple
global portfolio which is equally weighted across the three regions and which shows
the diversification benefits to risk-adjusted returns when doing so.

The before-cost nature of these results is noteworthy, given that transaction
costs — which are low in the US and Japan and have come down substantially for
Chinese A-shares — are still relatively high in Hong Kong and Korea due to a stamp
duty and a securities transaction tax, respectively. Furthermore, we have assumed a
long-short portfolio here, and stock borrow may be limited or expensive in the Chinese
equity markets in particular. But we do see that the top-ranked stocks outperform the
universe, suggesting a use case on the long side alone.

Nonetheless these results are very promising given the fairly simple nature of the
metric we have constructed. Although both the history length and the cross-sectional
coverage are somewhat limited with these datasets, the clear intuition behind them and
the fact that Chinese online purchases are increasingly important to global retail-focused
names and yet rarely examined by investors means that they are worth thoughtful
consideration.
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4.7.4 Example 4: ESG

Despite the growth in environmental, social and governance (ESG) investing, most tech-
niques to capture ESG use simple measures such as divesting of energy companies or
focusing on board diversity. ESG investors are typically not data driven or systematic,
despite the broad availability of data about companies’ sustainability and responsible
behaviour.

Some recent research has begun to uncover relationships between a few ESG
datasets and returns, but this evidence is still quite mixed. A potentially intriguing
alternative direction is the use of ESG factors for risk management. Here we follow the
example of Dunn et al. (2017) and measure risk using a novel dataset specific to the
financial services sector.

The US Consumer Financial Protection Bureau (CFPB) was established after the
global financial crisis to increase oversight of financial service providers such as credit
card and mortgage issuers. The CFPB maintains a consumer complaint database,
updated daily, which logs complaints by consumers relating to retail financial services
and creates a platform for financial service providers to respond to the complaints. The
complaints data is freely available from the CFPB, but it requires some work to make
it usable in a quant context. As with many government data sources, the data formats
have changed over time and the data is not tagged to a security identifier. Therefore,
we employ a proprietary fuzzy name-matching algorithm which considers misspellings,
abbreviations such as ‘Inc.” and ‘Corp.’, changes in company names over time and
the relative uniqueness of words in the company name to map the CFPB-provided
company names to a master company name dataset and from there to common security
identifiers such as CUSIP.

We then have a database which contains, for approximately 100 publicly traded
financial service companies, 48 000 complaints per year, with data starting in 2011.
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The dataset is quite rich, containing the date the complaint was received, the particular
product it pertains to (e.g. debit cards, student loans), whether the company responded
to the complaint in a timely manner and whether that response was disputed. The text
of the complaint is also included.

Our hypothesis is that companies with relatively more complaints face greater
business risk, either because they have alienated their customers or because they are
more likely to be subject to punitive regulatory actions. To the extent that news about
these existential risks eventually becomes known to investors, they should impact stock
volatility as well.

For simplicity’s sake, here we simply count the number of complaints associated
with each security over a given timeframe. Of course, larger issuers of financial products
typically receive more complaints, so we simply take the number of complaints issued
within the prior year — lagging by one quarter to ensure historical data availability — and
scale by market capitalization. We then flip the sign, so that high-scoring stocks are those
with relatively few complaints.

We first run a quick test to see whether our complaints count predicts returns,
using the same methodology as before (Table 4.2). Here we use portfolios built using
quintiles rather than deciles because of the sparser cross-sectional coverage of the CFPB
data relative to the previous datasets. The data prior to 2014 is too sparse to allow us
to create robust quintile portfolios within our liquid universe, so we build portfolios
between early 2014 and mid-2017.

We can see there is some evidence that companies with fewer complaints do out-
perform, and a strategy based on this data would not be heavily affected by transaction
costs given the slow-moving nature of our formulation, but the results are not consistent
over time and are largely driven by calendar year 2016. Such non-robust results are com-
mon when evaluating a dataset with both limited cross-sectional coverage and limited
history, as slight changes in the evaluation parameters (such as the number of fractiles,
universe selection and trading parameters) can result in large changes in outcomes due
to the low sample size. Although the return effects are worth further investigation, we
now turn to measuring whether the complaints data can tell us something about risk,
where we might expect somewhat more robust results.

We examine the general risk characteristics of our measure by looking at the aver-
age exposure to common risk factors (which are scaled to be mean 0 and standard
deviation 1) by quintile (Table 4.3).

We can see that the firms with the most complaints tend to be more volatile and
more highly levered and that they have lower dividend yields. So we will need to

TABLE4.2 Do complaints count predicts returns?

Number of
Group Companies days/occurrences Ann. ret. (%) Ann. Sharpe
Overall 71 903 6.20 0.5
2014 60 248 -3.30 -0.29
2015 72 252 2.00 0.15
2016 76 252 28.10 2.31

2017 79 151 -7.60 -0.53
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TABLE4.3 The average exposure to common risk factors by quintile

Yield Volatility Momentum Size Value Growth Leverage

Few complaints  (0.09)  (0.55) — 0.53 0.19 (0.05) 0.11
2 (0.05) (0.40) 0.02 0.67 0.38 (0.10) 0.18
3 0.04 (0.33) (0.13) 0.75 048 (0.17) 0.43
4 (0.10)  (0.27) (0.03) 1.77 0.59 (0.03) 0.24
Many complaints (0.27)  (0.15) 0.03 0.64 0.28 0.04 0.47

determine whether the complaints explain risk over and above what we would know
by looking at these standard risk factors.

We start by examining stock price volatility by quintile of complaints, as measured
over the course of the month following our complaints calculation. We measure volatil-
ity in two ways:

® Standard deviation of daily stock returns.

® Standard deviation of residualized daily stock returns, where each day’s return is
regressed cross-sectionally against industry and common risk factors, leaving only
the idiosyncratic return.

The residual return volatility should tell us the degree to which the complaints data
tells us about future risk which isn’t explained by common risk factors, including the
stock’s own historical volatility. For both of these measures, we then percentile them
each month to account for the fact that volatility in the market as a whole changes over
time.

We can see in Figure 4.9 that stocks with fewer complaints relative to their market
cap exhibit lower future volatility even after controlling for known risk factors. The
effect is more consistent than what we saw earlier with return-based measures.

Finally, we can also use a regression approach to explain the cross-section of return
volatility using our basic risk factors and then by adding in our complaints factor. Here,
a higher value means more complaints, so we expect to see a positive coefficient on
the Complaints variable if companies which experience more complaints are riskier
(Table 4.4).
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0.5
0.4
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0.2
0.1
Few complaints Many

complaints

m Vol mResidual vol

FIGURE 4.9 Percentile of volatility, by complaint frequency.
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TABLE 4.4 Regression approach to explain the cross-section of return volatility

Baseline With complaints
Parameter Parameter
estimate t Value Pr>ltl estimate t Value Pr>ltl

Intercept 0.020 101.81 <0.0001 0.019 92.24  <0.0001
Volatility 0.008 34.38  <0.0001 0.007 28.91 <0.0001
Size (0.000) (5.23) <0.0001  (0.000) (5.15) <0.0001
Value 0.001 4.00 <0.0001 0.001 5.40 <0.0001
Growth (0.000) (0.03) 0.98 0.000 0.10 0.92
Leverage (0.000) (0.33) 0.74 (0.000) (1.70) 0.09
Momentum (0.000) (2.70) 0.01 (0.000) (0.75) 0.45
Yield (0.000) (1.69) 0.09 (0.000) (1.90) 0.06
Complaints 0.003 8.86  <0.0001
Adj R Squared 0.350 0.363

We can see that although the aforementioned correlation between historical volatil-
ity (the best predictor of future volatility) and complaints manifests in a lower coefficient
on historical volatility in the second regression. But the complaints factor is very strongly
significant in the second regression, with a T value of 8.86, and the regression exhibits a
higher adjusted R squared than the baseline regression. In other words, complaints pro-
vide unique, incremental explanatory power for future risk over and above a traditional
fundamental risk model.

We can repeat the exercise by year and we see that the Complaints factor is sig-
nificant at the 3% or better level every year, with an improvement in the adjusted R
squared across all years (Table 4.5).

An ESG-enhanced risk model could be used in several ways. The new factor could
be used as a constraint in an optimization process in order to mitigate ESG risk at the
portfolio level; portfolio and stock-level ESG risks can be monitored; and one can mea-
sure returns residualized to ESG factors for use in, for example, mean reversion stock
selection models. These exploratory results show that unconventional ESG datasets can
help managers build smarter models for measuring and mitigating risk.

TABLE4.5 Complaints factor: significant at the 3% or
better level every year

Baseline ~ With complaints

Year AdjR sq. Adj R sq. tvalue  Pr>lt
2014 0.294 0.317 5.00  <0.0001
2015 0.397 0.400 2.22 0.03
2016 0.386 0.409 6.06  <0.0001

2017 0.349 0.364 3.47 0.00
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4.8 CONCLUSIONS

In the years following the Quant Quake, data-driven investment has grown rapidly.
Forward-thinking investors in the quantitative and discretionary segments have begun
to use alternative datasets in their decision-making processes, though there is significant
room for additional adoption by the mainstream. Asset managers are grappling with
the best approaches to alternative data adoption and with finding the right datasets to
help their alpha, fundamental and volatility forecasts. We find empirical evidence that
alternative datasets can help with all of these things if they are carefully vetted and
rigorously tested. It is likely that as more data about the physical and online worlds is
collected, researchers will find ever more value in processing these emerging datasets to
unlock value.
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Using Alternative and Big Data
to Trade Macro Assets

Saeed Amen and lain Clark

9.1 INTRODUCTION

In recent years, there has been a rapid increase in the amount of data being generated
from a wide variety of sources, both by individuals and by companies. Traditionally, the
most important datasets for traders have consisted of data describing price moves. For
macro traders, economic data has also been a key part of the trading process. However,
by augmenting their existing processes with these new alternative datasets, traders can
gain greater insights into the market. In this chapter, we delve into the topic of alterna-
tive data and big data. We split our discussion into three parts.

In the first section, we seek to define general concepts around big data and alter-
native data. We explain why data is being generated at a rapidly increasing rate and
the concept of ‘exhaust data’. We discuss various approaches to developing models to
describe the market, comparing traditional approaches to machine learning. We elab-
orate on the various forms of machine learning and how they might be applied in a
financial setting.

In the next section, we focus more on general applications for alternative data
in macro trading. We note how it can be used to improve economic forecasts, for
example, or in the construction of nowcasts. Real-life examples of big data and alter-
native datasets such as those derived from newswires and social media are also listed.

In the final section, we go into more detail, presenting several case studies using
alternative datasets or unusual techniques to understand macro markets. We show how
there is a strong relationship between sentiment derived from Federal Reserve commu-
nications and moves in the US Treasury yields. We discuss using machine readable news
to inform price action in the foreign exchange (FX) market and how news volume relates
to implied volatility. We also examine an index representing investor anxiety based upon
web traffic to the financial website Investopedia. We show how it can be used to create
an active trading rule on the S&P 500 to outperform long-only and VIX-based filters.
Finally, in a case study, we use a more conventional dataset (FX volatility data) but
analyzed in a novel way to try to understand the risks in price action around scheduled
events, using the example of GBP/USD around Brexit.

Big Data and Machine Learning in Quantitative Investment, First Edition.
Tony Guida.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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9.2 UNDERSTANDING GENERAL CONCEPTS WITHIN BIG DATA
AND ALTERNATIVE DATA

9.2.1 What is big data?

The term big data has perhaps become overused in recent years. There are certain char-
acteristics of what constitutes big data, which are collectively known as the 4Vs: volume,
variety, velocity and veracity.

5.2.1.1 Volume One of the most well-known characteristics of what constitutes big
data is the sheer volume. Big data can range from many gigabytes to terabytes or even
petabytes. One of the challenges of using big data is simply trying to store it.

5.2.1.2 Variety Big data can come in many varieties. Whilst data traditionally used by
traders is generally in a time series format containing numerical values and is structured,
this is not always the case with big data. Take, for example, web content. A large amount
of the web consists of text and other media, not purely numerical data.

5.2.1.3 Velocity Another defining characteristic of big data is the frequency with which
it is generated. Unlike more typical datasets, it can be generated at high frequencies and
at irregular time intervals. One example of high-velocity data in finance is tick data for
traded assets.

95.2.1.4 Veracity The veracity of big data is often more uncertain. Often big data
can emanate from unverified individuals or organizations. One of the most obvious
examples is Twitter, where accounts may try to actively spread disinformation. How-
ever, even with financial big data, whose source may be regulated exchanges, data can
often still require cleaning to remove invalid observations.

9.2.2 Structured and unstructured data

Structured data, as the name might suggests, is a dataset which is relatively organized.
Typically, it might have enough structure to be stored as a database table. The dataset
will often be relatively clean. If a structured dataset is primarily text data, it will also
have metadata to describe it. For example, it might be accompanied by sentiment scores
and usually tags outlining the general topic of the text and timestamps representing
when it was collected.

By contrast, unstructured data is much less organized. Typically, it could consist of
text scraped from web pages or other sources. Web scraped data will often be in its raw
form, including all its HTML tags or formatting, which will need to be removed at a
later stage. It will have minimal metadata to describe it. It is often a time-consuming step
to transform unstructured data into a more usable structured dataset. In practice, most
big data starts in an unstructured form and requires work to turn it into structured data.

5.2.3 Should you use unstructured or structured datasets?

It is easier and quicker to use structured datasets. Rather than spending a lot of time
cleaning the unstructured data and creating metadata, a vendor has already done
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this for you. However, in some instances, you might still prefer to use unstructured
datasets, for reasons other than cost, particularly if there are no associated structured
datasets available from data vendors. Furthermore, there might be instances where
the unstructured dataset is proprietary and a ready-made structured dataset is not
available. It can also be the case that you might wish to structure data in a different
way. Once a dataset is structured into a specific format, it can reduce the types of
analysis you are able to perform on it, for example. In order to do that, you need to
have access to the actual raw data. Whilst large quant funds are often keen on having
access to raw data and have the capabilities to number crunch it, many other investors
are likely to prefer using smaller structured datasets.

In Figure 5.1, we give an example of a structured dataset, the Hedonometer Index,
created by the University of Vermont, which was developed to give an idea of users’
happiness on Twitter. It takes around 10% of the tweets and classifies each accord-
ing to happiness, using a bag of words-style technique. A dictionary contains a large
number of words, which are scored for their relative happiness, by people, using the
Amazon Mechanical Turk service. Words such as oy’ score highly, whilst words such
as ‘destruction’ score lowly in the dictionary (see Figure 5.2).
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FIGURE 5.1 Structured dataset - Hedonometer Index.
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FIGURE 5.2 Scoring of words.
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FIGURE 5.3 Days of the week — Hedonometer Index.

In Figure 5.3, we take an average score for each day of the week. Perhaps
unsurprisingly, we see that people are least happy on Monday and their happiness
rises throughout the week. We have shown this example to illustrate how despite the
fact that unstructured big data (in this case extracted from Twitter) can be compro-
mised of very large datasets, once structured, it is easier to make inferences about
the data.

5.2.4 Is hiy data also alternative data?

Let us first consider what alternative data is in the context of financial markets. It is
simplest to consider those datasets which are not commonly used in finance. Admittedly,
in the years ahead, the datasets which we currently consider as ‘alternative’ are likely
to become more mainstream and newer datasets may appear in alternative data space.
Importantly, alternative data need not always consist of big data. An alternative dataset
could actually be relatively small in the order of megabytes as opposed to gigabytes/
terabytes or petabytes, which we tend to associate with big data. Indeed, it may be
possible to even store the whole raw alternative dataset in an Excel spreadsheet, which
is certainly not the case with big data.

5.2.4.1 Where Is All This Data Coming From? According to IDC (2017), in 2016 around
16.37ZB of data were being generated globally, which equates to around 1.5 GB per
person per day. IDC forecast this to rise to 163 ZB in 2025. Where is this data being
generated? In its report it breaks down the sources for data into three categories: core,
edge and endpoint.

The core relates to datacentres including those on the cloud and enterprise net-
works. The edge is comprised of servers outside of their datacentres. The endpoint
encompasses everything at the edge of a network, which includes PCs as well as other
devices such as phones, connected cars, sensors and so on. Many of these data sources
in the edge are, of course, new devices. Many devices at the endpoint are IoT devices
(Internet of Things). The report estimates that the majority of data is actually created
in the endpoint, with the rest split between the core and edge areas. A large amount of
this data is in unstructured form.
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The pace of storage technology has not kept up with how fast we are generat-
ing data. As a result, large amounts of data are not stored. In many cases, we can
avoid storing data in multiple places. Take, for example, the streaming of music or
video content — typically it is consumed by users and not stored locally, given it can be
streamed again from copies on the cloud at any point. There might be other instances
where data is not stored in any place at all and is simply lost once it has been consumed.

5.2.4.2 Nonetizing Datasets and the Exhaust We have discussed on a broad basis the areas
where data is generated. In this section, we give examples of how datasets can be mon-
etized by selling to traders. We also discuss the idea of ‘exhaust data’, which can be the
source of alternative datasets which are used by traders.

Data usually has a primary usage. Consider a financial exchange. As part of its
everyday business, it generates a large amount of market data, which is generated by
market participants using the exchange. This can be both from quotes posted and actual
executions between market participants. Clearly, this market data is important for the
exchange to function.

Whilst trading fees can make up a large part of the income for an exchange, they
can generate additional income by selling their data feeds. If market participants want
a very granular feed with market-depth data, they will pay more than those simply
wanting to receive daily closing quotes. Exchanges can also store all the data generated
and sell the history for quants to use in their backtesting of models.

What about an example outside of finance? Let’s return to our media content
example. If we consider video data, such as movies or TV, it is primarily generated
for consumers to watch as entertainment. The same is true of music content. These
might seem like obvious statements. However, we might be able to use this dataset for
other purposes. For example, they might be able to do speech recognition on movies
to generate subtitles and then perhaps natural language processing to identify the
sentiment of a movie, to help classify it.

A media streaming company is also likely to collect secondary data, which is a
by-product of users listening to music or watching TV. What songs and video are
they streaming, at what time and from what location? There are countless data points
we could collect. Once all the datasets are properly aligned, which in itself can be a
time-consuming process, the media streaming company can answer many questions to
help personalize the experience for each user. Recommendations about what to watch
will obviously vary considerably between users. However, there are other uses of this
so-called ‘exhaust data’ which is generated by companies as part of their everyday busi-
ness. In practice, it can often be the case that data is collected before its full utility is
understood. This can be the case in multiple domains, not purely in finance.

In our earlier financial example, we noted that exchanges monetize their datasets
by selling them to financial market participants, which seems like a very direct use case.
Corporates can also monetize their datasets by selling them to traders to help them
make better trading decisions. However, before doing so they need to be aware of the
legal issues associated with doing this.

5.2.5 Leyal questions around distributing alternative datasets

5.2.5.1 Personal Data In our example about a media streaming company, we noted
that one of the uses of ‘exhaust data’ was to help personalize the experience of
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individual users. However, if a company wishes to distribute such data to traders, it
needs to consider several legal questions, in particular its adherence to various data
protection terms. Do the legal terms of its agreement with users allow this, and what is
the format in which the data can be distributed? For example, very often the company
will need to anonymize the dataset. Sometimes simply blanking out personal details
might not be sufficient. Consider a social network. Even if a user’s real name is not
available, it is possible to infer a lot of details about an individual by who they are
connected to. It might also be possible to combine this with linguistic analysis to
identify individuals.

In practice, traders do not need or require the identity of individuals from data to
use in their trading strategies. Companies can also aggregate the raw data into a more
structured form before distributing.

5.2.5.2 Alternative Datasets and Non-Public Information Alternative datasets are ‘alterna-
tive’ because they are not in as common use as traditional datasets are within finance
such as price data. We might conjecture that if certain alternative datasets have some
specific tradable value, if fewer market are participants using them there could be
more of an edge. This is particularly the case when there might be limited capacity on
a strategy. One example from a macro viewpoint could be a dataset which helps us
better predict economic data releases and enables us to trade around these actual data
releases. For liquidity reasons, such trading strategies have a relatively small capacity.

If a company is distributing data exclusively about itself to a single client, which no
one else can buy, is there a risk that it is giving out ‘material, non-public information’?
This obviously depends on the nature of the dataset. One way to alleviate this can be if
the data is aggregated in some form and in such a way that any sensitive information
cannot be reverse engineered from it. Fortado et al. (2017) note that certain funds prefer
not to deal with exclusive datasets for this reason.

We could argue that if a third party is collecting information about a specific com-
pany, a process which others could potentially replicate, this is much less of a risk,
particularly if the source is public information available on the web. Traders of macro
assets typically are more interested in broader-based macro modelling as opposed to
data on specific companies. There is, of course, still potential for ‘material non-public
information’ in macro markets, such as through leaks in economic data releases or
decisions by central banks.

9.2.6 How much is an alternative dataset worth?

The marketplace for data is not new. Data about financial markets has been sold and
distributed for centuries in many forms, even if the way it is distributed has changed
from paper, such as in newspapers, to electronic methods, over the various public and
private networks. In many cases, there might be multiple vendors distributing similar
price datasets, which can aid price discovery.

However, by definition, as we have mentioned, alternative datasets are much less
commoditized than most price datasets. Even the most ‘common’ alternative datasets
such as machine-readable news, which are distributed by multiple vendors, are still far
less common than price datasets. Furthermore, even here there is variation between
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the machine-readable news datasets in how they are structured and also the raw data
sources which are used.

For some alternative datasets, there could potentially be only a single vendor who
sells that specific data. As discussed earlier, it is also possible for funds to be exclusive
users of a specific alternative dataset, which would likely raise the price of the dataset.

The question for any trader, whether macro or otherwise, is how much is an alter-
native dataset worth? Equally, for sellers of such datasets, what price point should they
pitch? It is difficult for both parties. A trader for obvious reasons is not obliged to say
precisely how they use a dataset to a vendor. However, without such information it is
difficult for a vendor to know how valuable a dataset is to a trader (and hence how
much they should charge).

Clearly, traders need to consider how useful the dataset is to understand how much
they are willing to pay for it. Just because a dataset is considered ‘alternative’ does not
necessarily mean that it is worth millions of dollars. The amount of history in a dataset
can help determine its price. Without any history, it becomes very difficult to do any
historical backtesting on an alternative dataset to understand how useful it is. Unfor-
tunately, given that alternative datasets are often newer (and in some cases collected
using totally new techniques), their history can be much smaller than more traditional
datasets. More generally, as with any dataset, the quality of the data is very important.
If the dataset is messy and has many missing values, it could reduce its utility.

When considering the value of an alternative dataset, we also need to be able to
quantify how much it might improve our strategy. If the effect of the alternative dataset
is marginal on a backtest, then it might not be worth buying, particularly if we cannot
offset the initial cost of purchasing it.

There is also the question of economies of scale when using data. A larger fund
may find it easier to absorb the costs of data. Whilst a dataset cost is often related to
the number of users, the additional cost might be proportionally less than the amount
of capital a larger firm can run on a strategy related to that dataset.

We need to ask whether the dataset will be used only for very specific and very
low-capacity strategies, or whether it can be used in multiple trading strategies. A larger
fund is likely not as interested in data which is only useful in lower-capacity strategies,
compared with a small-scale trading operation. In effect, here it is advantageous to be
a smaller trader. More broadly, the value of data is unlikely to be the same for different
traders. From my experience, I have found very different feedback on the use of exactly
the same alternative datasets from multiple funds. There can be many reasons for this, in
terms of asset classes traded and also the varying approaches used in actually contrasting
a trading strategy.

The costs of an alternative dataset should not be measured purely in financial terms
of buying a licence to use it, there is also the cost of evaluating the dataset and developing
strategies around it. A dataset is worthless without the resources to consume it. Hence,
we need to consider whether this alternative dataset is worth investigating versus other
priorities. Very often, large quant hedge funds are regularly approached by data vendors
with new datasets. It is difficult to evaluate every single dataset offered in a full fashion,
even for very large funds.
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9.3 TRADITIONAL MIODEL BUILDING APPROACHES AND MACHINE
LEARNING

Traditionally, when developing a trading strategy or indeed any sort of forecast, we try
to find a hypothesis first. We can then validate (or indeed invalidate) our hypothesis
using statistical analysis. The rationale is that this exercise can help to reduce the like-
lihood of data mining. We are essentially pruning our search space to (hopefully) only
the areas which we think are relevant.

5.3.1 What is machine learning?

The idea of machine learning techniques is that we don’t need to know the form of
the relationship between variables beforehand. This contrasts to linear regression, for
example, where we are already assuming a certain type of relationship between vari-
ables (or features, to use machine learning terminology). Instead, our machine learning
algorithm can help us model the function, even if it is highly nonlinear. This will enable
us to find relationships between variables we have not already thought of, particularly
if we use techniques from machine learning.

5.3.2 Difference hetween traditional machine learning and deep
learning

With traditional machine learning, we define a set of features and then allow the
algorithm to find the appropriate function. However, in some instances, it is very
difficult to hand craft features which are likely to be relevant. Take the case where we
are trying to identify an object in an image. Easy-to-define features, such as taking the
average brightness or colour of all the pixels in an image, are unlikely to give us any
useful information for gauging what object is in an image. Deep learning techniques
instead try to extract the features without having to define them. Deep learning
techniques have become very successful for certain areas such as image classification.
For deep learning to be effective, it requires the availability of large amounts of
training data.

5.3.2.1 Supervised, Unsupervised and Reinforcement Learning Machine learning relies on
training to identify patterns. This usually requires a training set. In supervised learning,
we provide a training set which has been labelled in pairs. It can be time consuming
to manually label data and this can limit the size of the training set we use. With
unsupervised learning, we have unlabelled training data and the algorithm is designed
to infer patterns from the training data without ‘hints’. As a result, it can be easier
to use much larger datasets, given that we do not have the constraints associated
with labelling data. Deep learning often uses unsupervised learning. Reinforcement
learning is a different approach. Here, we create a simple set of rules that our algorithm
can follow, which is designed to maximize a reward function. This has been used
successfully in the field of games. In this situation, the reward function could be defined
as winning a game against an opponent. Reinforcement learning lets a computer teach
itself the best approach to solve a problem. In the example of games, it may end up
playing in a way very different from that of a human player. DeepMind has used
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reinforcement learning extensively in the field of games. DeepMind’s AlphaZero learnt
how to play chess using reinforcement learning and managed to beat the world’s best
chess playing computer, Stockfish 8 (Gibbs 2017).

5.3.2.2 Should We Use Machine Learning to Develop Trading Strategies? It could be argued
that with very large datasets, we might try to let the data ‘talk’ using machine
learning techniques. The difficulty, however, is that we might end up finding patterns
in what is essentially noise. Furthermore, the nature of financial problems is not
stable. Financial time series are non-stationary. Markets experience changing regimes.
The market in 2008 was very different to the market in 2016, for example. This
contrasts to other situations in areas where machine learning has been successful,
where the problems do not change over time, such as image classification or playing
games.

In practice, identifying and constructing the important factors (or features, to use
the terminology from machine learning) is still a key part of developing trading strate-
gies. However, we believe that techniques from machine learning are still useful for
trading, it is just that we must apply a cautious approach when using machine learning
in developing trading strategies.

There is also the case that if we are running a black box trading model, we might
simply have to turn off the model when it starts losing money if we cannot understand
what it is doing. There are ways we can try to alleviate the problem of model inter-
pretability. One way is to create a simpler linear model to proxy a machine learning
trading rule, which might make it easier to understand how changing inputs affect our
trade.

To avoid the issues around non-stationary financial time series, we can instead apply
machine learning in our trading problem, not purely focusing on forecasting the time
series of the asset itself. After all, creating a trading strategy is not purely about defining
the signal; we also need to pre-process and clean the dataset before constructing any
actual trading rule. In our discussion about the effectiveness of machine learning in
trading, we would draw the distinction between the various areas. Domains such as
high-frequency trading have very large datasets and as such could be more amenable to
machine learning techniques (Dixon et al. 2017). Machine learning, in particular deep
learning, has also been used to improve the performance of longer-term equity factor
models (Alberg and Lipton 2017).

Pre-processing can also involve classifying parts of the dataset, applying techniques
such as sentiment analysis or topic identification of text. In these instances, we would
suggest that machine learning could be a useful technique.

9.4 BIG DATA AND ALTERNATIVE DATA: BROAD-BASED USAGE
IN MACRO-BASED TRADING

5.4.1 How do we use hig data and alternative data in a macro
context?

What are the general approaches we can use to make sense of big data and alternative
data more broadly for macro traders? Here, we give a few ideas of where to start.
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5.4.1.1 Improve Nowcasts/Economic Forecasts There are many different unusual datasets
we might wish to use to improve our forecasts for the monthly change in nonfarm
payrolls. If we have a sufficiently good forecast of this number we can trade around this
number on an intraday basis. We might also seek to get a real-time estimate that can be
generated throughout the month to aid our trading strategy. Obviously, this approach
can be replicated for other economic releases, aside from nonfarm payrolls. We might
also seek to use alternative datasets to improve longer-run economic forecasts or there
can be alternative datasets which directly give us a forecast, which may be useful for
broader-based investing. We can also trade on a short-term basis, around economic data
releases, if we can generate reasonable forecasts.

5.4.1.2 Market Positioning and Sentiment for Assets A key part of trading is to understand
what the rest of the market is thinking and in particular how they are positioned. If the
market is very heavily long, it can sometimes increase the chances of a short squeeze,
for example. There is potential to use alternative datasets to help model these factors.
We could use alpha capture data, which we discuss later, to gauge market positioning,
and also combine this with proprietary flow indicators from market makers.

5.4.1.3 Improviny Volatility Estimates It is possible to show that there is a reasonable rela-
tionship between market volatility and the volume of news, whether it is derived from
more traditional sources such as newswires or newer sources such as social media.
Hence, we can use enhance volatility forecasts through the use of volume data related
to news and social media.

9.4.2 Reallife examples of hig data and alternative datasets

In this section, we build upon the generalized cases described earlier. We list a few
examples of big data and alternative data, which could be relevant for traders. Later, we
describe structured datasets suitable for financial applications, which can be considered
as alternative data. These datasets are often available both for human traders and in
machine-readable form. Typically, this machine-readable data can be distributed in via
APIs for real-time ingestion by computers or on a lower-frequency basis (for example
end of day) in flat files, which is more suitable for longer-term investors.

5.4.2.1 BiyData

5.4.2.1.1 High-Frequency Market Data Market data is disseminated from
exchanges, trading platforms and market makers. As well as top of book data,
which gives quotes for smaller trade sizes and also executed trade data, more granular
data, such as market depth, can be available. Traders can use the market depth data
to calculate metrics such as market imbalance and its skew, which can be used to shed
insights into high-frequency price action.

5.4.2.1.2 Web Content On a broad basis, content from the web is unstructured. If we
scrape data from the web, it will often be in an unstructured form. It is then necessary
to clean the dataset and also classify it, creating additional metadata to describe it.
Web content can be made up of many different forms, including text, video and audio.
We can also have exhaust data derived from web content, such as page views.
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5.4.2.1.3 Social Media Many forms of social media are available for machine-
readable parsing, such as Twitter, which is available via Twitter’s Gnip feed. The
format of this text, however, can be particularly difficult for a computer to understand.
Not only is the text typically much shorter than that from a news article, it can be
difficult to understand the veracity of the text. Interpreting the sentiment of such
text can be tricky, given the use of abbreviations and sarcasm. There are also issues
of understanding the context of tweets. One way to help understand context is to
combine with other similar sources such as machine-readable news.

Breaking news can sometimes be on Twitter before it is reported on newswires and
before an impact is felt on markets. Hence, it has become an important source of news
in its own right. One particular example was seen during the earlier days of President
Trump’s office, when he would often tweet about companies. Indeed, apps have been
created specifically to flag when such tweets were sent by him (Turner 2017). As a result
of Twitter’s importance in breaking news, some newswires, such as Bloomberg News
(BN), also directly report important tweets in their feed.

5.4.2.1.4 Mobile Phone Data Tracking data associated with mobile phones is avail-
able from various vendors. On an aggregate level this data can be used to map flows of
people. We could use this to model the foot flow through shops, for example, to help
estimate retail sales data. We can also use such data to understand employment levels
if we consider the overall foot flow in and out of rail stations during the rush hour, or
the volume of cars on the roads during these periods.

5.4.2.2 Nore Specific Datasets

5.4.2.2.1 Newswires News articles generated by newswires are primarily output
for human readership. BN articles are typically designed to be used for consumption
by Bloomberg Terminal users. However, Bloomberg also provides this news in a
machine-readable form, with considerable amounts of additional metadata, including
topic classification. Other newswires such as Thomson Reuters and Dow Jones
(via RavenPack) offer machine-readable news. News datasets can be used to assess
market sentiment, both in terms of broader economic sentiment and around specific
assets.

5.4.2.2.2 Alpha Capture One of the most well-known alpha capture datasets is
aggregated by TIM Group, an independent trade ideas network. Essentially this
involves collecting together broker trade recommendations in a systematic manner.
Many hedge funds also use alpha capture-based strategies in their portfolios, in
particular for single stocks. They are also used to a lesser extent in macro asset classes.
Alpha capture datasets can be followed by investors in a systematic manner. They can
also be used to give indications of market positioning. For example, if many brokers
are recommending the purchase of a specific bond, this suggests that positioning is
quite heavily long in that asset.

5.4.2.2.3 Forecasts and Nowcasts Forecasts have long been available for market par-
ticipants. Historically, the sources of these forecasts have usually been the research teams
of sell-side brokers, which are then aggregated by data vendors such as Bloomberg.
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FIGURE 5.4 Bloomberg nonfarm payrolls chart.

However, many forecasts now available have been crowdsourced from both the sell
side and individual investors.

Bloomberg publishes a forecast based on estimates provided by individuals on
Twitter (see Figure 5.4) for the monthly change in US nonfarm payrolls, which is one
of the most important economic data releases in a month. Later, in a case study, we
present a forecast for payrolls based on several variables, including one derived from
tweets.

Estimize crowdsources forecasts for equity earnings numbers and economic
releases. Alpha capture datasets involve collecting together trade recommendations
from sell-side brokers into an easily navigable dataset.

There are many vendors providing satellite photography, such as Orbital Insights.
This can be used by commodity traders to estimate current oil storage levels in silos or
crop yields, for example.

5.4.2.2.4 Web Content Whilst it is possible to directly scrape content from the
web, there are several datasets of specific web content which can be downloaded in
easier-to-use formats. One of the most well known of these is the Wikipedia corpus.
The entire dataset is available for downloading and analysis. Furthermore, readership
statistics are available, which can shed insights into what are hot topics. Another way
to view the popularity of topics is through Google Trends. This gives statistics on the
relative volume for specific search terms over time.

5.4.2.2.5 Social Media We noted that broadly, social media can present challenges,
in particular because of the length of messages. There are many financial data ven-
dors that offer their own structured datasets derived from Twitter, tagging messages for
their topics and sometimes with sentiment. These vendors include Dataminr, Knowsis,
Bloomberg and Thomson Reuters, amongst many others.

There are also social media networks specifically for financial applications, such
as StockTwits, which has around 1.5 million active users (Roof 2016), which is also
available in machine-readable form.
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9.9 CASE STUDIES: DIGGING DEEPER INTO MACRO TRADING WITH
BIG DATA AND ALTERNATIVE DATA

We have given many broad-based examples on various datasets and a quick summary
of how they could be used by macro traders. In this section, we dig deeper into the
subject, giving brief case studies on each of them.

5.5.1 Federal reserve: Cuemacro federal reserve sentiment index
for FX and bonds

From an intuitive perspective, it seems reasonable to expect that Federal Reserve com-
munications impact macros. In particular, we note significant volatility around Federal
Open Market Committee (FOMC) meetings. However, it is more difficult to quantify
the impact on markets. Cuemacro’s Federal Reserve sentiment index attempts to quan-
tify the communications in a systematic manner.

The raw input data consists of text extracted from Federal Reserve communica-
tions, which is of a relatively small size. It is then structured into a tabular data for-
mat. This includes speeches, statements and minutes released by the Federal Reserve.
Metadata is then derived from this text, such as sentiment scores, which are generated
using natural language processing.

These sentiment scores are aggregated into a time series to represent an index which
tracks the overall sentiment of the Federal Reserve over time. The idea isn’t so much to
create an index, which is traded at high frequency — for example, only around FOMC
announcements — instead it is designed to give a representative view of Fed sentiment
over recent weeks.

This time series can then be more easily used by traders particularly to understand
moves in FX or bond markets. In Figure 5.5, we plot 1M changes in US Treasury
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FIGURE 5.5 Fed index vs recent USD 10Y yield changes.



88 BIG DATA AND MACHINE LEARNING IN QUANTITATIVE INVESTMENT

10Y yields against the sentiment index. We note that stylistically there is a strong rela-
tionship between both the time series. Furthermore, if we regress them against each
other, the T statistic is around 2, which suggests this relationship is significant. We note
that there are of course some divergences in the index, which is intuitive, given the Fed
is not always the key driver of the US Treasury curve. One such example can be seen
in November 2017, when yields moved higher following the election of Donald Trump
rather than any specific changes in Fed policy.

9.5.2 Machine-readable news: Bloombery news to understand price
action in FX

The various newswires produce a large amount of news daily. The notion that news is
an important facet of what moves markets is not new. After all, human traders follow
news as part of their decision-making process, attempting to extract the signal from the
noise within news. However, it is extremely difficult for a human to read all this news
on a daily basis; in practice, a human will be able to read only a small snapshot. Hence,
it seems reasonable to ask whether this news reading process can be automated in some
way, to help shed insight on markets.

In our case study, which is based upon results from Amen (2018), we examine
articles from the BN newswire from 2009 to 2017. Whilst BN is typically consumed
by users of the Bloomberg Terminal, it is also available in a machine-readable form,
making it amenable as an input into systematic trading strategies.

The focus of our case study is on understanding whether this news dataset can be
used to trade developed market FX crosses. In particular, the idea is to develop a daily
trading rule rather than a high-frequency trading rule, which makes trading decisions
after a single news article.

The dataset is already structured, which helps make the analysis somewhat easier.
However, we still need to do a small amount of cleaning of the body text of each news
article, removing the start and end of each article, which have the names and contact
details of the journalists writing the article. In addition, we reduce the size of the dataset
by removing fields which we are not going to use later.

In order to make the dataset more usable, we need to prune which news articles to
examine and focus on those we think are likely to be most impactful for our asset class
(in our case, FX). Hence, the next step is to filter the dataset for articles which refer to
specific currencies. This has the added benefit of again reducing the dataset size.

Whilst filtering for the assets we are trading is the most obvious approach, there are
equally valid ways of filtering news articles. An alternative way could have been to filter
for news topic we believe are important for currencies, such as economic news for each
country. In these instances, there might well be no mention of currencies in these articles.
However, economic news has an impact on monetary policy expectations, which is a
key part of the behaviour of currencies. We might also choose to read news relating to
other factors which impact currencies, such as geopolitical news.

Natural language processing is then applied to these filtered articles to create senti-
ment scores for each filtered news article. As noted earlier, the objective of our analysis
is to assess sentiment for a large number of news articles rather than attempting to
do high-frequency trades immediately after each article. Hence, these sentiment scores
are then aggregated into daily normalized scores for each currency. Using individual



Using Alternative and Big Data to Trade Macro Assets 89

News Sentiment Score Returns
—— USDJPY Score USDJPY Rets 1W
4 4%
2 2%
0 0%
2 —2%
-4 —-4%
Jan 2017 Mar 2017 May 2017 Jul 2017 Sep 2017

FIGURE 5.6 USD/JPY Bloomberg score.

currency scores, we can then generate daily scores for currency pairs. For example, the
score for USD/JPY is simply USD score — JPY score (see Figure 5.6).

Our trading rule is based upon the short-term momentum. It is based on the premise
that in the short term, ‘good’ news about an asset is likely to impact an asset in a positive
fashion. Hence, we buy a currency pair if its news score is positive. Conversely, we sell
a currency pair if it has a negative score. Potentially, there can be other approaches
for deriving signals from news. In particular, we could have attempted to apply much
longer-term windows for assessing news and then used mean reversion-based trading
rules. The rationale is that over very long periods, if news is persistently ‘good’, the
market will adjust expectations to it. We might expect a similar effect with continually
poor news.

In Figure 5.7, we show the historical returns for a basket of developed market cur-
rencies against USD. Both transaction costs and carry are included. We plot the returns
versus a generic trend-following model in FX. We have chosen trend, given it is typi-
cally one of the strategies that is used by traders to trade FX. Amen (2013) discusses
how trend- and carry-based strategies can be used to explain a large amount of FX fund
returns. Hence, generic trend and carry strategies can be considered as proxies for beta
in FX.
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FIGURE 8.7 News basket trading returns.
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We find that our news-based strategy outperforms trend on a risk adjusted basis
over this period. Furthermore, there is little correlation between the two strategies. This
suggests a news-basis strategy can be used to diversify the returns of a typical FX fund
manager.

Whilst it is possible to extract a directional signal from gauging the sentiment of
machine-readable news, the volume of news can also be useful in itself for other rea-
sons. In Figure 5.8, we plot the T statistics of the linear regressions between implied
volatilities in various crosses alongside news volume related to those currencies. We see
that there is very often a statistically significant positive correlation between implied
volatility and news volume. This suggests that we can use news volume as an input to
model implied volatility.

There are many further results in Amen (2018). The paper also discusses how
news before European Central Bank (ECB) and FOMC meetings can be used to
estimate the behaviour of FX volatility around these data points. The volume of
news linked to FOMC and ECB statements have a strong impact on short-term FX
volatility.

5.5.3 Weh traffic data: Using investopedia’s anxiety index
to understand market sentiment

Investopedia is a financial education website. Can we glean anything from the top-
ics users search for on Investopedia? The principle behind its Anxiety Index is to track
search terms made by users, which results in Investopedia page views. It focuses on those
search terms related to investor anxiety, such as ‘short selling’. In total there are 12 dif-
ferent URLs referenced in the final index, which typically have high page view counts
(Kenton 2017). In Figure 5.9, we plot the Investopedia Anxiety Index (IAI) against VIX,
which is often referred to as the “Wall Street Fear Gauge’. We note that when VIX rises,
indicating options are becoming more expensive, we see a rise in investor anxiety as
indicated by TAI Conversely, falls in VIX are also generally accompanied by declines
in investor anxiety. These observations seem intuitive, namely that option prices are
related to investor anxiety.
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FIGURE 5.10 Trading S&P 500 using IAI based rule vs VIX and long only.

Amen (2016) discusses how IAI can be used to create an active trading rule on the
S&P 500. In Figure 5.10, we present the returns from this paper for an active trading
rule for S&P 500 futures based upon TAI and compare it to one using VIX, and also
long only the S&P 500. Essentially, when IAI is high, we are flat S&P 500 and long
otherwise. We apply a similar rule for VIX. We find that risk adjusted returns in our
sample are highest for the IAI filtered strategy, improving upon those from the VIX
filtered strategy. The lowest risk adjusted returns are from a long-only strategy.

5.9.4 Volatility data: Forecasting FX spot behaviour around scheduled
events with a focus on BREXIT

As a dataset, volatility data is not especially unusual; after all, FX options have been
trading for several decades. However, perhaps less common is the use of volatility data
to inform the behaviour of spot around scheduled data events. In particular, we can
infer from the volatility surface before an event the implied distribution of spot. Clark
and Amen (2017) discuss how the GBP/USD volatility surface could be used to infer
distributions of spot over the subsequent Brexit vote on 23 June 2016.

They originally estimated, based on their visual observation of implied probabil-
ity densities available up to 13 June 2016, extracted from GBP/USD implied volatility
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surface, that the market expected that a vote to leave could result in a move in the
GBP/USD exchange rate from 1.4390 (spot reference on 10 June 2016) down to a range
in 1.10-1.30, i.e. a 10-25% decline — very probably with highly volatile price action. In
Figure 5.11, we present the implied probability distributions of GBP/USD on a number
of dates preceding the Brexit vote.

They also constructed a mixture model related to two scenarios for the GBP/USD
exchange rate after the referendum vote, one scenario for ‘remain’ and one for ‘leave’.
Calibrating this model to four months of market data, from 24 February to 22 June
2016, we find that a ‘leave’ vote was associated with a predicted devaluation of the
British pound to approximately 1.37 USD per GBP, a 4.5% devaluation, and quite
consistent with the observed post-referendum exchange rate move down from 1.4877
to 1.3622.

9.6 CONCLUSION

We have discussed the general characteristics of big data, namely the 4Vs. In addition,
we have talked about the differences between structured and unstructured data, and
how most of the data generated is in an unstructured form.

We noted how the data being generated is growing rapidly and is forecast to increase
further. Large amounts of data are collected by companies as part of their everyday
business, so-called ‘exhaust data’. These datasets can be monetized by selling to traders.

Machine learning can be used to find patterns in large datasets. We wrote about the
various forms of machine learning and also where they could be used within the trading
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process. We then spent time discussing the various types of big data and alternative data,
which could be relevant for financial market participants.

Lastly, we dug into more detail, presenting several case studies for macro-based
traders using alternative datasets, including the use of machine-readable news and web
traffic data, as well as a novel technique on FX options data to infer the subsequent
distribution of price action in spot.
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Big Is Beautiful: How Email Receipt
Data Gan Help Predict Company Sales

Giuliano De Rossi, Jakub Kolodziej and Gurvinder Brar

6.1 INTRODUCTION

This chapter describes our experience working on a big data project. In this chapter
our goal is twofold: 1. To assess the potential of electronic receipt data as a source
of information, particularly to predict company sales in real time. 2. To document the
challenges of dealing with such a large dataset and the solutions we adopted.

The dataset we employ in the analysis consists of a vast table that details the pur-
chases made by a large sample of US consumers on the online platforms of a number
of companies, including Amazon, Expedia and Domino’s Pizza.

Consumer data organized in large panels is not a new phenomenon in economics
and finance. For example, the University of Michigan’s Panel Study of Income Dynamics
(PSID) has followed 18 000 individuals (and their descendants) since 1968 by collecting
responses to questionnaires at regular time intervals. The Quandl database, however, is
very different from a ‘longitudinal panel’ in two respects.

First, the data is not collected with a view to building a representative sample.
The individuals that opt in to the data sharing agreement with Quandl typically do so
when they register to use the email productivity tools they have obtained from Quandl’s
partners. As a result, we know very little about the demographics, income and other
characteristics of the sample. This may well introduce a bias if the sample is used to
draw inferences about the overall population.

Second, the size of our sample and level of detail captured are completely different.
Whereas the largest longitudinal panel can rely on around 25 000 individuals and bien-
nial updates, our big data sample currently has more than 3 million active users that
are sampled at weekly frequency. Longitudinal panels typically ask high-level questions
about the amount spent by each family on food, leisure and other categories of expendi-
ture. With big data it is possible to obtain the full detail on a product-by-product basis
of the goods and services purchased by each user. Because the data is based on actual

Big Data and Machine Learning in Quantitative Investment, First Edition.
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© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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FIGUREB.1 Domino’s Pizza sales peak at weekends. ..
Source: Macquarie Research, Quandl, September 2017.

transactions, it is free from the potential inaccuracies and distortions typically observed
in self-reported data. It is worth pointing out, however, that the history is very lim-
ited, i.e. unlike the cross-sectional dimension, the length of the time series is currently
modest.

One of the main goals of our statistical analysis will be to mitigate the potential
bias while exploiting the sheer size of the sample.

Examples of the type of analytics that can be produced from the Quandl database
are given in Figures 6.1-6.5. Figure 6.1 displays the breakdown by day of the week
of Domino’s Pizza orders available from our sample. The weekend is clearly the most
popular time for pizza lovers. Figure 6.2 focuses on the time of the day when orders are
placed, showing a distinct peak at lunchtime (between 12 p.m. and 2 p.m.) and a notice-
able reduction in booking activity at night. The picture also shows that we are able to
break down sales by pizza size, suggesting that the medium size dominates consistently.
Figure 6.3 plots the frequency of the top 30 ingredients we identified from the orders
placed in our sample. To our surprise, we found that the most requested ingredient by
far (after cheese and tomato) is pepperoni. Bacon also turns out to be unexpectedly
popular in the data.

The time pattern is completely different for an e-commerce firm like Amazon.
Figure 6.4 shows that the number of Amazon orders placed by users in our sample
declines steadily from Monday until Saturday. If we plot the intraday pattern for each
day of the week (Figure 6.5) we can see that Sunday is consistently the quietest day
of the week for Amazon e-commerce until about 10a.m. Later in the day, Sunday
orders grow faster than orders placed on weekdays and continue to grow even in the
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afternoon when other days display a decline. By 10 p.m. Sunday ranks as the third

busiest day of the week.

These examples illustrate some of the important features of the Quandl database.
The granularity of the information, down to the level of individual products, is remark-
able. In addition, the fact that orders are collected with timestamps ensures that data
trends can be captured at higher frequencies than was previously possible and in real
time. It is also worth mentioning that although we do not pursue this idea here, it is
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possible to use the data to infer data patterns across different companies. An example
would be to check whether customers tend to substitute Domino’s products with those
of its competitors or tend to spread their spending on restaurants in roughly constant
proportions across alternative providers. It would also be possible to cluster sample par-
ticipants based on their purchases (e.g. big spenders versus small spenders) and analyze
any difference in data patterns between the clusters, which may identify early adopters.

6.2 QUANDL'S EMAIL RECEIPTS DATABASE

6.2.1 Processiny electronic receipts

We start by describing the structure of the Quandl dataset which will be analyzed in the
report. The dataset relies on a large sample of US consumers who agreed to share infor-
mation on their online purchases with Quandl’s partners. Typically, they opt in to this
data sharing agreement when installing an email productivity enhancement application.

Our data provider is thus able to scan on a weekly basis the inboxes of all active
sample participants in order to identify any electronic receipts they may have received
from a number of participating online merchants (e.g. Amazon, Walmart, H&M).
Figure 6.6 illustrates the process: the electronic receipt (shown on the left-hand side)
is scanned and transformed into a series of records, one for each individual product
purchased. In our example, three distinct products were purchased but the total
number of items is equal to four because the order included two units of the line
tracking sensor. In the database, this is represented by three rows as shown on the
right-hand side of Figure 6.6. The data is delivered on Tuesdays with an eight-day lag
(i.e. it covers the period until the previous Monday).

Needless to say, each user is anonymized in the sense that we only observe a per-
manent id and all information on names, email addresses and payment methods is
discarded. The user id can be used to query a separate table which contains additional
information such as zip code, dates when the user entered and exited the sample, the
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FIGURE 6.6 How an email receipt is turned into purchase records.
Source: Macquarie Research, Quandl, September 2017. For illustrative purposes only.
The actual Quandl data table comprises 50 fields, most of which are not shown in the figure.
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FIGURE 6.7 The structure of Quandl’s data offering.
Source: Quandl, September 2017.

date of his or her last purchase and so on. It is worth emphasizing that the user id is
unique and permanent and therefore it is possible to reconstruct the purchase history of
each individual user across different platforms (e.g. items ordered on Amazon, Tiffany
and Walmart) and over time.

The table in Figure 6.6 displays a small subset of the fields that are actually provided
by Quandl. These include permanent identifiers for the order, the product and the user
each record refers to. We are also given a description of each product, quantity, price
and many potentially useful additional fields such as tax, delivery cost, discounts and
so on. Some of the fields refer to a specific product (e.g. price, description) while others
like shipping costs and timestamp refer to the order as a whole.

The e-commerce receipts database we used for our analysis is one of the alternative
data products offered by Quandl (Figure 6.7). The product range covers, in addition to
consumer data, data sourced from IoT devices, agricultural data from sensors in crop
and fields, data on logistics and construction activity.

Each time a new user joins the sample, Quandl’s partners scan their inbox looking
for receipts that are still available in saved emails. For example, if a user joins in Septem-
ber 2017 but her email account retains Expedia receipts going back to September 2007,
then those 10 years of Expedia bookings will be immediately added to the database. As
a result, the database does contain a small number of transactions that occurred before
the data collection exercise began. While there is no obvious reason to believe that this
backfilling approach introduces a bias, it is true that backfilled observations would not
have been available had we used the data in real time. As we detail below, for this rea-
son we decide to concentrate on the transactions that were recorded while the user was
actually part of the sample.

6.2.2 The sample

Figure 6.8 displays the total number of users that were active in the sample over time,
i.e. those whose inbox was accessible to the tools deployed by Quandl’s partners. As
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FIGURE 6.8 Sample size over time.
Source: Macquarie Research, Quandl, September 2017.

mentioned above, new users join the sample when individuals opt in to the data sharing
agreement while some of the existing users drop off when their inboxes are no longer
accessible. The data shows a sharp drop in the sample size at the end of 2015 when one
of Quand!’s partners withdrew. For the remainder of the sample period, size has grown
consistently, with a notable acceleration in mid-2016. The total number of unique users
that make up the database is close to 4.7 million.

For our analysis we have access to data on the receipts issued by three companies:
Amazon, Domino’s Pizza and Expedia. Moreover, the dataset available to us ends in
April 2017.

We mentioned that all users in our sample are located in the US. Figure 6.9 is
a graphical illustration of their distribution (using the delivery postcode if available,
otherwise the billing postcode) on the US territory as of April 2017. Darker colours
correspond to zip code areas with larger numbers of users. The map shows a strong
concentration around large urban areas around cities like Los Angeles, San Francisco,
Houston, and New York.

In order to put these figures in context, we display in Figure 6.10 the number of
users as a percentage of the population of each US state (excluding Alaska and Hawaii)
as of April 2017. Overall, the database tracked roughly 2.5 million users while the US
population was approximately 325 million (a 0.77% ratio). Most states display a cover-
age ratio around that value, which indicates that our coverage is not concentrated on a
few geographic areas. The extremes are Delaware (highest coverage) and New Mexico
(lowest coverage).

By inspecting a number of Amazon transactions we were able to conclude that the
majority of the users appear to be individuals or families. In a few cases, however, a
user seemed to place orders on behalf of a much larger group. In one case we processed
a purchase of 500 microcontrollers (with as many cases and electric adaptors) at the
same time, which suggested that the order was placed on behalf of a school.
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Number of active users

1 100 10,000

FIGURE 6.9 Geographic distribution as of April 2017.
Source: Macquarie Research, Quandl, September 2017.

Users as % of population

0.50% 0.75% 1.00% 1.25%

FIGURE .10 Coverage of US population on a state-by-state basis as of April 2017.
Source: Macquarie Research, Quandl, September 2017.
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FIGURE .11 How long does a user typically spend in our sample?
Source: Macquarie Research, Quandl, September 2017.

How frequently do individual users enter and exit the sample? Figure 6.11 is the
histogram of the time spent in the sample by each of the 4.7 m unique users. We included
the ones that are currently active (e.g. a user who joined on 1 January 2017 shows
up as having a duration of three months as of 1 April regardless of whether he left
the sample after 1 April zor not). The figure shows that the majority of users spend
less than 12 months in the sample. This is not surprising given that the last 18 months
have seen a surge in the number of participants. There seems to be a peak at exactly
12 months, which may be related to the length of a trial period or initial subscription to
the applications provided by Quandl’s partners. A significant proportion of users who
joined the sample three years ago or earlier remain active while very few have been
available for more than five years.

In an attempt to gauge the quality of the data, we queried the database to identify
the largest transactions that occurred on the Amazon e-commerce platform over the
sample period (Figure 6.12). Most of the items were sold by a third party rather than
directly by Amazon. Of the six items in the table, three seem genuine data points: a
rare poster for a movie that was never released, a luxury watch and a rare coin. The
remaining products do seem suspicious. Nevertheless, the fact that very few of the items
overall purport to have prices above US$100 000 suggests that data errors caused by
poor parsing of the email receipts are unlikely to be an issue.

Another simple check consists of aggregating the data and checking the total pur-
chases made by Quandl’s sample participants against the patterns we expect to see in
retail e-commerce. It is well known that Amazon sales display a strong seasonal pat-
tern. By using accounting data, we can detect a peak in Q4 followed by a trough in
Q2 (Figure 6.13). With our big data sample we can aggregate the purchases made
on Amazon at a much higher frequency. In Figure 6.14 we compute average weekly
sales for each of the 52 weeks of the year and rescale them so that the average value
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Description Category Price, USD
1907 Saint Gaudens Twenty Dollar PR69 PCGS Rare coin 4,194,800.00

Office of the Holy Spirit: A most necessary study for all

Book 4 .
churches by Ulrich Rische Beeson o0 ,000,003.99

FREAKS 1932 TOD BROWNING 27 x 41 ONE SHEET

Movi t 850,000.00
CLASSIC HORROR EXTREMELY RARE!! ovie poster

A Really Expensive Rock ? 500,004.99
Samsung SmartCam HD Pro 1080p Full-HD Wi-Fi Camera Wi-fi camera 360,006.24
Audemars Piguet Jules Grande Complication Watch 275,504.49

FIGURE 6.12 Six of the most expensive purchases made on Amazon.com.
Source: Macquarie Research, Quandl, September 2017.
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FIGURE .13 Seasonal pattern in fundamental data: Amazon’s quarterly sales.
Source: Macquarie Research, Factset, September 2017. The chart is plotted on a log scale.
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FIGURE .14 Seasonal patterns in big data: Amazon’s weekly sales. The sales index is computed
by normalizing the weekly average amount spent on Amazon.com by each user so that the
annual average is equal to one.

Source: Macquarie Research, Quandl, September 2017.
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of the sales index is equal to one. The data clearly shows significant peaks that corre-
spond to Amazon’s prime days and Black Friday, which is traditionally considered the
beginning of the Christmas shopping period. The peaks that characterize sales growth
in Q4 (Figure 6.13) are concentrated on the weeks between Black Friday and the end
of December.

We mentioned in the introduction that deriving financial forecasts from big data is
not always straightforward. A good example is the case of Expedia, one of the com-
panies covered by Quandl’s email receipts database. As the notes to Expedia’s income
statement explain, the company does not recognize the total value of the services booked
by users of its platform as revenue. Instead, revenues are driven by the booking fees
charged by Expedia which cannot be directly inferred from the receipts that are sent to
its customers.

Even if the fees were calculated by applying a fixed percentage on the cost of the
booking, we would not be able to derive an estimate of total sales from our data. Each
of the business lines is likely to charge a different fee and the breakdown of sales by
business segment changes significantly over time, as Expedia’s receipt data clearly shows
(Figure 6.15). For example, flights tend to command a lower margin compared with
lodging.

Thus it is crucial to incorporate deep fundamental insights in the analysis in order
to fully exploit the potential of big data. In this case, we would have to start from
an estimate of the typical fee charged by the company for each business line (flights,
lodging, car rental). We would then be able to forecast, using our big data sample, the

100%
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S J J
¥ b‘ "‘ X \‘3 \(’3 \°3

> > >
, o O & <
S 0"% 0"% 0"% N 0" T SR 0" 0" 6‘6 0’0
Vv v v v v Vv v v v v v v v v v Vv v

75%

50% -

Gross bookings

Fiscal period
% of gross bookings
M Car rental Flights M Lodging

FIGURE .15 Expedia’s big data bookings split has changed significantly over the last
three years.
Source: Macquarie Research, Quandl, September 2017.
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total booked on a segment-by-segment basis and aggregate up to obtain an estimate of
headline sales.

6.3 THE CHALLENGES OF WORKING WITH BIG DATA

The data we use in the analysis, which covers only three listed companies, occupies over
80 GB when stored in flat files. It includes 144.1 million purchases (rows) of 4.7 million
unique users. As a consequence, the sheer size of our dataset (even though we have access
to only three of the names covered by the Quandl database) makes it difficult to run
even the simplest queries with standard database tools. Faced with this technological
challenge, we experimented with alternative solutions to crunch the data in a reasonable
timeframe.

Amazon Redshift turned out to be our preferred solution as it is optimized to do
analytical processing using a simple syntax (only a few modifications of our standard
SQL queries were necessary) and it offers, in our setup, a considerable speedup versus
MySQL (around 10 times). Redshift stores database table information in a compressed
form by column rather than by row and this reduces the number of disk Input/Output
requests and the amount of data load from disk, particularly when dealing with a large
number of columns as in our case.

Loading less data into memory enables Redshift to perform more in-memory pro-
cessing when executing queries. In addition, the Redshift query engine is optimized to
run queries on multiple computing nodes in parallel and, to boost speed further, the
fully optimized code is sent to computing nodes in the compiled format.

6.4 PREDICTING COMPANY SALES

One of the most important indicators followed by equity investors and analysts is the
growth in a company’s revenues. As a consequence, sales surprises are known to trigger
stock price moves, and analyst-momentum signals (i.e. revisions to sales forecasts) have
been found to predict stock returns.

6.4.1 Summary of our approach

The purpose of this section is to convey the rationale behind our forecasting
method. The setup is illustrated in Figure 6.16: our task is to predict sales for quarter
¢ based on the guidance issued by management and the information available in our
email receipts dataset.

As Figure 6.16 shows, the actual revenue figure for fiscal quarter ¢ is available
after the end of quarter #, typically well into quarter ¢+ 1. An advantage of working
with the receipts dataset is that we can generate a prediction immediately after the end
of the quarter because all the sample information is updated weekly. In other words, all
the information about purchases made during quarter ¢ by the users that make up our
sample becomes available a few days after the end of the quarter.

In addition, we can exploit the frequent updates to generate real-time predictions
during quarter ¢ as new data on weekly purchases becomes available. We explain our
methodology in more detail at the end of this section.
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Q.1 results announced; Q, results announced;
guidance for Q; issued guidance for Qy, 1 issued

|—FI|IIII| |

Weekly receipts updates

_ AN J
hd Y

Qt Qt+1

FIGURE .16 A timeline for quarterly sales forecasts.
Source: Macquarie Research, September 2017.

We exploit two sources of information: management guidance and email receipts.
The former consists of a range of values (predicted revenues) which can be transformed
into a range of growth rates on the latest reported quarter.! We can start by measuring
the increase in purchases for a group of users who were part of the sample over both
quarters. This rate of growth can then be compared with the range implied by guidance
in order to predict whether sales will come in at the lower or upper side of the range
indicated by management. If the in-sample growth rate falls outside the guidance range,
then we can simply assume that sales will be either at the bottom or at the top of the
range.

For example, during the third quarter of 2016 Amazon’s guidance on sales was
between US$31 billion and US$33.5 billion. This corresponds to a growth rate between
2% and 10.2% on the second quarter, when revenues totalled US$30.4 billion. If the
sample of users monitored by Quandl spent 3.6% more in Q3 than in Q2, then we
would take 3.6% as our estimate, close to the bottom of the range. If, however, the
growth rate in our sample were 12.5% (outside the guidance range), then we would
take this result to indicate that sales are likely to be at the top of the range indicated by
management. Hence we would use 10.2% as our estimate.

The rest of this section shows that this simple approach can be justified in a formal
statistical framework. In particular, we argue that a natural way to combine the two
sources of information is to adopt a Bayesian approach and treat the guidance as prior
information. We then process the data in order to characterize the posterior distribution
of sales growth (Figure 6.17), i.e. the distribution of the growth rate given the data.

As Figure 6.17 suggests, the prior distribution merely exploits the range implicit in
the guidance, e.g. a growth rate between 2% and 10.2%. The mode of the posterior is
the hypothetical in-sample growth rate of 3.6% used in our example above.

6.4.2 A Bayesian approach

The goal is to estimate the change in sales between period 1 and period 2 based on two
samples. Formally, we assume that two sets of observations are available: {y,, ..., y1,}

!The framework described in this section mimics the process whereby companies like Amazon
provide guidance on their quarterly revenues. It can be adapted to other cases, e.g. guidance
provided as a single expected value (instead of a range) or at irregularly spaced intervals.
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Prior Posterior
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FIGURE .17 Bayesian estimation of quarterly revenue growth: An example. The chart plots the
densities of the quantity denoted ¢, — 1 in the model. The prior distribution reflects
management guidance while the posterior incorporates the information available from the email
receipts database.

Source: Macquarie Research, September 2017.

and {y,1, ..., ¥3,,)- Let us for the moment leave aside two complications that will be
dealt with later in this section:

1. Our sample may introduce some selection bias because the ‘Quandl population’ is
different from the overall population.
2. The population grows over time.

We assume that each sample is drawn from a large population at two points in
time. The individuals in the population remain the same: some will spend zero but no
new users join and no user drops out. We also assume that, given the parameters of the
distribution at each point in time, the amounts spent in the two periods are independent,
i.e. the shape of the distribution summarizes all the relevant information about growth
in consumption.

Each sample is assumed to be drawn from a negative exponential distribution with
parameter A;:

Py | A) = Ae (6.1)

The exponential distribution (Figure 6.18) is a simple device to model a positive
random variable with a heavily skewed distribution. In practice, a sample of consumer
purchases will be characterized by a long right tail which reflects a small number of
users spending very large amounts during the period.?

Given the parameters A, and 4,, the two samples are assumed to be drawn indepen-
dently. This is equivalent to assuming that the change in mean parameter summarizes
all the information about the changes in the population between period 1 and period 2.

The mean of each population is 1/4;, a property of the exponential distribution.

2The exponential distribution is typically used to model waiting times. However, it has also been
applied to problems that require a highly skewed distribution, like modelling rainfall records
(Madi and Ragab, 2007). In economics, it has often been applied to modelling income and wealth
distributions, e.g. in Dragulescu and Yakovenko (2001).
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FIGURE .18 Negative exponential distribution.
Source: Macquarie Research, September 2017.

6.4.2.1 Prior Distribution The main quantity of interest is the ratio of means j—l, which
2
captures the growth in the mean amount purchased from period 1 to period 2. We define

¢, = A1/, and impose a uniform prior as follows:3
&1~ Uy, p) (6.2)

where u and 1 are the bounds of the guidance range, expressed as (one plus) the growth
rates on a quarter-on-quarter basis. We stress that the prior is uninformative in the sense
that we do not impose any other structure on the model within the range of values
indicated by management. This was illustrated in Figure 6.17.

The derivation, available from the authors upon request, starts by making a com-
mon choice for the prior distribution of the parameter A, the Gamma distribution. This
is our assumption for A;: Ay~Gamma(a, §). We then impose a prior on the mean of the
population in period 2 so as to take into account the range of growth rates implied by
the guidance on the stock:

where the quantity x4/, can be viewed as the mean of period 1 multiplied by a growth
rate equal to the lower bound of guidance range.

As an alternative, we also considered a Gaussian prior and the improper prior of
Datta and Ghosh (1996) for ¢,. Details can be obtained from the authors upon request.

6.4.2.2 Posterior Distribution This section characterizes the distribution of the parame-
ter of interest, i.e. the growth rate in average spending, given the evidence in our receipts
dataset. In deriving the posterior distribution we use our assumptions on the priors
(Eq. (6.2)) (Gamma and uniform) and the likelihood (Eq. (6.1)) (exponential) to work
out the distribution of the parameter ¢, given the data.

3We shall refer to this quantity as growth even though the usual measure of growth rate is, obvi-
ously, ¢, — 1.
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It can be shown that

o )—(a+2n)

p(py | data) (%1)“”’(1_’_? fu<¢<u
0

otherwise

where s = Y v,/(B+ X¥1;)- The posterior distribution has, within the interval u <
¢, <1, a well-known expression that belongs to the family of Pearson distributions
and can be rewritten as a transformation of the F distribution.* Hence its mode can be
calculated explicitly while its mean and median can be computed with very little effort
by integrating the pdf numerically. The posterior is illustrated on the right-hand side of
Figure 6.17.

In practice, we can use the mode of the posterior distribution as an estimate of
the growth in sales. We start by building estimators for the mean expenditure in each
period:

a+n ~

2 _ _ n
1= h=c—
B+ Xy 22

It is worth noting that 1, is just the mean of the posterior distribution of A, while 4,

is the inverse of the sample average in period 2. Then the maximum a posteriori (MAP)
estimator of the growth rate is given by

lf;{l/;l\l <E

u
binar =41/ % ifﬁfa/i\z <u (6.3)
H ifa /2 >n

Hence we can estimate the rate of growth by taking the ratio of the parameter esti-
mates in the two periods. If the estimate falls outside the range implicit in the guidance,
then we take either the lower or the upper bound as our estimate. It is worth noting
that the effect of the prior distribution of 4; on the estimate tends to disappear as the
sample size increases, i.e. the parameters « and g become irrelevant.

6.4.2.3 Is our Sample Representative? In this section we introduce a simple adjustment
that deals with the potential distortions due to sampling error. The population that is
relevant for the Quandl dataset may be different in nature from the broader population
of global customers and potential customers. Moreover, as detailed in the next section
for the Amazon case study, the e-commerce part of the business may not allow us to
draw conclusions on the sales growth of the whole business.

Quarterly seasonal effects are likely to be a problem because the different parts of
the business may have very different patterns. E-commerce, in particular, may display
more pronounced peaks in December and during the periods of seasonal sales, which
would lead us to overestimate the impact of those effects. Also, we most likely capture a

“More details can be found in Johnson et al. (1995).
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subset of the customers which tends to be younger and use e-commerce platforms more
extensively than the rest of the population.

A simple and pragmatic approach is to regard the growth rate measured from our
sample as a signal that is related to the actual variable of interest, i.e. the growth rate
over the whole population. Formally we could write this as

g =f()+e

where g, is the growth rate in sales quarter-on-quarter. We can then use the data to
fit a suitable function f, for example by using a nonparametric approach like kernel
regression. In our case, however, due to the extremely short length of our historical
sample, we prefer to focus on a linear model that takes seasonality into account:

& =0t +e

where B is a 4 x 1 vector of quarterly slopes and f, a 4 x 1 vector that selects the correct
slope according to the quarter indicated by the time index ¢, i.e. £, = (fi,» o f30s f42)
and

1 ift=4k+q forsomek €N
0 otherwise

fqt =
The product f'f, is a scaling factor that changes over time because of the seasonal
effects. The coefficient vector f can be estimated from the data by regression. In the
empirical analysis we also consider a simple variant where all components of § are
equal.
Once the model has been estimated, it is possible to generate a bias-corrected ver-
sion of the big data forecast ‘2’\1MAP:

bronap = P f, Drovar (6.4)

However, it seems important to allow for time variation of the seasonal compo-
nents themselves. For example, if the relative importance of the different businesses of
a company changes, then we can expect the optimal scaling coefficient to change as
well. A simple way to deal with this potential issue is to treat the vector of slopes f as
a (slowly) time-varying coefficient. A popular model’® that can be used in this context
is a state space model that treats the coefficient vector as a random walk:

8 = ﬂt,ft o +g
Br=Pb_1+m

where ¢, and 7, are disturbances with zero mean and Var(e,) = o2, Var(n,) = o71. The
model can be initialised with the prior f,~N(1, xI) and estimated via the Kalman filter

STime-varying coefficient models of this kind have a long history in finance. Adrian and Franzoni
(2009) is an example.
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and smoother (KFS). The parameters 62, o7 and « can be calibrated on the data. We do
not pursue this idea further due to the limited duration of our sample.

Another potential source of bias is represented by population growth. Our sample
does include any users who are active (i.e. have opted into the Quandl database and
are reachable) but choose not to make any purchases on the e-commerce platform. This
should capture one aspect of the growth in users at the general population level, i.e. new
customers that start using the platform. However, changes in the size and demographic
composition of the US population driven by births, deaths and migration are also likely
to affect the growth in e-commerce sales. For example, a strong inflow of migrants might
increase sales. Similarly, a younger population may be more inclined to shop online.

In our analysis we keep the population constant deliberately when computing
growth rates so that our results do not depend spuriously on the growth in app users
that opt in to share their data with Quandl. Given that most of the revenues accrue in
developed countries with low population growth,® this effect seems negligible and we
decide to ignore it. An alternative approach would be to model user growth explicitly
and add it to the predicted growth in sales obtained from the sample.

6.5 REAL-TIME PREDICTIONS

6.5.1 Our structural time series model

This section deals with the problem of generating forecasts of the quarterly sales num-
bers in real time, i.e. updating the current forecast as a new weekly update becomes
available during the quarter. To avoid unnecessarily complicating the notation, we
somewhat artificially divide each quarter into 13 periods which will be referred to as
‘weeks’. In practice, we allow for a longer or a shorter 13th ‘week’ when the quarter
does not contain exactly 91 days. In leap years we always assume that week 9 of the
first quarter has eight days. The full description of our naming convention is given in
Figure 6.19.

Taking Amazon as an example, Figure 6.20 shows that the purchases captured in
our dataset display strong seasonality patterns within each quarter. We plotted an index
of weekly sales that is normalized to have unit average over each quarter (unlike in
Figure 6.14, where we imposed unit average for the whole calendar year). It is therefore
necessary to model seasonality in order to generate useful forecasts based on weekly
data. For example, if we simply looked at the cumulative sales for the first half of Q4
we might end up underestimating growth because most of the purchases are typically
made in December.

To keep notation simple, we will distinguish between quarterly sales Y, and weekly
sales observed during quarter ¢, Y, ,, where 7 identifies a specific week and therefore
1 <n<13. By construction Z}til Y., =Y,

Our weekly time series model can be written as

Y,, = Y, +AM,,) +u,,, n=1,..,13

¢As we argued above, more than half of the sales are booked in the US, where the population
grows at a rate of less than 0.25% per quarter.
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FIGURE .19 Dividing each quarter into 13 weeks.
Source: Macquarie Research, September 2017.

Sales index

Week
— 2014 — 2015 = 2016 2017

FIGURE .20 Seasonal patterns in big data: Amazon’s weekly sales. The sales index is computed
by normalizing the weekly average amount spent on Amazon.com by each user so that the
quarterly average is equal to one. The quantity plotted is Y, /Y, (multiplied by 13, the number
of weeks in a quarter) in the notation used in the text.

Source: Macquarie Research, Quandl, September 2017.

where I, ,, is an irregular component that captures, e.g. the effect of Amazon’s prime
days on sales, A, is the seasonal component and M, ,, is a multiplier that captures the
effect of weeks with irregular duration (e.g. during the six-day week at the end of Q1
M, ,, = 6/7). The term u, is an error with mean zero. The coefficients change according
to the quarter we are modelling (i.e. the first week of Q1 is different from the first week
of Q4) but we only use the subscript # to keep the notation simple.

It is important to note that the seasonal component A, is assumed to be con-
stant across different years, while both the date of prime day and the multiplier M
change over time (the latter because of leap years). To close the model we impose the
restriction

13
Yy, +AM,,) =1

t=1
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so that
13
E <Z Yt‘n> = E(Y,)
=1
and E(Y) can be viewed as the expected total quarterly sales.

6.5.2 Estimation and prediction

Because of the multiplicative nature of the model, we can estimate the parameters
directly from the series of normalized sales illustrated in Figure 6.20, i.e. we can work
with the ratio Y,,/Y,. The effect of prime day, I,, can be estimated by averaging the
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FIGURE 6.21 Estimated seasonal component, Q1.
Source: Macquarie Research, Quandl, September 2017.
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FIGURE .22 Estimated seasonal component, Q2.
Source: Macquarie Research, Quandl, September 2017.



Big Is Beautiful: How Email Receipt Data Can Help Predict Company Sales 115

difference between normalized sales in a prime day week and normalized sales for the
same week when no prime day takes place.

The multiplier M, is known given the number of days in a year.

In order to estimate the seasonal component A,, we fit a cubic spline to the ratio
Y, /Y, (after subtracting the irregular component) using the KFS.” The estimates for
Amazon are plotted in Figures 6.21-6.24. It is clear from the picture that seasonal
effects are much more pronounced in the last quarter.
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FIGURE 6.23 Estimated seasonal component, Q3.
Source: Macquarie Research, Quandl, September 2017.
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FIGURE 6.24 Estimated seasonal component, Q4.
Source: Macquarie Research, Quandl, September 2017.

7More details can be found in Wahba (1978).
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Assuming that we have observed the weekly purchases of a sample of customers for
s < 13 weeks in the new quarter, we can then predict the total for the whole quarter as

s s -1
/Y\t|s = z Yt,n(Z(It,n + Kth,n)>
n=1

n=1

The quarter-on-quarter growth rate can then be predicted using the methodology
introduced in the previous section.

6.6 A CASE STUDY: http://amazon.com SALES

6.6.1 Background

In this section we apply the methodology discussed above to the problem of predict-
ing the quarterly revenues of Amazon. In the Quandl database, Amazon is by far the
company with the largest number of observations. In addition, it is a good example of
a company with a complex structure that requires a combination of quantitative and
fundamental insights.

Amazon reports a quarterly split of sales by business segments, which has changed
over time. In Figure 6.25 we plot the relative importance of two broad categories:
e-commerce and other sales (which includes Amazon Web Services, AWS). Because of
the nature of our dataset, by concentrating on email receipts, we will only be able to
investigate the trends in US e-commerce sales. Figure 6.25 suggests that revenue from
e-commerce represent a large portion of the total, albeit a shrinking one due to the fast
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FIGURE 6.25 Sales breakdown per type, Amazon.
Source: Bloomberg, September 2017.
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FIGURE .26 Sales breakdown per region, Amazon.
Source: Bloomberg, September 2017.

growth of AWS.® Similarly, we can see from Figure 6.26 that sales to North American
customers (the closest we can get to US sales) represent more than half of the total.

We are not, however, in a position to conclude that focusing on US e-commerce
will yield unbiased predictions. First, as we argued in the previous section, our sample
may still be characterized by significant selection bias as we have no way to ascertain
whether the Quandl sample is representative of the US population.

Second, even though both the proportion of sales that are not booked through the
e-commerce platform and the proportion of sales that happen outside the US are small,
these segments may have very different growth rates and ultimately cause our prediction
to be biased.

To address this potential issue we decompose sales growth (quarter-on-quarter) into
regional contributions plus AWS (Figures 6.27-6.30). In each figure the total height of
the bar represents the growth rate of Amazon’s revenues for the corresponding quar-
ter. The individual components are obtained by multiplying the relative weight of each
segment by its quarterly growth rate.

The results suggest that the contribution of AWS to headline sales growth is still
marginal, particularly in Q1 and Q4. However, it is becoming increasingly important
for predictions in Q2 and Q3. North America and the rest of the world both contribute
significantly to the overall growth rate but in most cases the former accounts for a larger
share.

The conclusion is that focusing on the US is unlikely to result in a strong bias
but ignoring the AWS segment (which has recently grown at much faster rates than
e-commerce) seems increasingly dangerous. The decomposition by business segment
(omitted here in order to save space) yields similar results.

$E-commerce sales after 2016 are defined as the sum of the following segments: ‘Retail products’,
‘Retail third-party seller services’ and ‘Retail subscription services’.
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FIGURE 6.27 Contributions to sales growth in Q1.
Source: Macquarie Research, Bloomberg, September 2017.
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FIGURE 6.28 Contributions to sales growth in Q2.
Source: Macquarie Research, Bloomberg, September 2017.

6.6.2 Results

We now turn to the problem of forecasting the headline sales number. Before doing
so, however, we examine the differences between growth in total sales and growth
in e-commerce revenues through a scatterplot (Figure 6.31). Points above the solid
black line represent quarters in which e-commerce grew more rapidly than the total.
As expected, this tends to happen in Q4 (when growth rates quarter on quarter
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FIGURE 6.29 Contributions to sales growth in Q3.
Source: Macquarie Research, Bloomberg, September 2017.
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FIGURE 6.30 Contributions to sales growth in Q4.
Source: Macquarie Research, Bloomberg, September 2017.
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FIGURE .31 e-commerce vs. headline growth.
Source: Macquarie Research, Bloomberg, September 2017.
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FIGURE 6.82 Headline growth vs. growth in North America.
Source: Macquarie Research, Bloomberg, September 2017.

exceed 30%) because of the Christmas peak. Figure 6.32 shows that focusing on US
sales is unlikely to result in a significant bias per se.

We implement the estimator discussed in the previous section in order to predict
Amazon’s quarterly sales growth. Figure 6.33 presents our results for alternative ver-
sions of the forecast and compares them against consensus, i.e. the mean analyst esti-
mate obtained from I/B/E/S one week after the end of the calendar quarter. By that time
all the customer transactions for the quarter have been processed and added by Quandl
to the database, hence both forecasts are available.

The middle part of the table shows that the big data estimate compares favourably
to consensus: both versions of the forecast display a lower mean absolute error (MAE)
compared with the average analyst forecast. The root mean square error (RMSE) would
favour consensus due to a few outliers that result in large errors early in the sample
period. In the third column we display the hit rate, i.e. the number of times when our
forecast improves on consensus, expressed as a percentage of the total sample size.

Predictor MAE RMSE Hit rate

Consensus (1) 1.76% 2.11%

Receipts and guidance (2)
No bias correction 1.64% 2.34% 66.7%
Bias correction 1.51% 2.40% 66.7%

Combination (1) - (2)
No bias correction 1.21% 1.47% 75.0%
Bias correction 1.32% 2.15% 75.0%

FIGURE6.33 Combining big data and consensus delivers superior forecasts of total sales
growth. The estimator without bias correction is @, in the text, defined in Eq. (6.3).

The version with bias correction corresponds to the estimator ¢, ,,,p defined in Eq. (6.4).
The combination is the simple average of consensus and our MAP estimator.

Source: Macquarie Research, September 2017.
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FIGURE 6.34 Improving forecasting ability as the sample size increases. The plot refers to the
version of the big data estimate that uses receipts data and guidance, with bias correction.
Source: Macquarie Research, September 2017.

We achieve an improvement two-thirds of the time. While the number of observations
in the time series is admittedly limited, our analysis seems to suggest that the big data
estimate is at least as accurate as consensus.

Bias correction improves the estimate further (in terms of MAE), again suggesting
that the Quandl sample is not free from selection bias. Nevertheless, our results suggest
that the bias can be modelled accurately by using the simple solution detailed in the
previous section, Eq. (6.4). As longer time series become available, one might need to
use adaptive estimates as suggested earlier if the seasonal pattern that characterizes our
sample bias changes over time.

At the bottom of Figure 6.33 we present the results of combining analyst estimates
and big data. Here the two forecasts are combined simply by taking the average of
the two values. This results in an improvement in accuracy as measured both by the
MAE and by the hit rate, which reaches 75%. While in terms of RMSE the evidence is
not as conclusive (the bias corrected version has a slightly higher error compared with
consensus), overall the results highlight the improvement in forecasting ability that can
be obtained by combining big data and fundamental insight from the analysts.

Figure 6.34 gives a graphical impression of the distance between forecast and actual
value for the big data forecast (no analyst input is used in the chart). The prediction
appears to follow closely the actual growth in sales and the estimation error seems to
decrease as the number of time series observations increases. Again, this result can be
attributed to the fact that, as the expanding window used in the estimation increases,
the bias correction mechanism becomes more and more accurate.

6.6.3 Putting it all together

It is also useful to compare our big data estimate against consensus over time
(Figures 6.35 and 6.36). In Figure 6.35 we plot the prediction errors of both estimators.
Relatively large errors that occur early in the sample period (2014 Q4 in particular)
cause the higher RMSE displayed by our forecast. Interestingly, consensus displays a
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seasonal pattern: analysts have tended to underestimate Q1 sales and overestimate
in Q4. No such pattern can be found in the big data prediction.

Figure 6.36 represents the same information in a slightly different way by plotting
the predicted and actual sales surprises. The actual figure is calculated as the difference
between the reported figure (which would not have been accessible at the time when
the forecast is formed) and consensus. The predicted surprise is the difference between
our big data estimate and consensus, i.e. the surprise that would occur if our estima-
tor turned out to be 100% accurate. The pattern of strong negative surprises in Q4 is
apparent from the figure. With only two exceptions (Q3 2014 and Q4 2015), we would
have been able to predict correctly the sign of the surprise in every single quarter.

A surprising result in Figure 6.33 is that the forecast combination that uses bias
correction (last row of the table) underperforms the one without it. This is at odds
with the evidence that the big data estimator, when used on its own, benefits from
bias correction. Why does the conclusion change when our estimator is combined with
consensus? It turns out that if we rely on Quandl data without trying to correct the
bias, we tend to be less bullish than consensus in Q4 and more bullish Q1-Q3. As
Figure 6.37 clearly shows, growth rates in our sample tend to be lower than the reported
numbers for Q4 and higher for the rest of the year, particularly in Q1. This is exactly
the opposite of the pattern of errors displayed by consensus (Figure 6.35). Hence, in
contrast to the old saying that ‘two wrongs don’t make a right’, when we combine the
two estimates, the errors offset each other, which results in an improvement in MAE
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FIGURE .37 In-sample vs. actual sales growth.
Source: Macquarie Research, Quandl, FactSet, I/B/E/S, September 2017.
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Model Inputs MAE RMSE Hit rate
Improper prior Receipts data 5.14% 6.52% 33.3%
Exponential Receipts, guidance 1.64% 2.34% 66.7%
Gaussian Receipts, guidance 1.64% 2.34% 66.7%
Guidance midpoint Guidance 2.73% 3.23% 16.7%
Quarterly mean g Historical growth rate 7.86% 12.94% 25.0%

FIGURE 6.38 The results are robust. The data covers the period 2014Q2-2017Q1.
Source: Macquarie Research, Quandl, Fact Set, I/B/E/S, September 2017.

and particularly RMSE. However, we do not interpret our result as suggesting that one
should use the raw estimator ¢, y;4p when combining big data with analyst forecasts.
A better understanding of the drivers of the bias would be needed in order to draw a
strong conclusion.

The top half of Figure 6.38 assesses to what extent the performance of our big data
estimator is driven by each of the two inputs, i.e. guidance and receipts data. We start
by checking the sensitivity of the results to our choice of prior distribution. This is done
in two ways:

1. By deriving a forecast that relies solely on the Quandl data. This is equivalent to an
improper prior on the rate of growth like the one advocated by Datta and Ghosh
(1996).

2. By using a model based on normal priors instead of our Gamma—-exponential
model.’

Our baseline model is referred to as Exponential in the table.

Ignoring the information available from management guidance results in a signif-
icant deterioration of the quality of the estimator, e.g. the MAE rises from 1.64% to
5.14%. The hit rate is just 33.3%. Nevertheless, guidance per se is not sufficient to
match the predictive accuracy of our big data estimator. In Figure 6.38 we display the
performance metrics for the guidance midpoint (i.e. the point in the middle of the guid-
ance range) as an estimate of future quarterly growth. The resulting MAE (2.73%) and
RMSE (3.23%) are clearly higher than any of the predictors in Figure 6.33. The hit rate
is below 20%. To conclude, both ingredients in our approach (guidance and big data)
play an important role in delivering remarkably accurate sales estimates. Our results
suggest that guidance is important in reducing the range of likely outcomes while the
Quandl dataset provides valuable information on the likelihood of growth rates within
the range.

Figure 6.38 also contains the results for a naive forecast, the historical mean growth.
Given the strong seasonal effects, we compute historical seasonal averages for each quar-
ter (Q1-Q4) from expanding windows. Its performance is clearly much worse compared
with the other methods considered so far.

Details can be obtained from the authors upon request.



Big Is Beautiful: How Email Receipt Data Can Help Predict Company Sales 125

6.6.4 Real-time predictions

In this section we implement the methodology discussed in the previous section in order
to simulate the real-time estimation of sales growth as weekly updates to the Quandl
database become available.

We extrapolate, given the first # < 13 weeks of data, the growth rate for the whole
quarter and then apply the estimation procedure discussed above that corrects potential
biases and incorporates the information available from management guidance.

The available database is far too short for a systematic analysis. Instead, we focus on
the last four quarters of our sample period (Q2 2016-Q1 2017) and present the results
of an out-of-sample analysis. The only parameters that are estimated using the full sam-
ple are the seasonal components that affect weekly sales (depicted in Figures 6.21-6.24),
which are estimated using data from 2014 until 2016 and used to extrapolate weekly
sales trends. We acknowledge that this potentially generates a slight look-ahead bias.
However, the bias does not affect the out-of-sample analysis for Q1 2017. In addition,
any look-ahead bias will be relevant only for the early part of each quarter because as
more weeks of data become available, the effect of our extrapolation process on the
result becomes less important. Once the calendar quarter is over, the estimate no longer
changes and our estimates of the weekly seasonal effects are no longer needed.

Figures 6.39-6.42 display the results as time series plots. The grey line represents
the consensus estimate while the black line shows the evolution of our real-time big data
prediction. In addition, we represent graphically the range of growth rates implied by
management guidance as a grey shaded area which starts from the date when guidance
is issued. Finally, the red dot in each picture represents the actual reported value.

In all four cases the big data estimate turns out to be more accurate than consensus
when Amazon reports its results. Here we assess how long it takes for the information
in the Quandl database to result in a sufficiently accurate estimate.

It is interesting to note that consensus tends to move relatively sharply when
guidance is issued (Figure 6.39 is a clear example) and then remains within the range
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FIGURE 6.39 Real-time prediction of sales growth in 2016 Q2. The shaded area identifies the
range of sales growth values implied by management guidance. The dot represents the actual
growth rate reported by Amazon. The dotted line is the estimate obtained from receipts data
ignoring the guidance.

Source: Macquarie Research, Quandl, Factset, I/B/E/S, September 2017.
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FIGURE 6.40 Real-time prediction of sales growth in 2016 Q3.
Source: Macquarie Research, Quandl, Factset, I/B/E/S, September 2017.
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FIGURE 6.41 Real-time prediction of sales growth in 2016 Q4.
Source: Macquarie Research, Quandl, Factset, I/B/E/S, September 2017.

indicated by management. Relative to the guidance range, the consensus value tends to
move very little after that point and remains typically in the top half.

Our big data estimate remains constant once the calendar quarter is over (e.g. on
30 June, with a one-week lag in Figure 6.39) because no new information is available
after that point. Throughout the period considered in this analysis, only in one case
does the Quandl sample produce a growth rate that exceeds the guidance bounds
(Figure 6.42). The dotted line in the figure represents the raw estimate. In Q3 2016
(Figure 6.40) the estimate starts above the upper bound (and is shrunk towards the

middle), but as more weeks of data become available, it decreases until it enters the
guidance range.
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FIGURE 6.42 Real-time prediction of sales growth in 2017 Q1.
Source: Macquarie Research, Quandl, Factset, I/B/E/S, September 2017.

Our big data prediction is typically more volatile than consensus, particularly
early in the quarter and even more markedly before guidance is issued. Nevertheless,
it is worth highlighting that the two predictions — analyst forecast and big data
forecast — rarely cross (only once in Figure 6.42), suggesting that the direction of the
sales surprise can be predicted even early in the quarter.
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Ensemble Learning Applied to Quant
Equity: Gradient Boosting in a
Multifactor Framework

Tony Guida and Guillaume Coqueret

7.1 INTRODUCTION

It is a both intuitive and well-documented fact that firms’ performance on the stock
market is driven by some of their core characteristics. In their seminal article, Fama and
French (1992) show that firms with higher book-to-market ratios significantly outper-
form those with low book-to-market ratios. They also report that small firms tend to
yield returns that are higher than those of large firms.! Later, Jegadeesh and Titman
(1993, 2001) constructed abnormally profitable (momentum) portfolios by buying out-
performing stocks and shorting underperforming ones.

Findings such as these have led to the construction of so-called factor indices
in which the investor buys the above-average performing stocks and sells the
below-average ones. The literature on these anomalies is incredibly vast and has its
own meta-studies (see e.g. Subrahmanyam 2010; Green et al. 2013; Harvey et al.
2016).2

It can be debated whether these discrepancies in performance originate from truly
pervasive (and priced) factors that structure the cross-section of stock returns (a stream
of literature that was launched by Fama and French 1993) or from the firms’ charac-
teristics directly, as put forward by Daniel and Titman (1997).

In any case, there seems to be a large consensus that investors should be able to
benefit from the introduction of firms’ characteristics in their asset allocation process.

I'This is usually referred to as the size premium. This stream of literature was initiated by Banz
(1981) and is reviewed in Van Dijk (2011).

2In addition, McLean and Pontiff (2016) shed some light on this topic through the lens of pre-
dictability.

Big Data and Machine Learning in Quantitative Investment, First Edition.
Tony Guida.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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This seemingly obvious advice is all the more pertinent since smart-beta indices are
reshaping the asset management industry (Kahn and Lemmon 2016). Beyond simple
portfolio construction processes,> more sophisticated methods have emerged, for
instance in Brandt et al. (2009) and Ammann et al. (2016).

The rise of artificial intelligence (AI) and more specifically machine learning (ML) in
unrelated fields (computer vision, translation, etc.) has had an impact on how quanti-
tative managers can process all of the data they have at hand. Recent contributions
encompass techniques such as Bayesian inference (Bodnar et al. 2017), flag pattern
recognition (Arévalo et al. 2017), clustering (Nair et al. 2017), random forests, boosted
trees and neural networks (Ballings et al. 2015; Patel et al. 2015; Krauss et al. 2017) or
even recurrent neural networks (Fischer and Krauss 2018).

The limitation of most of these articles is that the predictors are usually limited to
price data or possibly technical data. This is suboptimal because as the asset pricing
literature has demonstrated, there are many other candidates for explanatory variables.
In this chapter we propose to benefit from the advantages of ML in general and boosted
trees in particular, e.g. non-linearity, regularization and good generalization results, scal-
ing up well with lots of data. The present contribution is closest in spirit to the work
of Ballings et al. (2015). The main difference between the two lies in the sophistication
of the labelling process: Ballings et al. (2015) look simply at price direction, while we
take a more structured approach.

This chapter is organized as follows. In Section 7.2, we give a mildly technical
introduction to boosted trees. Section 7.3 is dedicated to data and protocol and will
introduce the construction of the dataset with the feature and labels engineering, the
protocol that we will use in the subsequent section and the calibration of the ML apply-
ing rigorous protocol established by the computer science community.

7.2 APRIMER ON BOOSTED TREES

This section is dedicated to a self-contained and reasonably technical introduction to
decision tress and boosted trees. For more details, we refer to Chapters 9 and 10 of
Friedman et al. (2009).

We consider a database that is split in two: the explanatory variables, gathered in
the matrix x, and the variable we aim to forecast, which, for simplicity here, we assume
to be a vector, y. Let T be the number of occurrences in the data and K be the number of
explanatory variables: the matrix x = x, , has dimensions (T x K). Henceforth, we note
x, for the K-valued vector containing all fields of occurrence ¢.

The purpose of the tree is to partition the data (i.e. the collection of (x,y)) in clusters
in which the elements y, are as similar as possible. If y is a numerical variable, this means
reducing the variance inside the cluster and if it is a categorical variable, then it amounts
to reducing the ‘impurity’ of the cluster (we seek a strongly dominant class).

To ease the presentation, we deal with regression trees first. At the root of the tree,
the optimal split s for variable j is such that the two clusters formed according to this

3For a more detailed view of the intertwining between factor investing and asset management,
we refer to the monographs of Ilmanen (2011) and Ang (2014).
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variable have the smallest total variance in y:

T T
t= =

where ,u;' and u; are the intra-cluster averages:
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The notation 1, denotes the indicator operator: 1, is equal to one if x is true and
to zero if not. For all explanatory variables j, the algorithm minimizes V¥ across all

plausible values s and retains the one for which the total variance is the smallest. The
first split is then performed and the procedure is repeated on the two resulting clusters.
Note that in the definition of V;, the terms (y, — ;4?)2 are simply scaled variances

because we build a regression tree. The analogy with linear regression is straightfor-
ward: the classical OLS estimator also seeks to minimize the variance between the actual
data and the predicted values. In the case of classification trees, the computation of the
variance is replaced by a metric that captures the impurity of the cluster. One popular
of such measures is the cross-entropy. If Jr:—' are the K* proportions of the classes of y in
the two clusters resulting from the sort s, cross-entropy is a common measure of impu-
rity: — ZIZ; 7:,5;—' log(ﬂl‘:i). Minimizing the cross-entropy usually leads to the emergence

of one dominant class (at least, that is its purpose).

The tree progressively grows when nodes are split in two and the fit naturally
increases with the number of leaves. Obviously, a tree with hundreds of leaves is likely
to overfit the data. The criterion for fixing the number of nodes is usually a linear com-
bination: goodness of fit minus a penalizing term consisting of a multiple of the number
of leaves.

Once one tree is built, the idea behind boosting is to combine it with one or many
other trees to increase the goodness-of-fit (this is a particular case of ensemble learning).
An intuitive solution is to train several classifiers and to combine their predictions into
one output signal. In his seminal contribution, Schapire (1990) proposes to fit three trees
and to then use a majority vote for a binary classification. Refinements of this idea led
to the development of the family of AdaBoost classifiers (Freund and Schapire 1997).
We refer to Friedman et al. (2000) for a review on this topic. In the latter papers, the
authors show that the AdaBoost principle admits a simple additive representation.

To graphically illustrate these ideas, we plot two simple trees in Figure 7.1. We
are interested only in the determinant feature, i.e. y. The values of the latter are coded
through colours and the purpose of the tree is to build clusters with similar colours.
Both trees end up with a ‘hot’ cluster (left/leaf1/first tree), but they differ on where to
locate the second instance y,. Now, if we were to predict the colour of a new occur-
rence with features like those of y,, our prediction would mix the outcomes of the two
corresponding clusters.
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FIGURE7.1 Two symbolic trees. Variations in
the dependent variable (y) are represented with
colours. The black rectangles and segments
show the structure of the tree. The I; in grey are
the instance sets of the leaves.

We now specify the additive method in more depth. Let us start with one fitted tree
and let’s add another tree ‘on top of it’ that reduces the errors of the first tree (e.g. by
fitting the new tree to the residuals). Let us call T the first tree.

The second tree T, is built in the following manner: T, (x,) = T} (x,) + ¥, /> (x,) where
¥, and f, are chosen so that T, minimizes the loss function (total variance or weighted
sum of cross-entropy for instance). The procedure can be iterated any number of times,
of course:

Tm(xt) = Tm—l(xt) + ymfm(xt)'

The true challenge is obviously to find the optimal y,, and £,,. Recent approaches*
tackle this problem using gradient-based techniques. Below, we describe the algorithm
behind XGBoost (Chen and Guestrin 2016). For each occurrence, the method boils
down to the computation of the weighted sum of prediction stemming from the different
trees.

We start with some notation. We write 3” as the prediction of the ! iteration
of the process. L is the loss function, e.g. weighted variance for a regression tree or
weighted cross-entropy for multi-class classification. The objective we seek to minimize
is the following;:

T
A= 3 L 37+ ) + ™),
t=1

4For instance, XGBoost and LightGBM; both are based on the seminal idea from Friedman
(2001).
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where ™ is the function (here, the tree) we are seeking. Q(f™) is a regularization term
that penalizes the complexity of the tree. We abstractly write g for the structure of the f
(nodes/splits). In addition, we set, without loss of generality, the number of leaves to |
and their weights (in the final weighted sum) to w;. Assuming an L* form for 2(f") and
using a second order Taylor expansion of L with respect to 7", the objective simplifies
to the approximate form

T

NP> [gifm(xt) + %hifm(xt)z

t=1

A]
2 2
+§.1w7.,
7:

where g; and b; correspond to the first two derivatives in the Taylor expansion. If we
define the instance set of leaf number j: I; = {i| q(x,) = j}, then

J

- w?
Am=z wfzgk+7] Zbk+/1 ,

j=1 kel; kel;

and the minimizing weights are, for each given leaf:

2 8k

/QGI/
wH=————.
/ Zlﬁ’k-i-/l
kel;

The question is then to find a proper tree structure and this is usually performed via
some greedy algorithm. Note that in the weights above, the gradient sits at the numera-
tor, which seems intuitive given the negative sign: as is customary, the algorithm goes in
the opposite direction. Finally, refinements can be incorporated to further enhance the
algorithm. One such possibility is shrinkage. The idea behind it is that full-scale learn-
ing can lead the optimization in the good direction, but too far.> Hence, newly added
trees can be slightly diluted by a factor 5, which leaves more room for future trees:

T,,(x;) = T,,_1 () + 1 Y (5,).

Another possibility is subsampling and we refer to the original contributions for
more details on this topic.

7.3 DATA AND PROTOCOL

This section describes the data used and the empirical protocol for our ML model.
We focus on US stocks in order to avoid dealing with different currencies and countries
as we might find in European or global stocks. We also selected the universe of US stocks
for its higher coverage of financial metrics and its relative efficiency.

Henceforth, we use interchangeably the term ‘feature’ or dependent variable to
express a stock characteristic. In this section, we will explain the features transformation

SWe invite the interested reader to visit the Kaggle blog for a deep dive into hyper-parameters
tuning. http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-gradient-boosting
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that has been performed to linearize each characteristic and to express them in the same
unit (even if XGBoost and tree regression are designed to cope with non-normalized
variables).

7.3.1 Data

We collect monthly returns and monthly stocks’ characteristics for the top 3000 US
stocks according to their market capitalization, free-float adjusted. The full dataset
goes from December 1999 until December 2017. The universe of stocks consists of all
common equities using Quandl premium equity packages. The dataset is point in time
and therefore does not suffer from survivorship bias. Prices are monthly discrete total
return, taking into account stocks splits and dividend adjustments. Prices are expressed
in dollars as all the other amounts.

This dataset represents approximately 620 000 instances, an instance consisting of
the combination of a stock and a date. The variable y we want to predict is the proba-
bility of one-year forward sector-neutral outperformance. The explanatory variables in
our model encompass a large set of 200 features based on traditional, financial, price
and volume-based metrics.

In order to avoid a look-ahead bias we will use a 24-months rolling windows for
training the model. Therefore, prediction will be possible only at t + 12 months, and we
offset the prediction date by the forward time period used for training. We will repeat
the training every month, hence updating every month the probability for each stock to
outperform after 12 months. Each rolling analysis period will be split according to 80%
training data and 20% of testing data, keeping the testing data in the most recent part
of the rolling window to avoid ‘testing in the past’. The testing part is used to adjust
the hyper-parameters because it is paramount to avoid overfitting in order to produce
outperformance out-of-sample.

7.3.2 Features and labels engineering

A substantial portion of research in ML-based financial applications fails because of
a lack of economic framing and unrealistic or ill-defined goals, such as finding the
‘best stocks’. Instead, our purpose is more reasonable, as we seek to predict extreme
behaviour and single out the goods stocks from the worst ones within each sector and
express this as a probability in order to rank the full cross-section of stocks.

We ‘engineer’ both labels (future returns) and features so as to put a structure that
will provide the algorithm with a more causal representation of the equity markets.
Again, we shift away from the traditional approach that seeks to infer future perfor-
mance from past prices or short-term returns. We set fundamental, risk, volume and
momentum-based signals as our features. Each feature and label is expressed in z-scores
and then translated into percentiles to ease the comparison in the results analysis part.

Following the old quant saying ‘garbage in, garbage out’, we try as much as possible
to impose some structure to features.

In the same fashion, we impose some structure in the labels by sequentially:

1. Resorting to one-year (1Y) performance, which is enough for having a certain

degree of causality between the nature of the features in the datasets and the tenor
of the labels.
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2. Normalizing according to the sector of each stock. An alternative would be to use
dummy sector variables in the features, but the purpose is much clearer by putting
the right structure on the labels.

3. Getting rid of the outliers in the labels: stocks outside the (Sth; 95th) percentile of
their sector-neutral performance are excluded for the training. Our goal here is to
imply as much causality for the features with the labels. For instance, we are getting
rid of stocks that have been acquired in an M&A, or stocks that have been in fraud
accounting scandals, because we want the labels to be truly linked to the features.

4. Processing only the remaining top and bottom quintiles of the filtered stocks.
We want to approximate a function for the top and bottom parts of the
cross-section. By doing so, we hope to have a clear hierarchical representation of
sector under/outperforming stocks.

We define Yi as the probability of a stock i to outperform its sector S over a
one-year-ahead period. Accordingly, Y; =1 - Y} will be the probability of a stock i
to underperform its sector after one year. Y| serves as the primary input of our classifi-
cation task. The label we process in the algorithm is the following:

Lif Yy 20.5
04 Y)<0.5

i

Hence, this variable tracks whether or not the corresponding stock is likely to
outperform. In the next subsection, we focus on the explanatory variables that we rely
on to predict y'.

7.3.3 \Variables/Features used

In our model, we aim to predict, each month, the probability of a stock outperforming
its sector using extreme gradient boosted trees. Since we want to sequentially create
weak learners (individual trees) and use the residuals (badly classified labels) for the
next round, we will use all features in our dataset. In the case of ML prediction using
trees, highly correlated variables will not perturb the models. A large number of highly
correlated variables will give the algorithm more degrees of freedom to determine the
added value of each single variable.

In order to assess the potential level of correlation between the features datasets we
computed a hierarchical clustering for the rank correlation of the features. As depicted
in Figure 7.2, we can identify different groups of metrics that represent family of signals.
For instance, the left rectangle in Figure 7.2 shows the metrics based on valuation ratios,
from simple earnings yield and book-to-price metrics to more rules-based composite
metrics, imposing more conditionality depending on the nature of the company.

The centre rectangle represents the cluster for risk signals based on prices, such as
different tenor for price volatilities signals, or correlation acceleration in volatility. In
total, the 200 features can be clustered into six families of metrics and we list them
in Table 7.1.

In this chapter, we keep all features in the dataset. Said differently, we do not resort
to important feature discovery in the first phase, but rather leave the tree-boosted model
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FIGURE 7.2 Hierarchical clustering for rank-correlation between variable. Rank-correlation is
computed for the entire dataset and clustered afterwards using Euclidian distance. The
hierarchical heatmap graph is colour-coded as follows: the more (less) saturated, the more (less)
correlated.

TABLE7.1 Summary and examples of features per family type

Volume/
Valuation Prof/Qual MoM/technical Risk Estimates liquidity
Earnings ROE 12-1 monthly S-year bear EPS revision Market cap
yield returns volume
Book yield  FCF/assets 6 months RSI 3-year EY FY1 Volume
correlation
Sales yield  Gross profit/ 12-1 m returns/ Specific risk  EPS growth  Liquidity at
capital volume residual FY1 risk
employed from PCA

According to hierarchical cluster, six main families of features based on metrics’ types. We provide some
examples for each family.

to determine which features matter through the regularization parameter in the training
part. Moreover, we are using a very short period of time for each step of the training
(two years), hence keeping a high number of characteristics is a good way of having
more degrees of freedom when adapting to changing market conditions, e.g. sector and
style rotation, risk on-risk off periods, etc.

7.4 BUILDING THE MODEL

In the previous section we presented and explained the objective of the method, the
dataset and variables and how they were structured. We now dig into the details of
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the general parameters and hyper-parameters used in the XGBoost® model. In this
section, we introduce the ML model, as well as its hyper-parameters that we found
of interest using our data. Additionally, we will cover how to tune them in order to give
a more practical ‘how to’ to the reader.

XGBoost is an open source model available in different languages (C++, R, Python,
Julia, Scala) that has been extremely popular in the computer science community thanks
to its flexibility in hyper-parameter tuning and to its fast code execution.

We covered the mathematical aspects of tree boosting in Section 7.2, therefore we
will restrict the scope of this section to the practical side of things. Our goal in this
exercise is to predict the probability of sector-neutral outperformance for a stock and
we rely on a classification approach (we recall that our label y/ can take only one or
zero as values).

In order to obtain a probability of sector-neutral outperformance, we resort to
logistics-based classification: the score of the occurrence will be processed through the
sigmoid function,” which will result in a figure between zero and one.

The objective function will be the usual logistic loss function complemented with
a regularization term which we use to control the model complexity. Controlling for
model complexity is a first order point for boosted trees as they tend to overfit the data
and could exhibit poor generalization behaviour out of sample.

7.4.1 Hyper-parameters

There are many different hyper-parameters in tree boosting; covering them all is outside
the scope of the chapter (they often depend on the method of tree aggregation and on
the implementation). We will confine our introduction to the parameters that we have
tested or used along this exercise. The list is as follows:

® The learning rate, #: it is the step size shrinkage used to prevent overfitting. After
each boosting step, we can directly get the weights of new features and # actually
shrinks the feature weights to make the boosting process more conservative.

® The minimum split loss, y: it is the minimum loss reduction required to make a
further partition on a leaf node of the tree. The larger the algorithm, the more
conservative it will be (trees will be smaller).

® The maximum depth: it is the longest path (in terms of node) from the root to a
leaf of the tree. Increasing this value will make the model more complex and more
likely to be overfitting.

m The scale of positive weights controls the balance of positive and negative weights:
it is useful for unbalanced classes. A typical value to consider: sum(negative
cases)/sum(positive cases).

= Regression A: it is the L? regularization term on weights (mentioned in the technical
section) and increasing this value will make the model more conservative.

¢XGBoost (eXtreme Gradient Boosting) is an open source package, often referred to as the third
generation of tree boosting model. The interest reader could find documentation, codes and
example on the official website: http://xgboost.readthedocs.io/en/latest

7The sigmoid function is defined by S(x) = (1 +e7*)1.
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7.4.2 Cross-validation

In Figure 7.3 we perform cross-validation on three different parameters.® In order to
give the reader a step-by-step approach, we computed a chart keeping the training
and the test prediction error for each pair of parameters tested on the aggregation of
1000 trees. The evaluation metric used for this cross-validation exercise is the simple
mean error, defined by the probability threshold of 0.5, giving the binary classification
error rate.

From left to right we are increasing the depth of the trees, making them more
complex following the sequence of (3,5,7). From top to bottom we are increasing the

Cross validation 5-fold- [eta=0.01;depth=3]  Cross validation 5-fold- [eta=0.01;depth=5] Cross validation 5-fold- [eta=0.01;depth=7]
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FIGURE 7.3  Fivefold cross-validation for tree boosted models. We maintain all default
parameters except number of rounds, depth of the trees and learning rate.

8For more details on cross-validation, refer to Chapter 7 of Friedman et al. (2009).
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learning rate from 0.01 to 0.1 to finally 0.3. A higher learning rate means that the model
will learn faster and potentially overfit and will not generalize well when predicting on
unseen instances.

The bias/variance tradeoff is at the core of the ML algorithms and echoes the core
principle of the penalized objective function in XGBoost: minimizing loss and control-
ling complexity. A higher error rate associated with a simpler model is more likely to
generalize well out of sample. As an example, the model tested with a low shrinkage
(eta = 0.01) and very shallow trees (depth = 3) does learn extremely slowly, even after
1000 iterations. This model, which is the one on the top left part of Figure 7.3, clearly
underfits the data: it is not learning fast enough. On the contrary, the model in the
bottom right part of Figure 7.3 (depth = 7; eta = 0.3) is learning fast (reaching 20%
error rate after 100 rounds in the test set) and is plateauing afterwards. In this example
the model is more likely to overfit: this model reaches almost 99% accuracy in the
training set.

Generally speaking, one can see that increasing the depth of the trees helps in
decreasing the error for a lower level of shrinkage. One can note that for an eta of
0.3, the difference in test error between a depth level of 5 or 7 is very marginal, which
suggests some bias in those two models (they managed to reach 99% of accuracy in the
training set after 1000 rounds).

We performed a grid search in order to confirm our conclusions drawn from
Figure 7.3. The parameters selected for our predictive boosted tree model are:

® 1000 rounds with an early stop at 100 in order to prevent overfitting

® 75 set at 0.1 to ensure a reasonable learning pace

® y set to 0: in our test y seemed to be of inferior importance compared with the other
parameters

® depth of 5: we need to have some (but not too much) complexity to benefit from
the full set of 200 features

= 2 regularization parameter fixed at 1, which is the default value in the XGBoost
model.

7.4.3 Assessing the quality of the model

In the process of assessing the quality of the model, many different evaluation metrics
are available. In the cross-validation part, we deliberately disclosed only the mean error
for the training and test datasets. In this sub-section, we want to introduce the concept
of confusion matrix and all the related metrics in order to precisely assess a ML model’s
quality.

Each part of Figure 7.4 can be explicated as:

® Fp: false positive. Stock predicted to outperform and that did not outperform out
of sample.

® Fn: false negative. Stock predicted to underperform that outperform out of sample.

® Tp: true positive. Stock predicted to outperform which outperform out of sample.

® Tn: true negative. Stock predicted to underperform which underperform out of
sample.
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FIGURE 7.4 Confusion matrix illustration. We explain the confusion matrix in our exercise
which is a supervised classification model to predict sector-neutral outperforming stocks.
On the y-axis the real labels, on the x-axis the predicted labels.

From those four cases, we can derive several classical metrics that assess the quality
of the model.

Precision: Tp/(Tp + Fp)

Precision could be defined as a rate of successful prediction for sector-neutral out-
performing stocks.

Recall: Tp/(Tp + Fn)

Recall could be defined as a true rate, since we include the instances that have been
wrongly classified in negative.

Accuracy: (Tp+Tn)/(Tp+ Tn+ Fp + Fn)

This is the accuracy level used in the cross-validation part.

Those measures can help detecting imbalances in classes, that could lead to a ‘lazy’
classifier problem, where the global accuracy results are good but one class is underrep-
resented and showing a lower level of accuracy. In our exercise, we will be less interested
in having a great accuracy in finding true negative than true positive.

In our selected model, the outcome for the different evaluation metrics are as fol-
lows:

® Accuracy: 0.80
® Precision: 0.797
m Recall: 0.795.

At early stages, we decided to train on the tails of the cross-sectional distribution,
hence there is very little imbalance in the class: recall, precision and accuracy are there-
fore very close.
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7.4.4 Variable importance

One common criticism against ML is the so-called ‘black-box*® nature of the prediction,
as if it was impossible to understand or trace which feature or combination of features is
responsible for the forecast. Ensemble learning using trees does have a very nice feature
that rules out this criticism: variable importance.

In Figure 7.5, we display the average variable importance of our model that we
trained and used for prediction every month from December 2002 until December
2017.1% Each month, we keep the variable importance from the trained model. There
are a lot a different metrics for variable importance. A popular metric in trees ensemble
is the Gini impurity index used for selecting split points.

In our exercise, we use the gain metric, which is equal to the relative contribution
(in terms of accuracy) to the model from the corresponding features. To compute the
gain metric, one has to take the contribution for each feature for each tree averaged for
each month. One can summarize the gain metric as a prediction usefulness indicator.
All gain measures across features sum to 1.

asset_turnover
mkt_cap
share_turnover
vol_price_acceleration
beta_bear

cps

correl_index_3y
prof_on_assets
adv_12m
bid_ask_spread
mom_11M
tot_liab_tot_assets
intang_assets_revenue
vol_price_1Y
WorkingCap_TotAssets
debt_total
share_buyback_yld
book_yld

free_of_yld

sales_yld

0 0.005 0.01 0.015 0.02

FIGURE 7.5 Top 20 most important variables. We show the most important variables in our
model. We averaged the monthly results for the gain measure after training.

?Criticism that is not always justified for more complex models, e.g. neural nets, which can be
‘white boxed’ with 20 lines of Python.

1%Tn order to clarify the protocol: we make predictions every month, e.g. for the last prediction of
end of November 2017, we used the features matrix as of November 2017 and used the model
that has been trained using a 24-months dataset that started in November 2014 until November
2016.
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First, we can see that on average there is not a feature that is dominating and
explaining the majority of the prediction’s importance. Then, looking at the type of
features, one can note:

m We have features coming from the six different metrics families gathered in
Table 7.1.

® Within the top 20 features, price-risk metrics seem to have a better ranking as a
group than valuation, liquidity metrics, etc.

= We find some common, well-known and over-researched characteristics mentioned
in the asset pricing literature (book yield for value, market cap for size, profitability
on assets for quality, price volatility for low volatility anomaly and 12-1 month
momentum).

7.5 RESULTS AND DISCUSSION

We now proceed to a use case. Our use case will test our ML-based signals as a base for
constructing equally-weighted portfolios. We process our probability of sector outperfor-
mance just like any other signal. We normalize it, express it in a percentile and assess the
performance of monthly rebalanced decile portfolios.'! As a benchmark, we construct
two signals and follow the same protocol mentioned above. Those two signals are:

1. A simple multifactor signal blending using commonly accepted composites metrics
to reflect the definition of ‘factor investing’.

2. A linear combination of the top 20 metrics picked according to the top 20 most
important features from our boosting tree model.

In this section we provide a statistical evaluation of the signal implemented as a
naive strategy. We will use as benchmarks an equally-weighted (EW) portfolio made of
commonly accepted stock characteristics, which are:

. Value: earnings yield, book yield, EV/EBITDA.

. Quality: return on equity, debt/equity.

. Momentum: 12-1 total return performance.

. Low volatility: three-year and one-year price volatility.
. Size: market cap.

DN b W =

The second benchmark will be an equal-weight portfolio, using the signal made of
a linear combination of the top 20 most important features.

7.5.1 Time series analysis for equally-weighted decile portfolios

Our purpose in this backtest is to assess the added value of using an ML signal in a multi-
factor framework compared to existing methodology. In order to compare the different

"Such portfolio sorting procedures are commonplace since the seminal work of Fama and French

(1992).
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FIGURE 7.6 Wealth curve for decile portfolios based on multifactor signal.

signals, we create equal-weight decile portfolios according to the ranked z-score of each
signal. We then analyze the computed time series of those signals using monthly returns.
We finally focus on the top decile (D10, the most tilted) to give more analytical results.

Figures 7.6-7.8 are wealth curves expressed in dollars for the two benchmarks
(multifactor signal and linear combination of the top 20 features) and the ML model
using boosted trees classification.

One can note that the three models show a cumulated monotonic performance
pattern across the deciles, i.e. the performance of the first decile is lower than that of
the second, which is lower than that of the third, etc.

The scale of the three graphs is deliberately the same, making the visual comparison
much easier. One can see that the dispersion of performance between deciles is much
clearer with the ML model, which has been trained to classify sector-neutral outper-
forming and underperforming stocks. The portfolios using the linear combination of the
top 20 features is also exhibiting a better cumulated performance monotonic pattern.

7.5.2 Further evidence of economic gains

In order to further simplify the comparison between our model and the two benchmarks,
we plot the annualized return per decile per model in one plot. In Figure 7.9, one can
see that the spread between the average returns of decile 1 and decile 10 is higher for the
ML model (9.8%) compared with the linear combination of the top 20 features (6%)
and the simple multifactor portfolio (5.1%).

The ML model benefits here from its tail training where we focused on the top and
bottom quintiles according to the one-year-forward performance to train the model.
Accordingly, and as expected, the ML model yields the worst performance for the lowest
decile (D1) and the highest one for the tenth decile (D10).
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FIGURE 7.7 Wealth curve for decile portfolios based on linear combination of the top 20
features from the ML model.
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FIGURE 7.8 Wealth curve for decile portfolios based on the machine learning model.

So far, we have focused our analysis on pure performance and Table 7.2 sheds some
light on alternative and complementary metrics of interest. This assesses the robustness
of the ML model more deeply.

Analyzing risks measures shows that the multifactor portfolio has the lowest
volatility (14.7%) compared with the linear combination (19%) and the ML approach
(17.6%). This result is not surprising: the multifactor portfolio has 1/5 of the final
blended signal that is coming from a low volatility exposure. On top of that, it is well
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FGURE 7.9 Annualized performance comparison for each decile of each model.

TABLE7.2 Analytics

10

B MFactor-Signal
M linear_var_imp-Signal
M ML-Signal

MFactor  lin_var_imp ML
Observations 180 180 180
Median monthly return (%) 1.2 1.5 1.9
Annualized return (%) 11.2 12.4 14.3
Annualized volatility (%) 14.7 19.0 17.6
Avg Rank IC (12 M) 0.05 0.06 0.11
Avg Rank IC (12 M forward vol) -0.46 0.02 -0.05
Return/risk 0.76 0.65 0.81
t-stats 2.87 2.39 2.95
Average annual turnover (two ways) (%) 155 203 189

We are comparing the analytics for the top decile (decile 10) portfolio for each model - the
two benchmarks on the left and the machine learning model on the right.

known that certain simple quality associated metrics such as debt to equity overlap

with a low volatility profile.

Regarding the risk-adjusted performance, the ML model generates a Sharpe ratio
of 0.81 compared with 0.76 for the multifactor and 0.65 for the linear combination of

top 20 features.

Looking at average rank information coefficient (IC) reveals that the ML signal is
better to predict the forward 12-months performance. ML signal shows an average IC
of 11% compared with 5% for the multifactor and 6% for the linear combination of

top 20 variables.
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Most interestingly, the average IC numbers for predicting the forward realized
volatility show a result of —46% for the multifactor signal. This number should be
interpreted as follows: a high level of multifactor signal implies a negative correlation
with volatility. Said differently, a high level of multifactor score implies a higher expo-
sure to low volatility stocks. This result is not true with the ML model and the other
benchmark.

Finally, the three t-stats of our models are all significant, the highest being the ML
one (2.95) compared with 2.87 and 2.39 respectively for the multifactor and the linear
combination.

Due to its more dynamic approach, the ML signal generates a higher level of
turnover (189%) compared with the multifactor signal (155%). Still, asset rotation is
lower than that of the linear combination of the top 20 features.

Results from this section reveal that portfolios based on the ML signals outper-
formed both benchmarks on a risk-adjusted basis. The ML signal displayed a better IC
for one-year performance forward and a neutral IC for volatility. A long-short strategy
based on the ML signal (long the top decile and short the bottom one) outperforms
both benchmarks on a dollar-neutral basis.

The non-linear and dynamic approach of the signal based on our ML model proved
to be more rewarded and more efficient on all metrics (except turnover). This highlights
the added value of the boosted tree algorithm, the regularization and the large dataset
of features kept for training the model.

7.6 CONCLUSION

In this chapter, we introduce a boosted tree algorithm applied to systematic equity
investing. We demonstrate the efficiency of using feature and label engineering. Applying
more conditionality and imposing a more causal structure allows a modern quantitative
approach to make accurate long-term predictions. This insightful finding contradicts
recent criticisms that ML-based approaches were suitable only when predicting very
short-term price movements.

We provide guidance on how to tune, train and test an ML-based model using
traditional financial characteristics such as valuation and profitability metrics, but also
price momentum, risk estimates, volume and liquidity characteristics. We show that
framing the problem is the first priority and we address it by engineering the features
and transforming the labels according to the investment objective.

We find that a naive equally-weighted portfolio using a boosted tree algorithm with
200 features generates an average outperformance of 3.1%, compared with a simple sig-
nal blended multifactor portfolio. Our results also suggest that the ML-based signal is
complementary to simple multifactor signals. In a context where the risk of commoditi-
zation for equity multifactor portfolios is high, suffering from crowding that could lead
to arbitrage of the style equity premia, ML-based signal could constitute an effective
remedy for the era post smart beta hangover. The dynamic nature of the signals could
constitute a real advantage even in the simplest weighting scheme and implementation
process.



Ensemble Learning Applied to Quant Equity: Gradient Boosting in a Multifactor Framework 147

REFERENCES

Ammann, M., Coqueret, G., and Schade, J.P. (2016). Characteristics-based portfolio choice with
leverage constraints. Journal of Banking ¢& Finance 70: 23-37.

Ang, A. (2014). Asset Management: A Systematic Approach to Factor Investing. Oxford Univer-
sity Press.

Arévalo, R., Garcia, J., Guijarro, E, and Peris, A. (2017). A dynamic trading rule based on filtered
flag pattern recognition for stock market price forecasting. Expert Systems with Applications
81: 177-192.

Ballings, M., Van den Poel, D., Hespeels, N., and Gryp, R. (2015). Evaluating multiple classifiers
for stock price direction prediction. Expert Systems with Applications 42 (20): 7046-7056.

Banz, R.W. (1981). The relationship between return and market value of common stocks. Journal
of Financial Economics 9 (1): 3-18.

Bodnar, T., Mazur, S., and Okhrin, Y. (2017). Bayesian estimation of the global minimum vari-
ance portfolio. European Journal of Operational Research 256 (1): 292-307.

Brandt, M.W., Santa-Clara, P., and Valkanov, R. (2009). Parametric portfolio policies: exploiting
characteristics in the cross-section of equity returns. Review of Financial Studies 22 (9):
3411-3447.

Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, 785—794. ACM.

Daniel, K. and Titman, S. (1997). Evidence on the characteristics of cross sectional variation in
stock returns. Journal of Finance 52 (1): 1-33.

Fama, E.E and French, K.R. (1992). The cross-section of expected stock returns. Journal of
Finance 47 (2): 427-465.

Fama, E.F. and French, K.R. (1993). Common risk factors in the returns on stocks and bonds.
Journal of Financial Economics 33 (1): 3-56.

Fischer, T. and Krauss, C. (2018). Deep learning with long short-term memory networks for
financial market predictions. European Journal of Operational Research 270: 654—669.

Freund, Y. and Schapire, R.E. (1997). A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences 55 (1): 119-139.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical view
of boosting (with discussion and a rejoinder by the authors). Annals of Statistics 28 (2):
337-407.

Friedman, J. (2001). Greedy function approximation: a gradient boosting machine. Annals of
Statistics 1189-1232.

Friedman, J., Hastie, T., and Tibshirani, R. (2009). The Elements of Statistical Learning, 2e.
Springer.

Green, J., Hand, J.R., and Zhang, X.F. (2013). The supraview of return predictive signals. Review
of Accounting Studies 18 (3): 692-730.

Harvey, C.R., Liu, Y., and Zhu, H. (2016). ... and the cross-section of expected returns. Review
of Financial Studies 29 (1): 5-68.

Ilmanen, A. (2011). Expected Returns: An Investor’s Guide to Harvesting Market Rewards.
Wiley.

Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: implications
for stock market efficiency. Journal of Finance 48 (1): 65-91.

Jegadeesh, N. and Titman, S. (2001). Profitability of momentum strategies: an evaluation of alter-
native explanations. Journal of Finance 56 (2): 699-720.



148 BIG DATA AND MACHINE LEARNING IN QUANTITATIVE INVESTMENT

Kahn, R.N. and Lemmon, M. (2016). The asset manager’s dilemma: how smart beta is disrupting
the investment management industry. Financial Analysts Journal 72 (1): 15-20.

Krauss, C., Do, X.A., and Huck, N. (2017). Deep neural networks, gradient-boosted trees, ran-
dom forests: statistical arbitrage on the S&P 500. European Journal of Operational Research
259 (2): 689-702.

McLean, R.D. and Pontiff, J. (2016). Does academic research destroy stock return predictability?
Journal of Finance 71 (1): 5-32.

Nair, B.B., Kumar, P.S., Sakthivel, N.R., and Vipin, U. (2017). Clustering stock price time series
data to generate stock trading recommendations: an empirical study. Expert Systems with
Applications 70: 20-36.

Patel, J., Shah, S., Thakkar, P., and Kotecha, K. (2015). Predicting stock and stock price index
movement using trend deterministic data preparation and machine learning techniques.
Expert Systems with Applications 42 (1): 259-268.

Schapire, R.E. (1990). The strength of weak learnability. Machine Learning 5 (2): 197-227.
Subrahmanyam, A. (2010). The cross-section of expected stock returns: what have we learnt from
the past twenty-five years of research? European Financial Management 16 (1): 27-42.
Van Dijk, M.A. (2011). Is size dead? A review of the size effect in equity returns. Journal of

Banking & Finance 35 (12): 3263-3274.



A Social Media Analysis
of Gorporate Culture

Andy Moniz

8.1 INTRODUCTION

In today’s globalized, service-based economy, many firms derive substantial value from
their intangible assets. Examples include corporate reputation, brand value, innova-
tive efficiency (Chan et al. 2001), human capital (Edmans 2011) and organizational
capital. The lack of physical substance associated with intangible assets, their opaque
ownership rights and non-existent market prices limit firms from valuing and recording
most types of intangible assets in their financial statements. Until accounting standards
change, investors seeking to resolve this ‘value paradox’ and integrate intangible asset
valuations into their decision-making processes must seek alternative sources of infor-
mation beyond a firm’s own financial statements. In our view, one alternative source
of information is publicly available text published on the web, and in particular, social
media.

The term ‘social media’ describes a variety of ‘new and emerging sources of online
information that are created, initiated, circulated and used by consumers intent on edu-
cating each other about products, brands, services, personalities and issues’ (Blackshaw
and Nazzaro, 2006; Gaines-Ross 2010). Social media enables individuals to share their
opinions, criticisms and suggestions in public. To the best of our knowledge, prior tex-
tual analysis studies of social media datasets have mostly captured the perspective of
consumers (for example, Amazon product reviews). By contrast, this study seeks to
examine a potentially overlooked stakeholder group, namely, a firm’s employees. The
goal of this study is to describe how mining social media datasets may help investors
learn about a firm’s corporate culture. This multidimensional concept is typically defined
as ‘a set of values, beliefs, and norms of behavior shared by members of a firm that
influences individual employee preferences and behaviors’.

For the purposes of this study, we retrieve 417 645 posts for 2237 US companies
from the career community website Glassdoor.com and employ computational linguis-
tic techniques to analyze employees’ discussions about their firms. The website acts as
a forum for employees to provide commentary on the ‘pros’ and ‘cons’ of their firms’
cultures for the benefit of potential job seekers. Employee discussions cover a diverse
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set of topics ranging from perceptions of canteen food, work/life balance, salaries and
benefits to views on company strategy and management.

We offer two important contributions to the academic literature. First, we provide
a methodology to infer corporate culture from social media. The intangible nature of
corporate culture has generated much controversy regarding the creation of a valid
construct (Cooper et al. 2001; Pinder 1998; Ambrose and Kulik 1999; O’Reilly et al.
1991). Prior organizational literature either relies upon measures that lack sufficient
depth or contain substantial measurement errors (Waddock and Graves 1997; Daines
et al. 2010). In recent years, the development of computational linguistics techniques
has enabled researchers to automatically organize, summarize and condense unstruc-
tured text data and extract key themes from vast amounts of data. Our approach
provides a means to infer employee perceptions at a higher frequency and for a broader
cross-section of companies than is possible using traditional survey-based measures.
Second, we contribute to the literature on investors’ underreaction to intangible infor-
mation. A growing body of research finds that the stock market fails to fully incorporate
information regarding a firm’s intangible assets (e.g. Edmans 2011; Chan et al. 2001).
Under a mispricing channel, an intangible asset affects the stock price only when it
subsequently manifests in tangible outcomes which are valued by the stock market.
This finding is attributed to the ‘lack-of-information’ hypothesis (Edmans 2011). In
this study, we provide statistical evidence of a relation between employees’ perceptions
of performance-orientated cultures (defined as firms where employees frequently discuss
the need to meet goals and deadlines) and subsequent earnings surprises. Our findings
are consistent with the notion that financial analysts underestimate the tangible benefits
of corporate culture.

The remainder of this chapter is organized as follows. Section 8.2 provides an
overview of the literature associated with the measurement of corporate culture.
Section 8.3 describes the social media dataset. Section 8.4 describes the computa-
tional linguistics technique used to infer employees’ perceptions of corporate culture.
Section 8.5 assesses the relation between corporate cultures and firms’ earnings
surprises. Section 8.6 concludes.

8.2 LITERATURE REVIEW

Traditionally, investors’ abilities to decipher the ‘value relevance’ of a firm’s intangible
assets have been hampered by a lack of data. Typically, a firm’s human capital manage-
ment policies may be inferred from corporate social responsibility (CSR) reports (Kolk
2008) or from external surveys such as Fortune’s ‘100 Best Companies to Work for in
America’ list (Edmans 2011; Levering et al. 1984). These sources suffer from a num-
ber of drawbacks. First, CSR disclosures are voluntary in nature and firms’ motivations
for publishing such disclosures are often unclear. Recent evidence suggests that firms
publish CSR reports merely for symbolic purposes to bolster their social image with con-
sumers (Marquis and Toffel 2012; McDonnell and King 2013) rather than to increase
transparency and accountability to investors. Second, CSR may be endogenous with
respect to a firm’s financial performance — companies may publish CSR reports only
if they are more profitable or expect their future profitability to be higher. This rela-
tion may hinder investors’ abilities to disaggregate the value-relevance of non-financial
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information (Flammer 2013). Third, CSR reports are often seen as a ‘relatively low
priority for companies’ (Gray et al. 1995). Firms typically publish CSR disclosures with
substantial delay versus accounting-related information, limiting the relevance of the
disclosures for investment decisions. Survey-based measures of corporate culture seek
to address some of the limitations associated with companies’ own disclosures, yet also
suffer from a number of drawbacks. Surveys are typically manually constructed and
thus limited in scope by the number of questions they can ask and the number of com-
panies they can cover, and they suffer in their timeliness to collect and process responses.
In the case of Fortune’s survey, the results are published infrequently (annually), limited
to 100 firms, of which only around half are publicly listed, and only composite scores
are published, potentially obscuring useful information (see also Daines et al. 2010).
Importantly, firms pay to participate in the survey, thereby creating perverse incentives
for firms to manipulate survey responses (Popadak 2013).

By contrast, social media describes a variety of ‘new and emerging sources of online
information that are created, initiated, circulated and used by consumers intent on edu-
cating each other about products, brands, services, personalities and issues’ (Blackshaw
and Nazzaro 2006; Gaines-Ross 2010; Elahi and Monachesi 2012). The textual analy-
sis of social media datasets seeks to overcome many of the drawbacks associated with
companies’ own disclosures and surveys, offering a significant advancement for timely
corporate culture analysis across a vast number of firms (Popadak 2013). Despite these
potential benefits, the high costs associated with gathering, processing and structuring
text into a standardized format for analysis suggest that intangible information may be
overlooked by investors compared with structured datasets associated with traditional
accounting information. Thus, even if intangible information is publicly available, it
may be ignored by investors if it is not salient (Edmans 2011).

8.3 DATA AND SAMPLE CONSTRUCTION

In this section we describe our social media dataset and discuss the challenges associated
with automated cultural analysis.

8.3.1 Description of online career community wehsites

We retrieve employee reviews posted to Glassdoor.com. While there are a number of
career community websites, prior studies suggest that Glassdoor.com attracts the most
diverse set of users (see Popadak (2013) for a review). For example, one alternative
website provider identifies that its average user is 43 years old with an annual income of
$106 000. A second website indicates that its niche market is college students and young
professionals. By contrast, Glassdoor.com has an estimated 19 million unique users
each month and appears to benefit from the most diverse audience as suggested by web
traffic statistics from Quantcast.com. The website specializes in audience measurement
and employs tracking software to build a picture of web audiences.

Table 8.1 reports descriptive statistics on the average profile of users of the Glass-
door website. Users’ profiles appear to be fairly distributed across different sections
of society in terms of age, income, education and ethnicity, suggesting that Glassdoor
reviews should be representative of an average employee’s perceptions of a firm.
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TABLE 8.1 Descriptive statistics on the user profiles of Glassdoor.com

Characteristic Category Percentage of web traffic
Gender Male 50%
Female 50%
Age <18 11%
18-24 18%
25-34 25%
35-44 20%
45-54 17%
55-64 7%
Household income 65+ 2%
$0-50k 47%
$50-100k 30%
$100-150k 13%
$150 k+ 10%
Education level No College 27%
College 51%
Grad School 22%
Ethnicity Caucasian 65%
African American 13%
Asian 10%
Hispanic 10%
Other 2%

This table reports descriptive statistics of Glassdoor.com user profiles obtained from the web analytics portal
quantcast.com as at June 2015. The website measures audience data and compiles visitor profiles by installing
tracking pixels on website pages. User profiles include data on gender, age, household income, education level
and ethnicity.

Glassdoor states that its website editors seek to ensure the publication of honest,
authentic and balanced reviews. Each review must meet strict community guidelines
before it is published. Reviewers are required to provide commentary on both the ‘pros’
and ‘cons’ of a company to ensure a balanced profile (illustrated in Figure 8.1). This
figure provides an example of a review posted for IBM. Each review includes metadata
to identify whether a reviewer is a current or former employee, the employee’s job title,
location and number of years’ service at the company. Each review must meet strict
community guidelines before it is published.

Comments are reviewed by website editors to prevent reviewers from posting
defamatory attacks, repeat comments or fake reviews, while identities are anonymized
to allay employees’ concerns of company reprisals in the case of negative comments
(Popadak 2013). Approximately 15% of reviews are rejected by the website editors
because they do not meet their guidelines. A further advantage of the dataset is a
rich set of metadata which includes the publication date stamp of each review, the
reviewer’s number of years’ work experience at the company, job title, employment
status (part-time/full-time) and work location. In addition, reviewers summarize their
opinions of firms in the form of ‘star ratings’ (on a scale of 1-5). Firms are rated along
six dimensions — Culture and Values, Work/Life Balance, Senior Management, Comp
and Benefits, Career Opportunities and an Overall Score. For the purposes of this
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“IBM - I'm not leaving any time soon..."”
BEOBER ¥ curent Emplayee - Marketing Manager in Londan, England

e T B Recommends 8 Approves of CEO

aa '

S Pros

smgee  Terrfic breadth of career opportunities - I've worked for IBM since university (12 years now),

LT and I've held 10 different roles, and had opportunity to be part of 3 different start-ups with
opportunity for rapid advancement

IBM also offers great fiexible working opportunities - | work a condensed working week now
thal | have children, and my job is mostly based at my home office

Cons

Strong US work ethic - rare for anyone in my department to leave on time in the evening, and
overtime s not paid. Really hard to work part-time in a company like IBM - you really need to
have a presence 5 days per week unless you're happy for your career o go on the back-
burner for a while

Maternity leave pay is pretty rubbish, shding scale down to 40% pay (belter than a few years
ago, but still poor)

FIGURE 8.1 TIllustrative examples of Glassdoor reviews.

study we predominantly rely upon reviewers’ texts, which are available from 2008
onwards, compared with the star ratings, which are available on a consistent basis
only from 2012.

8.3.2 Adding security identifiers to employee reviews

One of the primary challenges associated with unstructured data retrieval is the need to
match reviewers’ texts to structured data stored in traditional financial databases (e.g.
accounting data). We design an algorithm which matches company names in Glassdoor
reviews to the CRSP database. The approach takes into account the ‘synonym detection
problem’ typically encountered when matching company names in text (see Engelberg
2008). For instance, the official company name International Business Machines in the
CRSP database is more commonly referred to as IBM in Glassdoor reviews. Our algo-
rithm first detects companies’ popular names from company websites and Wikipedia,
then uses this list of names to trawl through Glassdoor.com’ subdomains to retrieve
relevant reviews. In total, we retrieved 417 645 reviews for 2237 US companies for the
period 2008-20135.

Table 8.2 displays descriptive statistics for the sample dataset. Panel A shows that
the number of reviews has increased steadily over time. The majority of reviews are
posted by North American employees. This observation mitigates a potential concern
for cross-cultural analysis, namely, that differences in regional locations may account for
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TABLE8.2 Summary statistics of Glassdoor.com dataset

Panel A: Overview of the dataset by employment location?

% of
Region 2008 2009 2010 2011 2012 2013 2014 2015 Total total
Asia 189 285 926 1330 6311 6264 7798 2551 25.654 6%
Europe 307 257 796 435 1196 1849 2949 1619 9,40K 2%
North 13139 10136 15637 18068 30100 45821 71444 25.698 230043 55%
America
Other 40 53 97 130 632 751 967 429 3099 1%
Anonymous 1537 5001 11760 13798 20931 25552 46429 24433 149.441 36%
Total 15212 15732 29216 33761 59170 80237 129587 54730 417645
% of Total 3.6% 38% 7.0% 81% 142% 192% 31.0% 13.1% 100.0% 100.0%
Panel B: Overview of the dataset by employment status?

Full-time  Part-time Current Former Total
Region employee  employee  Anonymous  Total employee employee  reviews
Asia ex Japan 18954 224 6276 25454 17.228 8.226 25.454
EMEA. 1.121 49 388 1558 956 602 1.558
Europe 5787 296 1125 9408 6038 3370 9408
Japan 118 9 73 200 109 91 200
Lath America 1124 18 399 1.541 987 554 1541
North America 119506 21290 89247 230043 133114 96929 230043
Anonymous 56464 6798 86179 149 441 93480 55961 149441
Total 203074 28684 185887 417645 251912 165733 417645
% of Total 48.6% 6.9% 44.5% 100.0% 60.3% 39.7% 100.0%

Panel C: Overview of dataset by employees’ years of service®

<1year 1-3years’ 5+ years’ 10+ years’
Region experience experience experience experience Anonymous Total % of total
Asia 3675 12800 3591 591 4997 25654 6%
Europe 1254 3422 1348 628 2756 9408 2%
North America 33242 69275 30072 17326 80128 230043 55%
Other 330 1384 616 185 584 3099 1%
Anonymous 7829 24252 13282 7.383 96695 149441 36%
Total 46 330 111133 48909 26113 185160 417645
% of Total 11.1% 26.6% 11.7% 6.3% 44.3%  100.0% 100.0%

4This table provides descriptive statistics for Glassdoor reviews by employee location (region) and the year
the review was posted. This information is obtained from reviewers’ metadata.
bThis table provides descriptive statistics for Glassdoor reviews by employee location and employment status
(full-time/part-time, current/former employee). The Anonymous category refers to reviews where employment
status was not provided.
“This table provides descriptive statistics for Glassdoor reviews by location and employees’ number of years
of service. The Anonymous category refers to posts without the number of years of service.
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differences in employees’ perceptions (see Hofstede 1980; Triandis et al. 1988). Panel B
shows that 60% of the sample consists of reviews posted by individuals stating that
they are current rather than former employees. Only a minority (6.9%) of reviewers
state that they are part-time employees. Panel C indicates that reviewers have worked
in their companies for an average of 1-3 years. Finally, Panel D reports the coverage of
reviews by sector using Global Industry Classification Standard (GICS) classifications
retrieved from the Compustat database. While the Glassdoor dataset includes reviews
from all sectors, just over half of the reviews are from the Information Technology and
Consumer Discretionary sectors. We view this coverage as a potential benefit of the
dataset as service-based sectors are typically associated with knowledge-based assets
such as R&D, human and organizational capital (Lev 2001).

8.3.3 \Validating the integrity of employee reviews

One criticism often levied at social media analysis is the potential for sample bias. The
bias refers to the potential to select a misrepresentative sample of reviews which may
hinder statistical inference. In particular, differences in reviewers’ native languages, cul-
tures and human emotional experiences may result in unintended consequences when
inferring sentiment (see Hogenboom et al. 2012; Pang and Lee 2004; Wierzbicka 1995).
For instance, disgruntled former employees may have greater incentive to post neg-
ative comments about their prior companies. To assess the possibility of a sampling
bias, we compare the information expressed in employees’ star ratings versus their texts
(Hogenboom et al. 2012, 2014). This approach is based on the premise that regardless
of a reviewer’s background, we expect to observe a monotonically increasing relation-
ship between a reviewer’s star rating and the expression of sentiment inferred from text.
This is because star ratings are universal classifications of a reviewer’s intended senti-
ment, independent of potential language, cultural or emotional differences (Hogenboom
etal. 2012, 2014).

We estimate a panel regression where the dependent variable is the overall star rat-
ing for a firm and the independent variables are features extracted from reviewers’ texts.
Company fundamental data is retrieved from standard financial databases. Price-related
variables are obtained from CRSP, accounting data is obtained from COMPUSTAT and
analyst information from I/B/E/S. For controls, we include the star ratings: COMP is the
‘Comp & Benefits’ star rating, WORKLIFE is the ‘Work/Life Balance’ rating, MGT is
reviewers’ ‘Senior Management’ rating, CULTURE is the ‘Culture & Values’ star rating
and CAREER is the ‘Career Opportunities’ rating. We supplement the star ratings with
two indicator variables. The variable, Part-time, equals 1 if a reviewer is a part-time
worker and zero otherwise. The variable, Former, equals 1 if a reviewer is a former
employee and zero otherwise. These features are identified using metadata provided in
each review.

We include controls for book-to-market (Log(Book/Market)), analyst revisions
(Analyst Revisions), price momentum (Pmom) and one-year historic sales growth (SG).
Log(Book/Market)) is the natural log of the book-to-value of equity measured as at
the end of the preceding calendar year, following Fama and French (1992). Analyst
revisions is the three-month sum of changes in the median analyst’s forecast, divided by
the firm’s stock price in the prior month (Chan et al. 1996). Pmom is the (signed)
stock’s return measured over the previous 12 months. Finally, we include firm size
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TABLE 8.3 Regression of reviewers’ overall star ratings

(1) (2)

Intercept 0.000 0.040
(2.320) (1.657)

Former —0.058 -0.059
(—4.863) (—4.754)

Part-time 0.053 0.053
(5.296) (5.875)

Log(Book Market) 0.004
(1.663)

Log(Market Equity) 0.000
(2.095)

Analyst revisions 0.632
(2.312)

SG 0.006
(0.170)

Pmom 0.009
(1.417)

R? 0.734 0.744

This table reports regression results on the relation between reviewers” Overall ratings,
employees’ metadata and firm characteristics. The dependent variable is Overall star
rating score provided by Glassdoor reviewers (scale 1-5). Former is an indicator vari-
able equal to 1 if the reviewer is a former employee of the company and zero otherwise.
Part-time is an indicator variable equal to 1 if the reviewer is a part-time worker and
zero otherwise. Please refer to the text for a description of the control variables. For
presentational reasons, the star ratings ‘Comp & Benefits’, “Work/Life Balance’, ‘Senior
Management’, ‘Culture & Values’ and ‘Career Opportunities’, included as control vari-
ables, are hidden from the table. Standard errors are clustered by firm following Petersen
(2009). For each variable we report the corresponding robust t-statistic (in parentheses).
Sample period: 2008-2015.

(Log(Market Equity)) measured at the end of the preceding calendar year. These con-
trols are designed to account for a potential ‘halo’ effect caused if reviewers implicitly
form their perceptions of companies using publicly available information (Fryxell and
Wang 1994; Brown and Perry 1994). Table 8.3 displays the regression results.

The regressions indicate that reviewers’ star ratings are, on average, statistically
significantly lower than average for former employees and significantly higher than aver-
age for part-time employees. To mitigate sampling bias, we choose to exclude reviews
posted by former and part-time employees. Although this approach reduces the number
of observations in our dataset, we believe that it allows for more meaningful recommen-
dations for corporate culture analysis based upon an analysis of firms’ current, full-time
employees.

8.4 INFERRING CORPORATE CULTURE

In this section we describe the technique used to infer perceptions of corporate culture.
One popular technique for navigating large unannotated document collections is topic
modelling. Topic models are useful in obtaining a low dimensional representation of a
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large dataset and have played an important role in a variety of data mining tasks within
computer science (Blei et al. 2003), social and political science and digital humanities
for the categorization and summarization of texts. The intuition is that documents are
represented as random mixtures of hidden topics, where each topic is characterized by
a distribution over words. For each document, we assume that words are generated in
a two-stage process:

1. Randomly choose a distribution over topics.
2. For each word in the document:
a. Randomly choose a topic from the distribution over topics in step #1.
b. Randomly choose a word from the corresponding distribution over the
vocabulary.

Each document exhibits topics in different proportions (step #1); each word in each
document is drawn from one of the topics (step #2b), where the selected topic is chosen
from the per-document distribution over topics (step #2a). The goal of topic modelling
is to automatically discover the topics from a collection of documents. The documents
themselves are observed, while the topic structure (the topics, per-document topic dis-
tributions and the per-document per-word topic assignments) are hidden structure.

To illustrate this, Figure 8.2 provides an extract of an employee’s review posted to
a social media site. Words associated with potentially different topics have been manu-
ally colour coded within the text. Words that tend to co-occur in the same reviews are
more likely to characterize the same topic. Conversely, the words that rarely co-occur
are likely to describe different topics. For instance, a discussion about an employee’s
working environment may include references to ‘colleagues’, ‘co-workers’ and ‘teams’,
while a discussion about employee performance may include the terms ‘recognition’
and ‘promotion’.

Topics Documents Topic proportions
and assignments

recognized -
oz Work environment is friendly, co-workers glways helpful.

rovardng The people that | interact with on a daily basis are n
dedicated jo the company and easy to work with. There are

MERETEE seasoned, talented individuals on the teams; r they
pceses are not always recognized for such. ™

p— As middle and senior management nd are being

o replaced the priorities gf the business keep changing and | |
sen the “vision” is not alwagmt‘m?s._ﬁW—
putting a lot of pressure for management to perform with
ar s less resources:

co-workers
team-work
environment

oo

Qs

FIGURE 8.2 Illustrative example of topic modelling. A topic model assumes that a number

of topics which are distributions over words exist for the whole collection (far left). Each
document is assumed to be generated as follows. First choose a distribution over the topics
(the histogram at right); then, for each word, choose a topic assignment (the coloured circles)
and choose the word from the corresponding topic.
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By reversing the generative process, one obtains a predictive model by means of the
posterior distribution. The total probability of the topic model is given by:

K M N;
P(W.Z.0.@:0.p) = [[P@u: O [[ PO ) [[P(Z;, 10)P(W;, | @) (8.1)
k=1 =1 =1

where K is the number of topics, M the number of documents and N; the number of
words in document j. The distribution of words in topic k is given by P(@;); a multino-
mial with Dirichlet prior with uniform parameter p. The topic distribution for document
jis given by P(6;;a); a multinomial distribution with Dirichlet prior with uniform param-
eter o. The standard approach is to set a = 50/K and p = 0. The assignment of a topic
for #” word in document j is represented by P(z;,1 0,). Finally, P(W, |@,;,) represents
the probability of word ¢ in document j given topic Z;, for the " word in the docu-
ment. The task of parameter estimation is to learn both what the topics are and which
documents employ them in what proportions. The key inferential problem that we need
to solve in order to use the model is the posterior distribution of the hidden variables
given a document:

PO, 2.z,w | a, p)

Pw | a, p)

PO.g.z|w,a p)= (8.2)

To solve the maximum likelihood estimation, Gibbs sampling is applied to construct
a Markov chain that converges to the posterior distributions on topic Z. The results are
then used to infer @ and 6 variables indirectly. The model is appealing for noisy data
because it requires no annotation and discovers themes in a corpus solely from the
learning data without any supervision.

The output of the algorithm is a matrix of dimensions K topics X N documents,
where the number of topics is inferred by maximizing the likelihood of fitting the model
over the corpus. Table 8.4 presents the resulting six clusters inferred by the model.
Each cluster is represented as a distribution of words which form semantically similar
concepts. The highest probability document terms for each cluster are reported and
ranked in decreasing order of approximately how often they occur in the text in order
to aid the reader’s interpretation of the inferred clusters.

Given the focus of this study is on the identification of performance-orientated cul-
tures, we limit our analysis to words associated with the ‘goal-setting’ topic cluster (i.e.
employee discussions of ‘planning’, ‘goals’ and ‘performance’). We label the proportion
of words in a Glassdoor review drawn from this cluster as GOAL.

To infer the sentiment expressed in employee reviews we compute TONE, the frac-
tion of positive versus negative terms in each review, using the General Inquirer lexicon
(Stone et al. 1966). This approach is commonly adopted in the financial literature (see
Tetlock et al. 2008). We employ a slight variant to the traditional ‘term counting’
approach to account for negation terms which can alter the semantic meaning of text.
Negation terms such as ‘although’, ‘but’, ‘no’, ‘not’, ‘yet’ are often seen in social media
texts due to the more frequent use of colloquialisms (Hu and Liu 2004). Specifically,
we reverse the sign of terms listed in the General Inquirer lexicon if there is a negation
term within five words of a matched sentiment term within a reviewer’s text.

Table 8.5 highlights randomly selected examples of employee reviews for companies
within the top quintile of the GOAL score.
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TABLE 8.4 Topic clusters inferred by the topic model
‘Social value’ ‘Development value’ ‘Economic value’
word prob. word prob. word prob.
friends 0.18  opportunity 024  work life 0.18
team building 0.14  career opportunities 0.22  conditions 0.07
co-workers 0.12  advancing 0.13  benefits 0.05
team 0.09  professional development 0.07  diversity 0.04
working environment ~ 0.07  initiatives 0.07  location 0.03
‘Application value’ ‘Organizational structure’ ‘Goal-setting’

word prob. word prob. word prob.
encouragement 0.28  manager 0.27  planning 0.16
responsibilities 0.10  changes 0.17  goals 0.14
talented 0.07  processes 0.12  incentives 0.13
promoted 0.07  senior management 0.10  performance  0.13
rewarding 0.05  communications 0.08  direction 0.01

This table reports the top terms for each topic cluster and their associated probabilities inferred using a topic

model.

TABLE 8.5 Illustrative examples of reviewer comments

Panel A: Examples of positive sentiment reviews

Good foundation in place, with a common goal to understand everyone

if your hard working, it’s a good place to work, It weeds out the lazy people and the people
that dont want to work.

Good people that have same goal.

Great place to work if you are not lazy.

Well planned work habits, good company culture.

Panel B: Examples of negative sentiment reviews

The most hardest thing here is hitting your numbers. If you don’t reach the desired goal of
the company, they Mill get rid of you.

Not a very good work life balance and aggressive deadlines.

The fact that the end goal of JPM is always bottom line, the work load and hours are very
intense but the work is exciting and worth it.

Fast pace and high stress of goal for achievement and success.

Long work hours, stressful sometimes, had to work in weekends to meet deadlines.

This figure provides illustrative examples of employee reviews associated with
performance-orientated cultures. To aid readers’ interpretation, we randomly select five
comments with positive and negative sentiment. The spelling mistakes and grammatical
errors are as published in the online reviews.
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8.4.1 Data and summary statistics

Panel A of Table 8.6 reports the median fundamental characteristics of firms when
sorted into quartiles by their GOAL score. We winsorize firm characteristics at the
1% level to eliminate the impact of outliers. The last column illustrates the statistical
significance of a difference of means t-test between top and bottom quartile firms for
each fundamental characteristic. Companies with reviews in the highest GOAL quar-
tile exhibit significantly higher growth than firms in the lowest quartile. This finding is
consistent across asset, employee and sales growth.

Panel B of Table 8.6 reports the Spearman rank correlations between the average
Glassdoor star ratings and GOAL. The correlations between GOAL and the overall
composite star rating appear to be relatively low, suggesting that the perceptions inferred
from GOAL differ from the information provided by reviewers’ star ratings.

8.4.2 \Validating the goal measure

We regress firms> GOAL scores on Glassdoor ‘star ratings’ to examine whether the
information inferred from reviewers’ texts is incremental to the information provided in
star ratings and TONE. We include controls for book-to-market (Log(Book/Market)),
analyst revisions (Analyst Revisions), price momentum (Pmom) and one-year historic
sales growth (SG). Log(Book/Market)) is the natural log of the book-to-value of equity
measured as at the end of the preceding calendar year, following Fama and French
(1992). Analyst revisions is the three-month sum of changes in the median analyst’s
forecast, divided by the firm’s stock price in the prior month (Chan et al. 1996).
Pmom is the (signed) stock’s return measured over the previous 12 months, while firm
size (Log(Market Equity)) is measured at the end of the preceding calendar year. We
include firms’ CSR attributes to account for traditional human capital measures. In
line with standard practice, we include an employee relations metric obtained from
the KLD social research and analytics database (Waddock and Graves 1997; Hillman
and Keim 2001; Statman and Glushkov 2009).We calculate net employee strengths by
summing all identified strengths and subtracting all identified weaknesses in a given
year (Verwijmeren and Derwall 2010). We label this metric KLD. Finally, we include an
employee satisfaction metric to evaluate whether GOAL differs from the information
published in Fortune magazine’s ‘100 Best Companies to Work for in America’ list
(Edmans 2011). We create an indicator variable, BC, equal to 1 if a company is listed
in Fortune’s list and zero otherwise. Following Petersen (2009), standard errors are
clustered by firm to correct for time series dependence in standard errors. Table 8.7
reports the regression results.

Column 2 suggests there is a positive correlation between GOAL and Glassdoor’s
management quality and opportunities star ratings, and a negative relation between
GOAL and firms’ compensation star ratings. The latter relation is consistent with the
view that performance-orientated firms seek to incentivize individuals by providing a
larger proportion of their total compensation in variable rather than fixed pay (Gneezy
et al. 2011; Kamenica 2012; Gerhart and Rynes 2003; Adams 1963). Column 2 sug-
gests a positive correlation between GOAL, one-year historic sales growth and Pmom,
indicating that performance-orientated firms typically exhibit growth characteristics.
Finally, Column 3 controls for traditional CSR metrics and suggests that GOAL is not
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TABLE 8.6 Descriptive statistics of firm characteristics

Panel A: Fundamental characteristics®

1st 2nd 3rd 4th Diff of means
Characteristic quartile quartile quartile quartile T-test (Q1 vs. Q4)
Accruals —-0.044 -0.035 —-0.043 —-0.042
Asset growth 0.037 0.051 0.086 0.087 ok
(yoy)
Employee growth 0.021 0.028 0.046 0.052 K
(yoy)
Financial leverage 0.429 0.510 0.318 0.307
Market 13329 17178 22289 28408 o
capitalisation
(US$ m)
Prior price 0.148 0.164 0.150 0.198 *
momentum
ROA 0.146 0.149 0.149 0.162 Fk
Sales growth (yoy) 0.038 0.045 0.057 0.069 R
Tobin’s Q 1.329 1.474 1.620 1.837 o
GOAL 0.040 0.072 0.099 0.145
OVERALL 3.231 3.308 3.505 3.500 A
Panel B: Correlation of Glassdoor.com star rating scores”
GOAL OVERALL COMP WORKLIFE MGT CULTURE CAREER
GOAL 1.00
OVERALL 0.04 1.00
COMP 0.12 0.58 1.00
WORKLIFE  0.05 0.76 0.56 1.00
MGT 0.01 0.74 0.44 0.63 1.00
CULTURE 0.00 0.60 0.41 0.49 0.54 1.00
CAREER 0.03 0.76 0.54 0.74 065 0.49 1.00

9This table reports the median fundamental characteristics of firms when sorted into quartiles by their GOAL
score. GOAL is the proportion of reviews that refers to performance-orientated cultures as inferred by the
topic model. We winsorize all firm characteristics at the 1% level to eliminate the impact of outliers. OVER-
ALL is the overall star rating score provided by Glassdoor reviewers, averaged between consecutive earnings
announcement dates per company. All fundamental data comes from COMPUSTAT Fundamentals Annual
Database. The final column of the table indicates the statistical significance of a difference of means t-test
between top and bottom quartile firms for each fundamental characteristic where *** indicates statistical
significance at the 1% level, ** at the 5% level and * at the 10% level. Sample period: 2008-2015.

bThis table reports the Spearman rank correlations between the star ratings provided by Glassdoor reviews
and GOAL. OVERALL is the overall star rating score provided by Glassdoor reviewers. COMP is the
‘Comp & Benefits’ star rating provided by Glassdoor reviewers. WORKLIFE is the Glassdoor “Work/Life
Balance’ rating. MGT is reviewers’ ‘Senior Management’ rating. CULTURE refers to the ‘Culture & Values’
star rating and CAREER is the Glassdoor ‘Career Opportunities’ rating. Sample period: 2008-20135.
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TABLE 8.7 Regression of company characteristics for performance-orientated firms

(1) (2) (3)
OVERALL 0.012 0.078 0.011
(2.867) (5.663) (2.63)
TONE 0.023 0.026 0.009
(0.798) (0.986) (0.312)
cour —-0.047
(=3.505)
WORKLIFE —-0.002
(~1.92)
MOT 0.032
(2.581)
CULTURE 0.001
(0.305)
OPPORTUNITIES 0.022
(3.853)
Log(Book/Market) —-0.003 0.001 -0.002
(-1.078) (0.463) (—0.786)
ROA 0.027 —0.004 0.028
(1.117) (=0.175) (1.19)
SG 0.056 0.030 0.055
(4.213) (2.39) (3.986)
Analyst revisions 0.147 0.070 0.095
(0.21) (0.634) (0.721)
Pmom 0.009 0.009 0.007
(2.288) (2.724) (1.874)
KLD —-0.003
(=2.754)
BC -0.018
(0.8853)

This table reports the relation between GOAL and company characteristics. The dependent variable is the
GOAL score inferred by the topic model. OVERALL is the Glassdoor Overall star rating provided by Glass-
door reviewers, COMP is the ‘Comp & Benefits’ star rating. WORKLIFE is the Glassdoor ‘Work/Life Balance’
rating. MGT is reviewers’ ‘Senior Management’ rating, CULTURE refers to the ‘Culture & Values’ star rat-
ing and CAREER is the Glassdoor ‘Career Opportunities’ rating. TONE is a measure of document polarity
computed by counting the number of positive (P) versus negative (N) terms using the General Inquirer dic-
tionary (Stone et al. 1966). Log (Book/Market) is the natural log of the book-to-value of equity as of the
previous year end. Standard errors are clustered by firm following Petersen (2009). For each variable we
report corresponding robust t-statistic (in parentheses). Sample period: 2008-2015.

subsumed by KLD’s net employee relations metric or Fortune’s employee satisfaction
indicator. Taken together, our findings suggest that GOAL is a distinct dimension of
corporate culture.

8.9 EMPIRICAL RESULTS

This section investigates the relation between performance-orientated cultures, firm
value and firms’ future earnings. We compute Tobin’s Q as a measure of firm value,
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TABLE 8.8 Regression of performance-orientated firms and firm value

(1) (2) 3)
GOAL 1.624 1.400 1.720
(2.691) (2.023) (2.823)
TONE -0.374 -0.034 —0.166
(=0.701) (—0.046) (-0.311)
OVERALL 0.328 0.322
(4.472) (4.393)
COMP -0.211
(—1.848)
WORKLIFE 0.143
(1.181)
MGT 0.261
(1.679)
CULTURE -0.102
(—1.007)
OPPORTUNITIES 0.300
(1.738)
Log(Book/Market) -0.762 -0.744 -0.699
(—2.634) (—2.488) (—2.69)
ROA 4.348 4.057 4.725
(3.364) (3.282) (3.192)
SG 2.846 2.635 2.736
(2.941) (2.921) (2.255)
KLD -0.073
(=3.727)
BC 1.130
(2.978)

This table reports the results of running quarterly regressions of firm value on a set of independent variables.
The dependent variable is Tobin’s Q, defined as the market value of the firm divided by the replacement value
of the firm’s assets. The definitions for the fundamental variables are described in the text and come from
COMPUSTAT Fundamentals Annual Database apart from Standard errors which are clustered by firm fol-
lowing Petersen (2009). For each variable we report corresponding robust t-statistic (in parentheses). Sample
period: 2008-2015.

defined as the market value of the firm divided by the replacement value of the firm’s
assets. The market value of assets is measured as the sum of the book value of assets
and the market value of common stock outstanding minus the sum of the book value of
common stock and balance sheet deferred taxes. Replacement value is represented by
the book value of assets (Kaplan and Zingales 1997). We control for sector, region and
year effects and run pooled ordinary least squares (OLS) regressions to estimate models
of Tobin’s Q. We test for the significance of the coefficients using standard errors that are
robust to heteroskedasticity clustered by firm (Petersen 2009). The pooled regression
results are reported in Table 8.8.

Column 1 indicates a positive and highly statistically significant coefficient for
GOAL, suggesting that performance-orientated firms tend to be more profitable.
Column 2 indicates that there is no evidence of a statistical relation between the
underlying star ratings and firm value. Column 3 indicates that GOAL is incremental
to the employee satisfaction and employee relations metrics.
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Next we hypothesize that if financial analysts overlook intangible information,
potentially due to the costs associated with gathering, processing and analyzing
unstructured data, we would expect that positive benefits of corporate culture are rec-
ognized only once they manifest into tangible outcomes post earnings announcements
(see Easterwood and Nutt 1999; Edmans 2011). Our main test computes each firm’s
standardized unexpected earnings (SUEs) using a seasonal random walk with trend
model for each firm’s earnings (Bernard and Thomas 1989):

UE =E -E_4
UE, - iy
E = — T-tt .
SUE, ~UE, (8.3)

where E, is the firm’s earnings in quarter t, and the trend and volatility of unexpected
earnings (UEs) are equal to the mean (p) and standard deviation (o) of the firm’s pre-
vious 20 quarters of unexpected earnings data, respectively. Following Tetlock et al.
(2008), we require that each firm has non-missing earnings data for the most recent
10 quarters and assume a zero trend for all firms with fewer than four years of earn-
ings data. We use the median analyst forecast from the most recent statistical period in
the I/B/E/S summary file prior to the earnings announcement. We winsorize SUE and
all analyst forecast variables at the 1% level to reduce the impact of estimation error
and extreme outliers respectively. We create a composite document for each firm to
align different frequencies of data by aggregating Glassdoor reviews between consecu-
tive earnings announcement dates. We require a minimum of 30 reviews per company
between quarterly earnings announcements to avoid drawing statistical inferences using
a limited and potentially unrepresentative set of employee comments. Regressions con-
trol for firms’ lagged earnings, size, book-to-market ratio, analysts’ earnings forecast
revisions and analysts’ forecast dispersion. We measure firms’ lagged earnings using last
quarter’s SUE. We compute analysts’ forecast dispersion (Forecast Dispersion) as the
standard deviation of analysts’ earnings forecasts in the most recent time period prior
to the earnings announcement scaled by earnings volatility (o). Table 8.9 reports the
regression results. Standard errors are clustered by calendar quarter (following Petersen
2009).

Column 2 identifies a positive and highly statistically significant coefficient for
GOAL, suggesting that the measure contains incremental information for predicting
earnings surprises beyond those of company fundamentals or TONE. Column 3 con-
trols for employee relations and satisfaction and suggests that the information contained
in GOAL is not subsumed by these measures.

8.6 CONCLUSION

To date, investors’ efforts to ‘look inside’ a company have been hampered by a lack of
data. Traditional survey-based measures are manual and time-consuming to produce,
and limited in scope with regards to the number of questions they can ask, the number
of companies they can cover and their timeliness to collect and process responses. This
study seeks to overcome these limitations by inferring employees’ perceptions expressed
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TABLE 8.9 Regression of performance-orientated firms and earnings surprises

(1) (2) 3)

Lagged dependent -0.012 —-0.015 —-0.012
(-0.358) (—0.423) (=0.351)

Forecast dispersion -2.700 -2.806 -2.581
(=3.196) (=3.318) (—=2.916)

OVERALL 0.067 0.053 0.079
(0.761) (0.505) (0.755)

GOAL 1.770 4.477
(2.536) (3.751)

TONE 0.054 1.714
(2.071) (1.796)

High_expectations 14.180
(2.892)

Analyst revisions 15.130 14.730 18.050
(4.749) (4.622) (5.173)

Log(Market Equity) 0.000 0.000 0.000
(=1.078) (-1.021) (-1.552)

Log(Book/Market) -0.006 -0.018 -0.053
(—0.096) (—0.294) (—0.857)

Pmom 0.716 0.738 0.774
(7.411) (7.612) (8.007)

KLD 0.055
(1.904)

BC -0.974
(-1.699)

This table provides the OLS regression estimates of the relation between GOAL and a firm’s one quarter ahead
earnings surprise (SUE). The dependent variable, SUE, is a firm’s standardized unexpected quarterly earnings.
A composite document is computed for each firm by aggregating Glassdoor reviews between consecutive
earnings announcement dates for each firm. Earnings announcement dates are sourced for I/B/E/S. A minimum
of 30 reviews is required to create a composite document per firm. OVERALL is the Glassdoor Overall star
rating averaged across reviews with the composite document. Regressions include control variables for lagged
firm earnings, firm size, book-to-market, trading volume, past stock returns, and analysts’ quarterly forecast
revisions and dispersion (see text for details). Standard errors are clustered by firm following Petersen (2009).
For each variable we report corresponding robust t-statistic (in parentheses). Sample period: 2008-2015.

in social media. We demonstrate the merits of computational linguistics techniques to
infer the latent dimensions discussed in the text. Our methodology provides an objective
framework to infer the topics deemed most relevant to a firm’s primary stakeholders
(namely its employees). We find evidence of a statistically significant relation between
performance-orientated firms and firms’ future earnings surprises, suggesting tangible
benefits of corporate culture for financial analysis.
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Machine Learning and Event Detection
for Trading Energy Futures

Peter Hafez and Francesco Lautizi

9.1 INTRODUCTION

The commodity futures spectrum is an integral part of today’s financial markets. Specif-
ically, energy-related ones like crude oil, gasoline and natural gas, among many more,
all react to the ebbs and flows of supply and demand. These commodities play a cru-
cial role in everyday life, as they fuel most of the world’ transportation systems and
they are the input to businesses across all the industrial sectors, hence they are inher-
ently linked to the economic cycle. Economic indicators such as gross domestic product
and the unemployment rate to political upheaval and natural disasters, not to men-
tion commodity-specific issues like oil and gas pipeline disruptions or embargos, all
contribute to the pricing of commodity futures (Table 9.1).

In previous research, Brandt and Gao (2016) took a novel approach by constructing
supply and demand sentiment indices, using RavenPack data, to model the price impact
of geopolitical and macroeconomic events and sentiments on crude oil. In particular,
they found that news about macroeconomic fundamentals had a predictive ability over
a monthly horizon, while geopolitical events sizably affected the price, but without sign
predictability in the short term.

Rather than relying on a single commodity strategy, we seek to build predictive
models for a group of commodities by means of RPA’s event detection capabilities. By
utilizing RPA 1.0,! investors can benefit from the latest innovations in natural language
processing (NLP) technology to identify the information that matters for commodi-
ties. With the latest release, the RavenPack event taxonomy has grown to more than
6800 event categories, allowing the swift and precise identification of market-moving
events across multiple asset classes and commodities. Events include supply increases,
import/export guidance, inventory changes and more.

We select four commodity futures related to energy. We proceed to model the
one-day-ahead volatility-adjusted returns for the energy basket using an ensemble
of machine learning techniques. Our results indicate that our mix of linear models
performs well in terms of risk-adjusted returns. However, including a wider spectrum
of non-linear models, e.g. artificial neural networks (ANNs) or gradient boosted trees

L All references to RavenPack Analytics or RPA hereafter refer to version 1.0.
Big Data and Machine Learning in Quantitative Investment, First Edition.

Tony Guida.

© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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TABLE 9.1 Performance statistics

Statistics Out-of-sample
Ensemble High-vol Low-vol

Annualized 9.8% 21.3% -3.0%
return

Annualized 15.0% 16.9% 15.3%
volatility

Information 0.65 1.27 -0.20
ratio

Hit ratio 51.1% 53.9% 47.5%

Max 38.3% 18.0% 62.2%
drawdown

Per-trade 3.88 8.82 -1.97
return (bps)

Number of 2740 1929 811
trades

The high-vol and low-vol strategies trade only during these regimes while the ensemble strategy trades irre-
spective of the regime. The out-of-sample period is January 2015 to December 2017.
Source: RavenPack, January 2018.

regression, provides a way to improve performance and at the same time reduces the
risk associated to model selection. Moreover, we demonstrate how return predictability
at the basket level can be enhanced by conditioning on volatility regimes.

The study is organized as follows. Section 9.2 discloses the different data sources
used, in particular how the input variables from RPA 1.0 are constructed. Section 9.3
describes the modelling framework, which is based on five machine learning algorithms.
Section 9.4 compares the performance of the various models introduced in Section 9.3.
Section 9.5 presents the general conclusions.

9.2 DATA DESCRIPTION

By using NLP techniques, RavenPack transforms large unstructured datasets, such as
traditional news and social media, into structured and machine readable granular data
and indicators that can be included in quantitative models, allowing investors to identify
entities in the news and to link these to actionable events that are most likely to impact
asset prices. Each event is further supported by various analytical measures, including
sentiment, novelty (Event Similarity Days?), and relevance (Event Relevance?).

2Event Similarity Days: a granular number with up to five decimal places which indicates the
number of days since a similar event was detected over the last 365 days. Values range between
0.00 000 and 3635 inclusive. A value of 365 means that the most recent similar story may have
occurred 365 or more days in the past. The value 0.00 000 means a similar story occurred with
the exact same timestamp.

3Event Relevance: an integer between 0 and 100 that reflects the relevance of the event in the story.
An event relevance score is assigned for records relating to an event, where related records can be
identified by having the same EVENT_SIMILARITY_KEY within a story. The score is based on
the earliest mention and frequency of the event match. The score is incremented for additional
mentions of the event in the same paragraph, up to the maximum score for that paragraph.
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To create the strategies, we consider all commodity-related news stories from RPA
spanning a period of nearly 13 years, from January 2005 to December 2017.

Some mild restrictions are imposed on the dataset related to event detection and
novelty. In particular, it is required that a news story can be matched with an event
from the RavenPack event taxonomy. Furthermore, only events with Event Similarity
Days (ESD) > 1 are allowed in order to remove duplicated news events on an intraday
basis. Contrary to recent in-house research on equities (Hafez and Koefoed 2017a,b;
Hafez and Guerrero-Colén 2016; Hafez and Lautizi 2016), we do not condition on
event relevance signal (ERS) as the tradeoff between stronger per-event predictability
and lower event frequency does not work in our favour herein. Instead, we use it directly
in our feature construction, as detailed below in Section 9.3.1.%

By imposing these restrictions, we are limited to a subset of all available event cat-
egories in RPA. In particular, during our backtest, we find 110 unique event categories’
with at least one recorded event across our commodities universe. Crude oil is the most
prevalent of all our commodities, with 103 unique event categories compared with the
average commodity that has 34 categories.

Out of the 89 commodities covered by RavenPack, we select some of the most
traded related to energy. The basket contains four commodities, with crude oil and nat-
ural gas being the most prominent. Table 9.2 provides an overview of the commodities
in our study.

Given the sheer number of event categories available in RPAs, the dimensionality
of the matrix of independent variables becomes large — even with the restrictions
mentioned above. Put differently, we are facing the well-known curse of dimen-
sionality (Donoho 2000), which renders traditional OLS regression impractical due
to overfitting in the absence of feature selection. In previous research (Hafez and
Koefoed 2017a,b), we have relied on OLS to model equity returns using RavenPack’s
Event Sentiment Score, but given the dimensionality confronting us, and the fact that
there may be nonlinearities at play between the various event categories, we move

TABLE9.2 Summary statistics for RavenPack Analytics

Days Events per day

Days  with

with  events 25th 75th
Commodity Events events (%) Mean percentile Median percentile Max
Crude oil 316959 4721 99.4 67 22 53 94 480
Gasoline 48838 4407 92.8 11 3 7 15 147
Heating oil 6865 3085 65 2 1 2 3 46
Natural gas 64932 4594 96.8 14 6 12 19 99

Summary statistics for four energy commodities from January 2005 to December 2017. The numbers are
based on the time-shifted data, see Section 9.2.1.

4See Hafez and Koefoed (2017a) for a discussion of the benefits of ERS and EDS in the context
of US and European equities.
SThe complete RavenPack event taxonomy covers nearly 6900 event categories.
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beyond OLS and instead implement a batch of machine learning techniques as detailed
in Section 9.3.

9.2.1 Price data

As part of the study, we use daily close-to-close commodity futures returns provided by
Stevens Analytics.® In addition, to modelling the next-day (logarithmic) return, we use
RavenPack data specific to each commodity up until 15 minutes before the settlement
price of the given commodity futures. For example, the settlement price for crude oil
futures is computed between 2:28 pm ET and 2:30 pm ET on CME Globex,” meaning
that we use RavenPack data available in the 24 hours up to 2:15 pm ET as input to our
models.

Given that we are dealing with a basket of commodity futures with wildly varying
volatilities — both across the spectrum and across time — we seek to volatility-adjust the
returns by a lagged rolling standard deviation. We do this to avoid over-emphasizing
those commodity futures with the highest volatility for each basket when estimating the
models.

We define the log-return, standard deviation and volatility-adjusted log-return as
follows:

Ten = In (pyice””/ﬁﬂcez-l,n) (9.1)
- " 2

o =mt Y (rt_,-ﬂ,n -mty rt_,-“,n) (9.2)
=1 =1

Vin = "tnfo,_y, X target (9.3)

where n =1, ..., N represents the four commodity futures and =1, ..., T'is the time
index identifying the day in which the price or return was observed, which can be miss-
ing for commodity-specific non-trading workdays. The parameter m defines the length
of the window over which the standard deviation is calculated, while target defines the
target volatility. Throughout this study, we use 21 trading days to calculate the standard
deviation (m = 21) with an annualized target volatility of 20% (target = 20/1/252).
We have not optimized the parameter 72, but we find that it provides a good tradeoff
between stability and variability.

9.3 MODEL FRAMEWORK

To evaluate the RPAs suite, we utilize a string of machine learning techniques ranging
from a linear model in the shape of elastic net regression to neural network, and
tree-based models. In total, we test five different models. To optimize the various

6The backwards ratio method is used to calculate the contract history.
"http://www.cmegroup.com/trading/energy/crude-oil/light-sweet-crude_contract_specifications
.html
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hyper-parameters of the models, we use ten-fold cross validation (CV) and recalculate
the results ten times to account for the inherent randomness in some of the models and
the CV process. The five models are:

elastic net regression (ELNET) (Zou and Hastie 2005)

k-nearest neighbour regression (KNN) (Altman 1992)

artificial neural network (ANN) (Hastie et al. 2009)

random forest (RF) (Breiman 2001)

gradient boosted trees with Gaussian loss function (GBN) (Friedman et al. 2000).

All five models use an additive error term, e, that is independent across time and
commodity, but we do not make any assumptions about its data-generating process:

yt,n = f(xt—l,n) + et,n (94>

where the functional form, f, depends on the model and x, , is a vector of indepen-
dent variables. Note that the size of x,, varies over time depending on the number of
event categories with enough news stories to be included. We describe the independent
variables more thoroughly in Section 9.3.1.

We use a walk-forward method whereby, on the first trading day of the year, we
find the best hyper-parameter settings for each of the five models using the previous
ten years’ worth of data. We then predict the year’s daily volatility-adjusted log-returns
(Eq. (9.3)) for each of the five models. In other words, we estimate the models for the
period 2005-2014 and make daily predictions for 2015. We then step forward one year
in time and carry out the estimation and daily prediction steps again.

To overcome the randomness problem, we repeat this procedure ten times — this
will result in ten series of predictions per model. In our strategy we will use the average
prediction over the ten runs for each of the models.

This procedure starts on 1 January 2015 and ends on 31 December 2017, repre-
senting our out-of-sample period.

9.3.1 Feature creation

All the models presented herein make use of the same input: as target variable the
volatility-scaled log-returns and as features, a matrix of continuous variables. The fea-
tures are designed to capture the impact of an event category taking place at time ¢ for
commodity z as well as its relevance and is constructed as follows:

xt/n _ { EROS;,Z if event categoryjis recordled at time t for commodity n (9.5)
’ else

ERS,, =1" Y ERS] (9.6)

I
t,n,i

=1

where i =1, ..., I is the number of events for category ;.
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In other words, if we detect at least one news story for a given event category for
date t and commodity #, the variable switches to ERS from 0. This implies that news
stories are weighted based on their ERS — thereby giving higher importance to news
stories where the event is featured prominently, for example in the headline.

In order for a given event category to be included in the modelling of the commodi-
ties basket, we require at least 50 days with one or more events across the in-sample
dataset. This requirement is not optimized and is simply introduced to remove very
infrequent event categories from consideration. Furthermore, we remove perfectly cor-
related independent variables as appropriate.

Finally, we perform feature selection based on the in-sample data by requiring that
there is an absolute correlation of at least 0.5% between each feature and our target
variable. This results in a reduction of the number of features of between 37% and 45 %
depending on the out-of-sample year, meaning that we are left with 34-37 predictors.
During preliminary research we found that imposing this restriction on the features
improved speed and, importantly, in-sample robustness of the five machine learning
algorithms.®

9.4 PERFORMANCE

All strategies in our study use portfolio weights derived from the predicted returns of the
models presented in Section 9.3. The sign of a predicted return determines the direction
of the trade, while the relative size of the predicted returns determines the portfolio
weight. The vector of predicted returns for a given day is normalized to ensure a gross
exposure of 1. The net exposure, meanwhile, can range from —1 to 1. All reported
results exclude transaction costs.

9.4.1 Model portfolios

Table 9.3 shows a set of in-sample performance statistics® for our five ML models across
the commodities basket — resulting in five different portfolios.'? Overall, we find positive
performance, with some rather big discrepancies across the models. In particular, we
notice that the linear model is outperformed across all metrics by all the non-linear
ones, with the only exception of random forest (RF). In particular, the gradient boosted
trees (GBN) and the ANN are the best models in-sample, showing similar IRs of 2.40
and 2.39 respectively.

Having shown the in-sample performance, in Table 9.4 we present the out-of-
sample results. We find the RF model to be the best performer as it delivers an IR of 0.85

8The drawback of this approach is that we use a linear filtering criterion for feature selection
before applying both a set of linear and of non-linear models.

?All performance statistics refer to the out-of-sample period (January 2015 to October 2017)
unless otherwise specified.

19These statistics are obtained by evaluating the strategies based on the average predictions of
each model over the ten runs to account for the randomness in some models and in the CV
process.
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TABLE 9.3 In-sample performance statistics.

Statistics ELNET KNN ANN RF GBN
Ann. return 17.6% 19.9% 34.6% 7.3% 37.3%
Ann. volatility 15.6% 14.3% 14.5% 15.1% 15.5%
IR 1.13 1.39 2.39 0.48 2.40

Hit ratio 53.5% 54.5% 57.8% 51.7% 56.0%
Max drawdown 22.4% 17.2% 16.34% 35.9% 17.9%

For each statistic, the bolded number is the best among the five models.
Source: RavenPack, January 2018.

TABLE9.4 Out-of-sample performance statistics

Statistics ELNET KNN ANN RF GBN
Ann. return 8.5% 11.7% 4.0% 13.1% 12.3%
Ann. volatility 15.8% 14.1% 14.7% 15.4% 16.2%
IR 0.54 0.83 0.27 0.85 0.76

Hit ratio 51.4% 51.7% 50.6% 52.6% 51.3%
Max drawdown 36.2% 19.1% 45.1% 30.7% 23.6%

For each statistic, the bolded number is the best among the five models.
Source: RavenPack, January 2018.

on an annualized return of 13.1%. The second-best model is the KNN, which yields an
IR of 0.83 and the lowest volatility (14.1%), followed by the GBN, which provides
an IR of 0.76 and 12.3% annualized returns. The linear model (ELNET) is the second
to last model, suggesting that modelling non-linear relationships between our explana-
tory variable and commodities returns does indeed provide an edge that allows superior
performance to be obtained.

Moreover, it is noteworthy that had we chosen a model based on the in-sample evi-
dence, this would have resulted in suboptimal out-of-sample performance as the best
two models in-sample are respectively the third and the last one out-of-sample, an evi-
dence that warns against the risk of model selection.

Considering that there is only a moderate positive correlation between the predicted
returns for RF and most of the better-performing models, such as KNN (0.55), we may
be able to benefit from combining the predictions of the various models and in this way
control for the risk associated with model selection, something that we will explore in
Section 9.4.3.

9.4.2 \Variable importance

Up until now we have answered only the question of whether our framework can pro-
duce alpha, not the question of which variables and in turn which event categories drive
that alpha-generating performance. We choose RF to answer this question as it (i) is the
best-performing model with an out-of-sample IR of 0.85, and (ii) provides an elegant
way of computing and analyzing variable importance.
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FIGURE 9.1 Relative variable importance using ELNET. Features are scaled by the sum of
variable importance over all the variables in each year, thereby providing a relative importance
interpretation for each out-of-sample year. For out-of-sample year 20135, the estimation window
is 2005-2014, for out-of-sample year 2016, the estimation window is 2006-2015, and for
out-of-sample year 2017, the estimation window is 2007-2016.

Source: RavenPack, January 2018.

In order to detect the most important categories, we rely on a measure based on
residual sum of squares, i.e. the total decrease in node impurities from splitting on the
variable.

In Figure 9.1, we show the top-ten categories. In order to obtain a measure of
relative importance by year, we first compute the total decrease in node impurities by
year. We then rescale the measure of importance by this amount, in order to provide a
measure of the relative importance of each category in each out-of-sample year.

The analysis of the most important variables provides a sensible picture. In particu-
lar, we find inventories-related categories among the most important ones, for instance
inventories-down-commodity. Inventories-related news seems to play a relevant role in
driving prices, as three out of the top ten variables belong to this event type.

Moreover, we also find supply-related news to have a relevant role on price dynam-
ics, as news related to resource discoveries, pointing to more supply of a commodity in
the future, or spills, pointing to a decrease in the supply, also prove to be among the top
predictors for future prices.

9.4.3 Ensemble portfolio

In Section 9.4.1 we demonstrated that the energy basket provides overall positive
returns — both in absolute terms and on a risk-adjusted basis. However, with five
models to choose from, the question becomes, which one to select? A valid approach
is to each year select the model which performed best the previous year. However,
we have shown that relying on the in-sample evidence for model selection might
result in suboptimal out-of-sample performance: the ANN model had an in-sample
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TABLE9.5 Out-of-sample performance statistics

Statistics ELNET KNN ANN RF GBN Ensemble
Ann. ret. 8.5% 11.7% 4.0% 13.1% 12.3% 9.8%
Ann. vol. 15.8% 14.1% 14.7% 15.4% 16.2% 15.0%
IR 0.54 0.83 0.27 0.85 0.76 0.65
Hit ratio 51.4% 51.7% 50.6% 52.6% 51.3% 51.1%
Max DD 36.2% 19.1% 45.1% 30.7% 23.6% 38.3%

Source: RavenPack, January 2018.

IR comparable to the best model — had we chosen this model, this would have resulted
in the worst out-of-sample performance. An alternative approach is to implement an
ensemble (Breiman 1994; Mendes-Moreira et al. 2012) strategy whereby we combine
the predicted returns across all five models via equal weight — thereby taking an
agnostic view on which model is best.!!

In Table 9.5 we repeat the performance statistics for our energy basket with an
additional column added for the ensemble strategy.

By combining the five models, we generate an IR of 0.65 with an annualized return
of 9.8%. Without any prior knowledge about which of the five models perform best,
we are able to construct an ensemble which is competitive in terms of returns — both
in absolute and risk-adjusted terms — and which allows for considerable risk reduction
associated with model selection, therefore reducing the risk of potential overfitting. This
highlights why ensemble methods can be strong performers despite relying on a mixed
basket of models; in this particular case, we achieve an IR of 0.65 despite giving 40%
weight to models with relatively poor performance (ELNET and ANN).

Since 20135, the ensemble basket has yielded a total cumulative return of 29.3%.
In comparison, the equivalent long-only daily-rebalanced benchmark portfolio has
yielded total returns of —9.0% with an IR of —0.11.

Analyzing the time series of returns, we note the high correlation between our best
models (RF and KNN) and the ensemble, underlining once again the competitiveness of
the model-agnostic ensemble approach. Meanwhile, the correlation between the ensem-
ble and the long-only basket is negative.!?

In Figure 9.2 we have plotted the cumulative returns profiles for the ensemble strat-
egy against a long-only basket. Overall, the ensemble strategy has performed reasonably
well out-of-sample, though it is clear that it was more performant in the first half of the
period when energy commodities, in general, plummeted across the globe. This indicates
that there may have been a regime shift since the middle of 2016 — and commodities have
indeed been trading sideways without much volatility since then — which the ensemble
model struggles to fully capture. In Section 9.4.5, we investigate this in more detail.

We did not see any gains from basing the weights on cross-validation error statistics, such
as the mean squared error, and we have therefore opted to go with the simple approach of
equal-weighting the five models.

12The correlation between the realized returns of the ensemble and RF portfolios over the full
sample is 0.90 and between the ensemble and the KNN portfolios is 0.80 whereas the correlation
between the ensemble and long-only basket is —0.49.
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FIGURE9.2 Cumulative log-returns. The red vertical line marks the beginning of the
out-of-sample period.
Source: RavenPack, January 2018.

9.4.4 Ensemble portfolio — marginal contributions

Having determined that our ensemble approach offers a simple yet well-performing
method for combining our models, in this section we evaluate the performance contribu-
tion of each commodity to the overall portfolio. In Figure 9.3 we show the dependency
of the portfolio on any single commodity, presenting the IR when systematically leaving
out one commodity at a time to capture the marginal contribution of each commodity.
The label on the x-axis makes reference to the commodity which is dropped from the
basket.

By systematically removing one asset at a time from the basket we achieve IRs of
0.16-0.69 and annualized returns of 2.9-10.9%. Remarkably, the removal of natural
gas hurts the portfolio the most, with the IR declining to 0.16, this commodity being
the one contributing the most towards the performance of the portfolio.

These results also suggest that there may be additional performance to be had by
modelling each commodity individually, but such a step drastically reduces the num-
ber of non-zero entries in the explanatory variables, resulting in fewer features and
potentially more biased estimates as well. For that reason we have chosen to model all
four commodities together, implying that we assume that a news category has the same
impact across the basket.

9.4.5 Regime detection in the ensemhle portfolio

Up until now, we have traded all signals generated by our models. While such
an approach is attractive from a signal diversification point of view, it may still be
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FIGURE 9.3 Out-of-sample information ratios. The names on the x-axes specify which
commodity has been left out of the portfolio.
Source: RavenPack, January 2018.

interesting to evaluate whether our signals perform particularly well during certain time
periods. For example, volatile market regimes may provide more trading opportunities
through stronger signals.!3> Conversely, quiet markets may allow fundamental news to
have a more pronounced impact on day-to-day returns without them being clouded
by noisy fluctuations. By trading across all regimes, as is the case with the ensemble
approach in Section 9.4.3, we may fail to take advantage of any regime dependency. In
other words, by restricting ourselves to a subset of trades, we may be able to improve
the per-trade return, while reducing overall trading and the cost associated with it.

We seek to determine whether there are certain regimes in which the portfolio
performance is particularly strong. Concretely, we illustrate this approach by creating
various portfolios which only trade the underlying commodities when certain require-
ments related to the realized volatility are met.

We implement this by testing a volatility filter based on (i) the 1-day lagged 21-day
volatility being above its annual average, or (ii) the 1-day lagged 10-day volatility
being above its 21-day equivalent. In other words, is volatility high relative to the last
12 months or rising?'* When at least one of the conditions is fulfilled we are in a high
volatility environment, otherwise we are in a low volatility environment.

In Table 9.6 we present results of conditioning the ensemble portfolio from
Table 9.5 on the two volatility regimes (bhigh-vol/low-vol). As can be observed, by

3In Hafez and Lautizi (2017) we show this in the context of equity portfolios.
4Parameters have not been optimized.
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TABLE 9.6 Performance statistics

Statistics In-sample Out-of-sample
High-vol Low-vol High-vol Low-vol
Ann. return 20.12% 14.05% 21.3% -3.0%
Ann. volatility 16.3% 15.5% 16.9% 15.3%
IR 1.23 0.91 1.27 -0.20
Hit ratio 55.3% 54.6% 53.9% 47.5%
Max drawdown 352% 251% 18.0% 62.2%
Per-trade return (bps) 8.59 8.74 8.82 -1.97
Number of trades 6262 3043 1929 811

The high-vol and low-vol strategies trade only during periods of high/low volatility. The ensemble strategy
trades irrespective of the volatility regime.
Source: RavenPack, January 2018.

conditioning on the volatility regime, we are able to find discrepancies in perfor-
mance. In particular, we notice that over the in-sample period, the high-vol signal
outperformed the low-vol one. Although both regimes provide positive returns, this
observation, within the training period, raises the question whether we can achieve
better out-of-sample performance by avoiding low-vol regimes when trading the signal.

Looking at the out-of-sample performance confirms this intuition, as we find that
periods of high volatility yield considerably higher returns, both in absolute and in
risk-adjusted terms. In particular, the out-of-sample period yields an IR of 1.27 with
annualized return of 21.3% for the high-vol regime compared with an IR of —0.20
and annualized return of —3.0% for the low-vol regime. The discrepancy is further
supported by Figure 9.4, where we show that the high-vol strategy consistently yields
superior returns over the full-sample period, and particularly so during the second half
of the out-of-sample period, where the low-vol strategy yields negative performance.

In Figure 9.5 we compare the profiles of the out-of-sample cumulative returns from
the ensemble and high-vol strategies. In particular, we show that the high-vol strat-
egy not only yields higher returns but also has the advantage of being more robust,
experiencing a positive trend across most of the out-of-sample period. Specifically, the
high-vol strategy provides more consistent performance, avoiding most of the negative
trend showed by the ensemble during 2017, mostly due to the low-vol signals. More-
over, even though the high-vol strategy is characterized by a lower number of trades
compared with the ensemble (1929 vs 2740), this is more than compensated by the
boost observed in per-trade returns. By only trading the high-vol signals, we are able
to more than double the per-trade return compared with the ensemble, from 3.38 to
8.82 basis points.

The ensemble method is a good starting point for developing a trading portfolio,
but the results in Table 9.5 and Figures 9.4 and 9.5 underline that it fails to fully take
into account potential regime shifts seen in the market. This is not surprising, since
our ensemble model only includes event relevance-scaled dummy variables based on
whether a RavenPack event category was triggered or not — and only for one day. More
elaborate models could include information such as lagged category triggers, news vol-
ume, sentiment or novelty filters, or even market data such as asset volatility and returns
(Hafez and Lautizi 2017).
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Moreover, looking at the dynamics of cumulative returns over the full sample,
we notice that they seem to be affected by seasonality. Preliminary research based on
splitting the signals into spring—summer vs autumn—winter!® showed that the latter
produced considerably higher returns, confirming our intuition about seasonality. Such
evidence is consistent with the hypothesis that our predictive models work better dur-
ing spikes in the expected and actual commodity demand occurring in colder months.
Trying to exploit seasonality to further improve performance is yet another interesting
direction to investigate in future research.

9.5 CONCLUSION

In this study we set out to evaluate the performance of commodity futures using
commodity-related news stories captured in RPAs and a suite of five well-known
machine learning models. We create an energy commodity basket, which contains four
commodity futures, including crude oil and natural gas.

We illustrate how the five machine learning models stack up against each other. An
RF model is the top performer with an IR of 0.85, followed the KNN and the GBN. With
our linear model (ELNET) among the worst-performing models, our results suggest that
the added complexity other models bring to the table — in terms of being able to detect
nonlinearities including interaction terms — considerably increases the predictive power
for next-day returns.

Nevertheless, by including all these machine learning techniques, we proceed to
demonstrate how the implementation of a simple ensemble strategy, whereby we equally
weight all model predictions for the basket, produces robust results. Taking an ensem-
ble approach has the benefit of lowering the bias and variance through aggregation of
the individual models — and is furthermore agnostic with regards to what is the opti-
mal individual model. The ensemble approach yields an IR of 0.65 with an annualized
return of 9.8% and a per-trade return of 3.88 basis points. We also illustrate how the
ensemble basket changes as a function of the mix of commodities entering the portfolio.
Specifically, we show how the IR changes when we systematically drop one commodity
at a time from each basket.

Finally, we demonstrate how volatility regimes impact the performance of our bas-
ket. In particular, by imposing trading restrictions on our ensemble basket, we show how
both risk-adjusted and per-trade returns can be improved while lowering the number of
trades and hence cost by incorporating information not utilized in the ensemble strat-
egy. In particular, we highlight how a strategy which trades only during high volatility
regimes results in an IR of 1.27 while more than doubling the per-trade returns.

Exploratory analysis shows that our predictive signals are potentially more prof-
itable during autumn-winter months, which suggests that further research in how to
model and take advantage of such seasonality in the predictive models represents an
interesting direction to further enhance these strategies.

The event taxonomy in RPAs has capabilities for commodities trading well beyond
those investigated in the present study. While we have taken advantage of RPA’s capa-
bility to detect commodity-related news stories at the event category level, we have

I5Northern hemisphere seasons were used for this quick analysis.
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disregarded other types of potentially impactful news, for example about the global
economy, as well as metrics such as the Event Sentiment Score, which we used exten-
sively earlier in our research on equities. Lastly, the framework presented herein can be
easily modified or extended to include other asset classes which are mainly influenced
by the macro economy, such as equity index futures, bond futures and currencies.!®
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Natural Language Processing
of Financial News

M. Berkan Sesen, Yazann Romahi and Victor Li

10.1 INTRODUCTION

News has always been a key factor in investment decisions. It is well established that
company-specific, macroeconomic and political news strongly influence the financial
markets. As technology advances and the market participants become more connected,
the volume and frequency of news are growing rapidly. In fact, more data was created
in the past two years than the previous 5000 years of humanity. It is estimated that, in
2017, we created even more data in one year alone (Landro 2016). A significant por-
tion of this comes from news sources, rendering manually processing all news-related
information humanly impossible.

This burgeoning abundance of news data, combined with significant developments
in machine learning (ML), brought to the fore the application of natural language pro-
cessing (NLP) in finance. NLP is a subfield of artificial intelligence concerned with
programming computers to process natural language corpora in order to gain useful
insights. NLP manifests itself in different forms across many disciplines under vari-
ous aliases, including (but not limited to) textual analysis, text mining, computational
linguistics and content analysis (Loughran and McDonald 2016).

The efficient utilization of news data in finance requires identifying relevant news
in a timely and efficient manner. Major news can have a significant impact on the mar-
ket and investor sentiment, resulting in dynamic shifts in the risk characteristics of the
investment universe (Mitra and Mitra 2011). In order to make informed and timely
decisions, investors increasingly rely on programmatic solutions that help them extract,
process and interpret vast volumes of news data in real time.

Effective NLP models that react to news data are highly sought after, not only for
asset management and trading but also for risk controls. In finance, NLP is commonly
used in monitoring, filtering and sentiment analysis of news articles. In the context of
asset management, such technologies can serve as knowledge distillation tools that free
the portfolio managers from the burden of reading through all published material and
allow them to channel their attention more selectively.

Big Data and Machine Learning in Quantitative Investment, First Edition.
Tony Guida.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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In this chapter, we look at various aspects of financial news data, contemporary
academic research on NLP applied to finance and how the industry utilizes these meth-
ods to gain a competitive edge. We begin our discussion by introducing different sources
of news data in Section 10.2. Following this, in Section 10.3, we review the existing lit-
erature and practical applications of NLP applied to solve different problems in finance.
In Section 10.4, we provide a brief summary of the common analytical steps involved in
NLP analyses, such as preprocessing textual data, feature representation techniques for
words, and finally getting the inference required from the model and evaluating its pre-
dictive performance. In Section 10.5, we present a real-life NLP solution that is used to
filter merger & acquisition (M&A) related news articles from the rest. In Section 10.6,
we conclude by summarizing the points raised, and discussing challenges and the future
avenues of research in NLP applied to finance.

10.2 SOURCES OF NEWS DATA

The surge in the volume of financial news data in the past decade has been driven
largely by the electronification of conventional media outlets, the adoption of web-based
dissemination by regulators as well as exchanges, and the rise of web-based social media
and content-sharing services. Accordingly, it would be sensible to separate sources of
news data into three categories that provide researchers with rich textual datasets to
test different financial hypotheses.

10.2.1 Mainstream news

The news articles produced by the mainstream news providers like Thomson Reuters,
Bloomberg and Factset are usually accessed via news feeds services provided by the ven-
dors. The news items usually contain a timestamp, a short headline and sometimes tags
and other metadata. In the past decade, most data vendors have invested substantially
in infrastructure and human resources to process and enrich the articles they publish by
providing insights from the textual contents of news. Currently, Bloomberg, Thomson
Reuters, RavenPack, among others, provide their own low-latency sentiment analysis
and topic classification services.

10.2.2 Primary source news

Primary information sources that journalists research before they write articles include
Securities and Exchange Commission (SEC) filings, product prospectuses, court docu-
ments and merger deals. In particular, SEC’s Electronic Data Gathering, Analysis and
Retrieval (EDGAR) system provides free access to more than 21 million company fil-
ings in the US, including registration statements, periodic reports and other forms. As
such it has been the focus of numerous NLP research projects (Li 2010; Bodnaruk et al.
2015; Hadlock and Pierce 2010; Gerde 2003; Grant and Conlon 2006).

Analysis of most reports in EDGAR is fairly straightforward as they have consis-
tent structure, making section identification and extracting relevant text easy by using
HTML parsers. In comparison with EDGAR, the contents and structures of company
filings in the UK are less standardized as the firm management has more discretion over
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which and how much information to publicize on different topics. Without a consis-
tent template, extracting textual data from these filings becomes more difficult for the
researchers.

We can further categorize primary source news as scheduled or unscheduled.
Examples of scheduled news events include the Monetary Policy Committee announce-
ments or company earnings announcements. Unscheduled, i.e. event-driven, news can
be M&A announcements or business reorganizations. An advantage of scheduled
news releases is that the market participants are prepared to digest and react to these
in a timely manner. Due to consumer demand, scheduled news items are usually made
available in structured or semi-structured formats. In contrast, event-driven news is
noisy and requires constant monitoring and processing of what is usually unstructured
textual data.

10.2.3 Social media

With news from social media services, the barrier for entry and consequentially the
signal to noise ratio is low. Social media sources can include tweets, blogs and personal
posts. Despite the high level of noise and the lack of verification and editorial, social
media can still serve as a valuable information source due to the blisteringly fast speeds
that news is made available online. As a matter of fact, the most notable paradigm shift
in disseminating information has taken place with the arrival of social media platforms
that enable individuals, as well as corporates, to post their reactions to (market) events
instantaneously.

There are many arguments in favour of and against the use of social media. One of
the arguments in favour is that blog posts or tweets allow one to tap into the “Wisdom of
Crowds’, which refers to the phenomenon that the aggregation of information provided
by many individuals often results in predictions that are better than those made by any
single member of the group (Bartov et al. 2017). However, social media posts may lack
credibility as most providers have no mechanism to fact-check the information shared
or to incentivize high-quality information. Anecdotal evidence from contemporaneous
political elections in developed countries demonstrates that the information in social
media posts may be intentionally misleading to serve the posters’ own agenda.

The use of social media is also gaining popularity for disseminating company
information as an alternative to primary information providers. In April 2013, the
SEC approved the use of posts and tweets to communicate corporate announcements
such as earnings. Jung et al. (2015) found that, as of 2015, roughly half of the S&P
1500 firms had either a corporate Twitter account or a Facebook page. It has later
been reported that firms use social media channels such as Twitter to interact with
investors in order to attenuate the negative price reactions to consumer product recalls
(Lee et al. 2015).

NLP models that are built to process and pick up patterns from news are all trained
using historical data. News data can usually be accessed via subscription to the news
stream and/or the database of third-party vendors like Bloomberg, Thomson Reuters or
RavenPack. Another common method, which is utilized more by individual investors,
is to web-crawl to extract textual as well as metadata regarding historical news, for
instance from Rich Site Summary (RSS) feeds, or from the news providers’ or regulators’
publicly available archives.
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Regardless of the categorization, all news items need to be translated into a machine
readable format by applying a series of transformations. The news articles are always
timestamped, and in most cases, tagged by the publisher with relevant topics, tickers
and sometimes even sentiment scores. This sort of metadata assists in processing the
information. Before discussing NLP and the common sequential steps applied to raw
textual input data, in the next section we focus on the practical applications of NLP in
finance.

10.3 PRACTICAL APPLICATIONS

In this section we provide a review of contemporary academic research and industrial
applications of NLP in finance. One of the seminal studies in NLP applied to finan-
cial news data was carried out by Niederhoffer (1971). The author investigated the
broad relations of headlines from The New York Times and stock price movements,
where headlines were manually extracted from the paper’s columns. The study reported
that large movements in equity prices were more likely to follow macroeconomic news.
However, the particular category of the news item did not add information on the future
price movements. Since then, the roles of computers and statistical inference in the field
have become gradually more prominent.

Today, NLP research in finance focuses on a broad range of topics, from those that
involve trading and investment decisions to market making and risk systems. There
a growing number of industrial applications and academic studies that apply NLP in
financial news analytics. However, comparatively few industrial reports which describe
the proprietary uses of these technologies in financial firms are made publicly available
due to obvious intellectual property and trade secrecy concerns.

10.3.1 Trading and investment

One of the most common application areas of NLP in finance is in systematic trading
and investment, which have seen dramatic growth in the past decade and continue to
grow rapidly in many venues where equities, futures, options and foreign exchange are
traded. Market participants turn to NLP as one of the many ways to gain a competitive
edge by exploiting predictive patterns through the analysis of news data. The basic
rationale is highly analogous to how investors may implicitly apply their knowledge of
how markets behaved in the past under similar conditions to predict what is likely to
happen next given the current environment.

News is considered to be an ‘information event’ that influences the market
microstructure, impacting price formation, volatility and the liquidity of a particular
security or market (Mitra et al. 2015). While the methodologies applied are theoreti-
cally domain-agnostic, NLP analysis in trading and investment is most developed in
equities.

The sources of information that researchers tap into for this purpose vary by appli-
cation. Processing SEC filings is quite popular due to the relative ease of extracting
data from the EDGAR database, as we have discussed in Section 10.2. In a 2011-dated
literature survey, Li (2010) reports that most research on company filings focuses on
either the tone or the complexity of disclosures and their implications for earnings or
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stock prices. In an example study by Bodnaruk et al. (2015), the authors try to predict
liquidity events by assessing the tone in 10-K disclosures to communicate their concerns
to shareholders. The authors calculate the frequency of a proprietary set of constraining
words, e.g. ‘obligations’, ‘impairment’, ‘imposed’, to measure a 10-K filing’s tone. They
report that ‘the percentage of constraining words has a nontrivial economic impact. For
example, a one standard deviation increase in constraining words increases the likeli-
hood of a dividend omission by 10.32% and decreases the probability of a dividend
increase by 6.46%’ (Bodnaruk et al. 2015).

Product prospectuses may serve a similar purpose for predicting returns. Using a
large sample of initial public offerings (IPOs) during the period 1996-2005, Hanley
and Hoberg (2010) examine how the tone of the IPO prospectuses impact pricing and
first-day returns. The authors decompose the text of the prospectus into standard and
informative components and find that a prospectus with a low portion of informative
content decreases the pricing accuracy since it implies more reliance on investors to
price the issue during book-building and results in higher changes in offer prices and
higher initial returns. A related strand of research to these is sentiment analysis, which
is ever-growing in popularity and therefore deserves its own subsection in our coverage.

10.3.2 Sentiment analysis

Sentiment analysis aims to analyze the opinion that a body of text conveys on a par-
ticular subject or entity. In the financial domain, the primary motivation behind most
sentiment analysis tasks is to relate these opinions to the directionality of future security
returns. This is in contrast with NLP applications that monitor the extent of news cov-
erage to predict trading volume and price volatility, which are arguably simpler tasks.
Despite its current popularity in the financial domain, the seminal study in sentiment
analysis actually focused on movie reviews to train an algorithm that detects sentiment
in text (Lee et al. 2002). Compared with movie reviews, which are self-contained text
bodies aimed to clearly express an opinion, extracting sentiment from financial news
is a much more difficult task due to the added noise and the uncertainties around the
contextual information involved.

In general, sentiment can be modelled as a binary classification of ‘positive’ versus
‘negative’ or as an ordinal score that specifies how positive or negative an article is.
As a supervised learning exercise, sentiment analysis may involve manually labelling a
training dataset with different sentiment categories/scores before feeding these into
a classification or regression algorithm. This is a labour-intensive exercise that may be
negatively impacted by the subjectivity of the labellers and is prone to inter-labeller
inconsistencies in the case of multiple annotators. Indeed, Loughran and McDonald
(2016) show that financial news can be easily misclassified.

An alternative to manual labelling is to compile a ‘word list’ that associates words
with distinct sentiments. Using such a list, a researcher can count the number of words
associated with a particular sentiment, whereby a higher proportion of pessimistic
words in a news article indicates a negative sentiment. While an NLP practitioner
may choose to compile and use their proprietary word lists, there also exist publicly
available ones, like the Henry Word list (Henry 2008), which was compiled for
financial text. With such publicly available word lists, it is more straightforward to
replicate the analysis of other researchers.
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Finally, a more principled approach that removes researcher subjectivity from
sentiment labelling is to associate the news articles with returns over a prediction
horizon from the time of the news publication. An example of this is the Reuters
NewsScope Event Indices (NEIs) (Lo 2008), which are constructed to have ‘predictive’
power for asset returns and (realized) volatility. The optimal weights for NEI are
determined by regressing the word (topic) frequencies against the intraday asset
returns.

One of the most prominent applications of sentiment analysis in finance is the
Reuters NewsScope Sentiment Engine (Reuters 2015), which classifies company-specific
news according to positive, neutral or negative sentiment. GrofS-Kluffman and Hautsch
(2011) investigated to what extent high-frequency movements in returns, volatility and
liquidity can be explained by the intraday unscheduled news arrivals reported by the
Reuters NewsScope. The authors concluded that while sentiment labels have some pre-
dictability for future price trends, significant spikes in volatility and bid-ask spreads
around news arrivals render simple sentiment-based trading strategies unprofitable.

In a separate study, Heston and Sinha (2017) explored the predictability of
individual stock returns using sentiment data extracted from the Thomson Reuters
NewsScope between 2003 and 2010. They report that news sentiment on a particular
trading day is positively correlated with stock returns in the subsequent 1-2 days. They
note that the length of this prediction horizon is heavily dependent on the portfolio
formation procedure. Similarly, Das and Chen (2007) conclude sentiment analysis
provides some explanatory power on the level of the Morgan Stanley High Tech (MSH)
index. However, autocorrelation makes it difficult to establish the empirical nature of
the relationship.

In addition to the use of mainstream news, there is an increasing body of research
focusing on sentiment analysis of social media. An example is Bollen et al. (2011) who
investigate whether measurements of collective mood states derived from large-scale
Twitter feeds are correlated to the value of the Dow Jones Industrial Average (DJIA)
over time. To capture the mood states, they use Opinion Finder and Google-Profile of
Mood States (GPOMS), where the former measures positive vs negative mood and the
latter categorizes mood in terms of six dimensions (Calm, Alert, Sure, Vital, Kind and
Happy). The authors report that some GPOMS mood states match changes in the DJTA
values that occur 3—4 days later, while the Opinion Finder mood states seem to carry no
predictive information. It is also worthwhile to mention that while some GPOMS mood
states have lagged correlations with DJIA values, the authors warn that this offers no
guarantees on the causal relationship between the public mood states and DJIA values.

Studies that aim to extract sentiment from primary source news are also common
place. Huang et al. (2014) use a Naive Bayes (NB) approach to predict the sentiment
contained in over 350000 analyst reports issued for the S&P 500 firms during the
1995-2008 period. They categorize more than 27 million sentences from analyst reports
into one of positive, negative or neutral sentiment, and aggregate sentence-level opinions
to determine an overall report sentiment. They report that investors react more strongly
to negative than to positive text, suggesting that analysts are especially important in
propagating bad news.

The common challenges associated with sentiment analysis in finance include the
difficulty in extracting a consistent sentiment, the need to determine which securities
a particular news item refers to (and to what extent), and filtering novel articles from
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those that have been recycled. It is worth mentioning that sentiment analysis abounds
with data availability and bias issues as well. Moniz et al. (2009) report that the volume
of news data available for companies depends heavily on their size, to the extent that
the top quintile companies by size in the S&P Large-Cap Europe universe accounts for
40% of all news coverage, while the bottom quintile makes up only 5%. In addition to
the lack of data for companies with smaller market capitalization, several studies found
that there is a larger volume of what is considered to be positive news compared with
negative (Das and Chen 2007). In contrast, individual stock prices react more strongly
to negative news compared with positive (Tetlock 2007). It is therefore prudent to be
aware of the common pitfalls that accompany sentiment analyses.

Another methodological challenge with sentiment analysis is the unintentional over-
fitting of the inference algorithm by the NLP practitioner lured by attaining improved
results and constantly tweaking model parameterization to this end. This manifests itself
in the model being too strongly tailored to the particularities of the training period, in
effect generalizing poorly to new data. While it can be argued that this is a more generic
pitfall concerning machine learning applied to financial time series, it is accentuated in
sentiment analysis, due to the added complexities and degrees of freedom associated
with sentiment scoring and labelling.

Finally, as a rule of thumb, following a sentiment analysis exercise the results
should be examined to verify that the informational ‘edge’ captured is indeed due to the
news source and not driven by auto-correlation or concurrent information from other
market signals. In other words, one should confirm that the predictions based on senti-
ment, e.g. price, add information not contained in past values of the predicted market
signal itself. We discuss some commonly used evaluation metrics for this purpose in
Section 10.4.4.

10.3.3 Market making

Market makers are liquidity providers in financial instruments aiming to make a profit
on the spread. In a quote-driven market, market makers provide bid and ask prices. In
an order-driven market, limit orders provide liquidity. In the context of market mak-
ing, news data can be used to update the broker dealer’s estimates of trading volume,
market depth and volatility in order to skew prices and adjust bid-ask spreads. Market
makers want to be compensated proportionally for exposing themselves at the time of
significant market events by widening their bid-ask spreads. As discussed in the previous
section, these events can be scheduled monetary policy announcements or unscheduled
news releases that may trigger spikes in volatility or trading volumes of the related
instruments.

As we have mentioned, unscheduled news items usually require more time to pro-
cess the meaning of the announcement and formulate appropriate actions. During such
periods of contemplation, market makers are usually more cautious to trade and lig-
uidity dries up. Grof§-KlufSman and Hautsch (2011) report that news releases have a
significant impact on bid-ask spreads but do not necessarily affect market depth. Market
makers predominantly react to news by revising their quotes and not by order volumes.
This is very much in line with the asymmetric information-based market microstructure
theory where specialists aim to overcompensate for possible information asymmetries
(Mitra et al. 2015).
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Von Beschwitz et al. (2013) study how providers of media analytics affect the
market microstructure and, in particular, how their existence affects the stock mar-
ket’s reaction to news. They find that providers of media analytics, such as RavenPack,
impact the market in a distinct way. The speed of adjustment of stock prices and trading
volume to news is faster if an article is consistently covered in RavenPack. The market
temporarily reacts to false positives but then reverts quickly. It is therefore important for
the market maker to digest this type of information to position themselves accordingly
upon financial news releases.

10.3.4 Risk systems

NLP applications in finance are also used in risk management. As markets grow
and become more complex, risk management tools evolve to serve more challenging
demands. Major news events can have a significant impact on the market environment
and investor sentiment, resulting in rapid changes to the risk structure and risk
characteristics of traded securities. NLP is used in risk management in various ways,
ranging from detecting and managing event risk to enhancing fraud and insider trading
detection.

Event risk can be described as the uncertainty posed by unscheduled news that
causes major market moves over short time intervals. Often cited but rarely managed,
event risk has largely been consigned to qualitative judgement and manager discre-
tion because of the difficulty of quantifying textual news (Healy and Lo 2011). One
of the common uses of NLP in financial risk is as a circuit breaker for trade execu-
tion algorithms. We have already discussed that major market events commonly result
in increased bid-ask spread by the market makers. As the counterparties of the trade,
asset managers and proprietary trading shops can react by temporarily halting their cur-
rent course of action when ‘substantive’ and ‘novel’ news is published on the securities
being traded. Brown (2011) reports that the use of news analytics as ‘circuit break-
ers’ and ‘wolf detection’ systems in automated trading strategies can help enhance the
robustness and reliability of such strategies.

In a similar vein, it may at times be wise to exclude securities that are associated with
speculative market news from the investment universe. Such speculative news events are
usually followed by price fluctuations and volatility spikes that constitute undiversifi-
able, i.e. idiosyncratic, risk. In Section 10.5 we provide a real-world NLP application
that aims to accurately discriminate news article headlines that are M&A-related from
those that are not in order to reduce idiosyncratic risk caused by merger announcements.

Another application field for NLP in financial risk management is outlier detection
to identify anomalous activity and fraudulent reports. Purda and Skillicorn (2015) ana-
lyze 10-K filings to distinguish between fraudulent and truthful reports based on the
language used in the management discussion and analysis sections of the reports. Their
methodology relies heavily on identifying the significant deviations of some reports from
the one published by the same company, highlighting the efficacy of using the company
as its own control. Similar studies in outlier detection can also prove popular in detecting
irregular patterns

In addition to the use cases discussed, NLP can be used to improve internal financial
reporting and provide timely updates on key matters, particularly compliance. Textual
analysis of metadata and ‘understanding’ of content allows one to efficiently track
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changes to regulatory requirements and determine compliance-related costs (LaPlanter
and Coleman 2017). As such, NLP can significantly reduce the manual processing
required to ensure regulatory and legal compliance and can facilitate communications
with regulators by aggregating relevant data from different lines of business.

It is important to note that textual analysis of financial news items can also have its
unintended consequences. The improved speed that NLP provides us to respond to news
also increases the requirement that the response be the right one. Responding rapidly but
in the wrong way can prove to be dangerous. For instance, in April 2013, a misleading
tweet about an alleged White House explosion caused a mini flash crash, as a result of
which some quickly blamed the algorithms. Later in the same year Thomson Reuters
was rebuked for selling access to scheduled economic releases a couple of seconds early
to high-frequency trading shops (von Beschwitz et al. 2013). In the next section, we will
focus on the technical aspects of NLP.

10.4 NATURAL LANGUAGE PROCESSING

As we have already established, NLP is a subfield of artificial intelligence concerned
with programming computers to process textual data in order to gain useful insights. It
transcends many disciplines in various guises and names, such as textual analysis, text
mining, computational linguistics and content analysis. All NLP applications covered
in the previous section need to go through some common sequential steps, such as
preprocessing of textual data and representing words as predictive features before these
are fed into a statistical inference algorithm. In this section we will take a more detailed
look at these common steps that are warranted in all NLP tasks.

Naturally, any statistical analysis begins with collecting data. For NLP applications
in finance, different methods used to gather data include subscribing to the news feeds of
primary information providers like Reuters or Bloomberg, or web-crawling using cus-
tom scripts to extract textual as well as metadata regarding historical news, for instance
from RSS feeds, or from the news providers’ or regulators’ publicly available archives.

Once the data is collected, the NLP practitioner will need to first preprocess and
clean the data and reduce noise where possible. After preprocessing, it is important
to choose a feature representation method suitable for the data and the task at hand.
Once the words are translated into predictive features, they can be fed into a statistical
inference algorithm to extract useful insights. Figure 10.1 illustrates this common NLP
pipeline, which to a large extent overlaps with the steps included in general machine
learning analyses as well.

In the next four sections, we will discuss the sequential steps depicted in Figure 10.1
in slightly more detail. We intentionally keep our coverage conceptual and aim to give
a flavour of these commonly used steps rather than offering a thorough technical dis-
cussion.

10.4.1 Preprocessing textual data

Financial news data is most notably distinguished from quantitative market data by
its imprecision. In order to feed news data into the computer, we need to transform
a collection of characters into a format that captures the information conveyed in
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FIGURE 10.1 The NLP pipeline from preprocessing to feature representation and inference.

an unambiguous and precise manner. Below we present some of the most common
preprocessing and transformation steps applied to textual data. For a more thorough
coverage of the preprocessing steps discussed in this section, the reader is referred to
Manning et al. (2009).

10.4.1.1 Tokenization The first step in most NLP applications is usually to tokenize the
raw text data, which breaks it up into units called tokens by locating word bound-
aries. However, tokens do not have to be just words; they can be numbers or punc-
tuation marks. In fact, tokenization may be bundled with removing punctuation and
stop-words, which are extremely common words that may be of little value for the
NLP task. Ascertaining these stop-words is clearly a language-specific exercise and may
involve different sub-stages depending on the language of the corpus.

10.4.1.2 Vocabulary While it is certainly possible to model text as a collection of letters,
most NLP approaches consider words as the atomic units that serve as the predictive
features. Vocabulary in the context of NLP refers to the set of distinct words that appear
in the corpus to be processed. A common way to limit the vocabulary is by term fre-
quency, where only the words occurring more frequently are retained. This results in the
less frequent words to be bundled into a generic word index and can also be regarded
as an application-specific stop-word removal process.

One of the simplest, yet powerful, approaches to NLP is facilitated by targeting
a few specific words or phrases among others in a given text. Due to ambiguity, an
excessively large vocabulary is usually more prone to error when compared with tests
focusing on fewer unambiguous words or phrases. One possible solution is to omit or
bundle together tokens such as monetary amounts, numbers and URLs in our vocabu-
lary, since their individual representation greatly expands the size of the vocabulary.

The less frequently encountered words usually include proper nouns, like individ-
ual or organization names, and limiting the vocabulary size can potentially help with
regularization, where any company or country name is bundled into a generic index,
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potentially removing biases. Reducing vocabulary size is akin to feature selection in
machine learning terminology. This is a very active research in machine learning and
there exist more principled techniques than frequency, such as mutual information and
gain ratio that are used to score the class-discriminative information captured by distinct
features.

10.4.1.3 Part-of-Speech Tagging Part-of-speech (PoS) tagging is the process of assigning
a token to its grammatical category, e.g. verb, noun, etc., in order to understand its role
within the sentence. PoS taggers are specialized computer programs that take a sequence
of words (i.e. a sentence) as input and provide a list of tuples as output, where each
word is associated with the related tag. An example utility of PoS tagging is if we want
to appoint different weights to words based on their tags, focusing on the segments of
text that have high emphasis, e.g. in regions around adjectives and adverbs. For instance
as part of their five-classfier ensemble framework for sentiment analysis, Das and Chen
(2007) use an adjective—adverb-based classifier that assumes phrases that use adjectives
or adverbs contain much of the sentiment and therefore ‘deserve’ a greater weight in
word count-based feature representations.

10.4.1.4 Stemming and Lemmatization Both stemming and lemmatization are used to
reduce words from their derived grammatical forms to their base forms. While for
most English words stemming and lemmatization generate the same word, the two are
not the same thing. Stemming usually operates on a single word without knowledge
of the context and uses a crude heuristic process that removes derivational affixes in
the hope of reducing the word to its stem. In contrast, lemmatization aims to achieve
this in a more principled manner with the use of a vocabulary and morphological
analysis of words to return the base or dictionary form of a word, also known as
its lemma (Manning et al. 2009). Unlike stemming, lemmatization handles not only
basic word variations like singular vs plural but also synonyms like having ‘car’ match
‘automobile’. Also lemmatization usually requires a PoS tagger beforehand to provide
the contextual information that it needs to map the words to the appropriate lemmas.

10.4.2 Representation of words as features

The vast majority of news data is created for human consumption and as such is stored
in an unstructured format, such as news feed articles, PDF reports, social media posts
and audio files, which cannot be readily processed by computers. Following the prepro-
cessing steps discussed in the previous section, in order for the information content to
be conveyed to the statistical inference algorithm, the preprocessed tokens need to be
translated into predictive features.

The most commonly used feature representation technique in NLP is the
bag-of-words model, according to which a document is encoded as an (unordered) set
of its words, disregarding grammar and word order but retaining multiplicity. After the
text is transformed into a ‘bag of words’, various measures can be calculated to generate
the predictive features. The most common measure generated by a bag-of-words model
is term frequency, which we have discussed in the previous section.

In a term frequency representation, all words are assumed to be independent
and the text is collapsed down to a term-document matrix consisting of rows that
represent individual words and columns that provide the word counts per document.
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This approach has various shortcomings. To begin with, it does not retain the order in
which words appear and therefore loses context. Consider the Coca-Cola Company’s
2017 Q3 earnings report headlined ‘Net Revenues Down 15%, Driven by 18-Point
Headwind from Refranchising; Organic Revenues (Non-GAAP) Grew 4%, Driven by
Price/Mix of 3%’ (The Coca-Cola Company 2017). Even in a small body of text like
this, a term frequency representation cannot ascertain what is ‘down’, what ‘grew’ and
driven by which factor.

Representation of a word’s meaning based on its neighbouring words is one of the
most common extensions beyond the simple bag-of-words approach. N-gram models
fall under this category, partially addressing the lack of context by storing sequences
of words that occur next to each other. So, for example, a two-word n-gram model,
i.e. a bigram model, parses the text into a set of consecutive pairs. This clearly helps
with capturing the co-occurrences of words. Theoretically, with larger 7, a model can
store more contextual information. However, in practice most NLP applications are
limited to bigrams or at best trigrams since a comprehensive n-gram approach can be
challenging due to computational and time constraints.

Another shortcoming of term frequencies is that common words like pronouns or
prepositions are almost always the terms with highest frequency in the text, which does
not necessarily mean that the corresponding word is more important. To address this
problem, one of the most popular ways to ‘normalize’ the term frequencies is to weight
a term by the inverse of document frequency, namely term frequency-inverse document
frequency (tf—idf). Tf-idf is one of the most popular term-weighting schemes in NLP that
is intended to reflect how important a word is to a document in a corpus (Aizawa 2003).

An additional dimension across which we should look at feature representation in
NLP is how the features are encoded. Much of the earlier NLP work encodes words
as discrete atomic symbols, that is if we have a vocabulary that contains both ‘buy’
and ‘acquire’ as distinct words, ‘acquire’ may be represented as 1d-102 and ‘buy’ as
Id-052. This numbering is completely arbitrary and provides no useful information to
the learning algorithm regarding the relationships that clearly exist between these indi-
vidual symbols. This means that the model cannot leverage what it has learned about
‘buy’ when it is processing a news article that contains ‘acquire’. In machine learning,
this type of feature representation, where categorical features are encoded as unique
ids, is referred to as ‘one-hot-encoding’ and leads to data sparsity. This means we may
require more data in order to successfully train a statistical model.

Using distributed representations can overcome some of these obstacles. A dis-
tributed representation, also known as a vector space model, or vector embedding,
represents words in a continuous vector space where semantically similar words are
grouped together. Going back to our example of ‘acquire’ and ‘buy’, in a distributed
representation setting these two words would be mapped to nearby coordinates in the
vector space after training. As a result, the algorithm that encounters these two seem-
ingly distinct predictive features can perceive that they are indeed closely related.

The different approaches that leverage distributed representations can be divided
into two categories. The first is coined count-based methods (e.g. latent semantic anal-
ysis (LSA)), which quantify the co-occurrence frequencies of words with other words in
a large text and map these statistics down to a dense vector for each distinct word. The
second category is the so-called predictive methods that are trained by iteratively updat-
ing the vector coordinates of words in order to more accurately predict a word from its
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neighbours. The end result from both models is the same as that of count-based models,
a set of dense embedding vectors for each distinct word in the vocabulary (Tensorflow
2017). The distributed representations, computed using such predictive models, are
particularly interesting because the vector space explicitly encodes many linguistic reg-
ularities and patterns. And, surprisingly, many of these patterns can be represented as
linear translations (Mikolov et al. 2013).

Transfer learning is another recently popular topic that goes hand in hand with dis-
tributed representations in NLP. The concept has been around for decades and refers
to the improvement of learning in a new task through the transfer of knowledge from
a related task in a similar domain that has already been learned. In NLP, the transfer
of knowledge usually refers to the reuse of distributed representations of words that
have been trained on very large corpora to smaller, niche domains. This allows the NLP
practitioner to leverage the semantic information and linguistic patterns captured by
large-scale studies in their own domain-specific application instead of having to rely
on what is usually a more niche and limited dataset to relearn the same information.
In Section 10.5, we will provide a real-life NLP application used by one of the leading
asset management firms that uses vector embeddings trained on millions of news arti-
cles, and apply these to the particular domain of M&A. Among the more commonly
used pre-trained vector representations are Google’s Word2Vec (Tensorflow 2017) and
Stanford University’s GloVe (Pennington et al. 2014).

While it is not possible to quantify the entire information content of a collec-
tion of words, the overall goal of feature representation is to maximize this amount.
Language is inherently complex and relies not only on the letters and symbols that
constitute text but also on the human brain’s ability to understand connotation and
context. Hence, developing NLP tools that capture all of the intricacies of human com-
munication becomes increasingly difficult as we move from syntax-based approaches to
those that consider context and semantic associations. It is important to be conscious of
how much context is lost by, for instance, methods that assume words are independent
units.

10.4.3 Inference

Like all other artificial intelligence tasks, the inference generated by an NLP application
usually needs to be translated into a decision in order to be actionable. This natural flow
from inference to decision and action is given in Figure 10.2. Inference from an NLP
application can be used to aid the decision making by humans, where a utility function
is applied to convert the inference into a decision. This utility function can be as simple
as a probability threshold, or an implicit weighing down of pros and cons in a domain
expert’s brain. Alternatively, inference can directly be translated into an action by the
computer as part of an automated quantitative strategy.

Inference has always been a central topic in ML, and over the past two decades
there has been unprecedented progress in the inferential tools used by NLP practitioners.
Inference in ML falls under three broad categories, namely supervised, unsupervised and
reinforcement learning. While the type of inference required depends on the business
problem and the type of training data, in NLP the most commonly used algorithms are
supervised or unsupervised. In a nutshell, supervised learning requires labelled training
data that aims to map a set of predictive features to their recorded or desired output.
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FIGURE 10.2 Flow of inference into decision and action.

In contrast, unsupervised algorithms can learn patterns from unlabelled data. There
is also a hybrid category that falls between the two, coined semi-supervised learning.
Semi-supervised learning typically uses a small amount of labelled data with a larger
portion of unlabelled data to solve supervised problems.

One of the most commonly used supervised methodologies in NLP is the Naive
Bayes model, which assumes that all word features are independent of each other given
the class labels. Due to this simplifying but largely false assumption, Naive Bayes is
very compatible with a bag-of-words word representation. Naive Bayes is commonly
described as ‘the punching bag’ of more complex algorithms in ML. However, despite
its simplifying assumptions, it often comes head to head and at times even outper-
forms more complicated classifiers. Friedman et al. (1997) attribute this paradox to the
fact that classification estimation is only a function of the sign (in binary cases) of the
function estimation; the function approximation can still be poor while classification
accuracy remains high. This refers to poor calibration of a classifier, which we discuss
in the next section.

On the opposite end of the complexity spectrum for supervised methodologies lie
the modern neural network architectures. In the past five years, neural network archi-
tectures, such as recurrent neural networks (RNNs) and convolutional neural networks
(CNNs), have dominated NLP-based inference, blowing the previous state of the art out
of water. In contrast with the Naive Bayes model, these architectures are able to learn
complex and dependent features that can recognize patterns in the input data and map
these to desired outputs. In the domain of NLP, a catalyst in the improved performance
of these architectures has been the rise to prominence of distributed representations that
we discussed in the previous section.

Most of the existing literature in NLP focuses on supervised learning; as such,
unsupervised learning applications constitute a relatively less developed subdomain
where measuring document similarity is among the most common tasks. This is usu-
ally achieved by calculating the cosine similarity between two news items, where the
documents are represented as vectors of term frequencies or term weightings. Recent
studies in this area include the analysis by Hoberg and Phillips (2016), focusing on
10-K product descriptions to create text-based industry classifications, and Lang and
Stice-Lawrence (2015), who compare annual report similarity.
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Another popular unsupervised technique applied in NLP is LSA, also known as
latent semantic indexing (LSI). LSA looks at relationships between a set of documents
and the words they contain by producing a set of latent concepts related to the docu-
ments and terms. Technically, these latent concepts are extracted by applying singular
value decomposition (SVD) to reduce the dimensionality of the term-document matrix
while preserving the similarity structure within the matrix. In simple terms, we can think
of these techniques as essentially factor analysis for words. LSA is commonly used to
gauge document similarities and to uncover textual associative patterns across different
domains.

The application of LSA to financial news is an underexplored research area. In one
of the few studies on the subject, Mazis and Tsekrekos (2017) analyze the impact of the
statements that are released by the Federal Open Market Committee (FOMC) on the US
treasury market. Using LSA, the authors identify the recurring textual ‘themes’ used by
the Committee that are able to characterize most of the communicated monetary policy
in the authors’ sample period. The themes are statistically significant in explaining the
variation in three-month, two-year, five-year and ten-year treasury yields, even after
controlling for monetary policy uncertainty and the concurrent economic outlook.

LSA also has a probabilistic variant named probabilistic latent semantic analy-
sis (pLSA) based on a latent class model (Hofmann 2001). pLSA has paved the way
for a more sophisticated approach named latent Dirichlet allocation (LDA) that uses
Dirichlet-based priors (Blei et al. 2003). LDA allows the researcher to identify latent
thematic structure within a corpus using the term-document matrix. LDA is a gener-
ative model, more specifically a hierarchical Bayesian model, under which documents
are modelled as a finite mixture of topics and topics in turn are modelled as a finite
mixture over words in the vocabulary. Topic modelling is a growing area of research
where NLP practitioners build probabilistic generative models for text corpora in order
to infer latent statistical structure in groups of documents to reveal likely topic attribu-
tions for words

10.4.4 Evaluation

In general, inference in NLP tasks is assessed in a similar way to any other machine learn-
ing analysis. For regression models that try to predict a continuous dependent variable,
such as return or volatility, evaluation metrics are usually various error terms including,
but not limited to, root mean square error (RMSE), mean absolute error (MEA) and
mean squared error (MSE). For classification exercises, where the output is categori-
cal, there exist numerous confusion matrix-based metrics, such as accuracy, precision
and recall. The confusion matrix is a contingency table that compares predicted class
labels from a classifier to the true labels, also referred as the ground truth. As such, for
a binary classification task, the confusion matrix is a 2 X 2 matrix that gives summary
statistics comparing the predicted labels to the true labels. The most intuitive confu-
sion matrix-based metric is accuracy, which indicates what portion of the dataset the
classifier managed to classify correctly.

It is worthwhile mentioning that for classification tasks, confusion matrix-based
metrics give only a partial view of the overall performance. This is due to the
fact that in order to form a confusion matrix, the posterior class probabilities,
e.g. P(Related’) = 0.78, output by the classifier need to be converted to a class label
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by applying a probability cut-off value. For binary classification problems, the most
common practice is to pick this probability threshold to be 0.5, whereby any predic-
tions above this value are labelled to be a ‘positive’ prediction for use in the confusion
matrix. As the observant reader may notice, this binarization of the probabilistic output
results in information loss, and theoretically one can build myriad confusion matrices
using the same classification outputs by simply varying the probability thresholds
between 0 and 1.

To combat these shortcomings, there exist methods that evaluate the predictive
performance of classifiers across the range of possible thresholds. A common example
of such ‘systemic’ metrics is the Area under the Receiver Operator Characteristic
Curve (AUROC). The ROC curve plots recall, i.e. True Positive Rate, versus False
Positive Rate for the classifier at varying probability thresholds. Figure 10.3(a) shows
an example ROC curve. The value of the AUROC varies between 0.5 and 1, where
1 indicates a perfect classifier and 0.5 represents a totally random one. Another
‘systemic’ metric that is similar to AUROC but indeed suitable to use when working
with highly imbalanced datasets is the Area under the Precision Recall curve (AUPRC).
The precision recall curve aims to capture the tradeoff between the classifier precision
versus recall (of the positive class) as the probability threshold for the positive class
label is varied. Figure 10.3(b) shows a sample precision recall curve. For a thorough
coverage on AUROC and AUPRC, the reader is referred to Davis and Goadrich (2006).

Assessing the posterior class probabilities (classifier outputs) rather than the maxi-
mum a posteriori (MAP) class labels is useful in giving the NLP practitioner insight into
the ‘calibration’ of the classifiers. Well-calibrated classifiers are probabilistic classifiers
for which the posterior probabilities can be directly interpreted as confidence levels. For
instance, a well-calibrated (binary) classifier is expected to classify the samples such that
among the samples to which it outputs a probability of 0.8 of being a positive observa-
tion, approximately 80% actually belong to the positive class. Some models, like Naive
Bayes as we discussed in the previous section, can give acceptable accuracy results while
in reality having poor calibration with outputs that may be under- or overconfident.

Mittermayer and Knolmayer (2006) reviewed eight different news-based trading
applications, noting that technical performance metrics, like the confusion matrix-based
ones, were not reported in most of them. However, with the rise in prominence of
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machine learning in the past decade, recent NLP research puts more emphasis on the
evaluation of the outcomes with principled performance metrics.

It is also imperative to assess the validity of the outcome along the temporal
dimension. Inference from news items is in the form of point-events when modelled as
time series. In regression applications, before declaring causal links between such point
events and market data (such as price, running volatility, etc.), it is important to verify
the Granger causality of the relationship. Granger causality is a hypothesis test used to
ascertain whether one time series is useful in predicting another. According to Granger
causality, if a signal in time series x; ‘Granger-causes’ a signal in time series x,, then
past values of x; should contain information that helps predict x, above and beyond
the information contained in past values of x, alone.

For unsupervised learning, the variation in the different algorithms means that each
technique warrants a different method of evaluating performance. Even different clus-
tering techniques do not have well-established common performance metrics among
themselves. For a k-means clustering task, a within-cluster ‘residual sum of squared’
score (also known as inertia) would be the metric of choice, whereas for hierarchical
clustering a ‘silhouette coefficient’ is more commonly used. For topic models like LSA
and LDA that we discussed in the previous section, various metrics, which evaluate the
latent space, like word intrusion and topic intrusion, exist.

10.4.5 Example use case: Filtering merger arbitrage news

In this section we will look at a real-life example of NLP applied to classify finan-
cial news, specifically to determine whether a news article is related to M&A activity.
Merger arbitrage is a well-established investment strategy. In simple terms it is a risky
bet initiated on the merger announcement date by an investor who chooses to bet that
the merger will complete. While the profitability of M&A strategies has been decreas-
ing over time, substantial risk premia can still be captured from such strategies even
when based only on publicly available information (Jetley and Ji 2010). M&A strate-
gies have traditionally been used by institutional investors such as hedge funds, but they
are becoming increasingly accessible to retail investors as well through exchange-traded
funds (ETFs) and mutual funds.

We have discussed that the efficient utilization of news data in finance requires
identifying relevant news in a timely and efficient manner. In this context, relevance
can be with respect to a particular topic, such as mergers, restructurings, tender offers,
shareholder buybacks or other capital structure adjustments. The role of the media in
M&A deals has been well studied. Media coverage can sway acquirer firms with poten-
tial reputational risk to abandon ongoing deals (Liu and McConnell 2013). The media
can introduce speculative merger rumours published about firms that interest the news-
papers’ readers, rumours that may distort prices and may result in return fluctuations
(Ahern and Sosyura 2015).

Despite its popularity, the characterization of news flows in merger arbitrage has
received relatively limited attention in the literature. Among the NLP studies focused
on M&A, several investigate predicting the media-implied completion probability.
Buehlmaier and Zechner (2014) use a simple Naive Bayes methodology to analyze
determinants of merger deal completion on a large sample of merger announcements.
They find that M&A-related financial news moves slowly, taking several days to be



202 BIG DATA AND MACHINE LEARNING IN QUANTITATIVE INVESTMENT

fully priced in. A simple M&A strategy, which is reinforced by financial news content,
increases risk-adjusted returns by more than 12 percentage points. More recently,
the same authors find that merger arbitrage becomes significantly more profitable
if one uses financial news to filter out the deals with low probability of completion
(Buehlmaier and Zechner 2017).

As exemplified by existing research, it is in general to the investment manager’s
advantage to keep abreast of media coverage that concerns not only new but also exist-
ing M&A deals. To this end, we investigate the efficacy of a systematic NLP approach
that aims to accurately discriminate news article headlines that are related to M&A
from those that are not. This is achieved by training a supervised learning algorithm
that can pick up the class-discriminative patterns in news articles that were manually
labelled as M&A related or unrelated. Our end goal is to utilize this NLP model, namely
NewsFilter, to infer whether a previously unseen article falls into the former or the lat-
ter category. This is used to act in a timely manner on official M&A announcements to
submit arbitrage trades and to filter out stocks that are associated in M&A deals from
other equity strategies in order to minimize idiosyncratic risk.

10.5 DATA AND METHODOLOGY

Our dataset consisted of 13000 news headlines retrieved from formal news sources,
such as Bloomberg, between January 2017 and June 2017. These headlines were manu-
ally labelled as either ‘Related’ or ‘Unrelated’ to merger arbitrage by portfolio managers
within one of the leading asset management firms. At the end of the manual labelling,
approximately 31% of the dataset were tagged as ‘Related’ and the rest ‘Unrelated’ to
merger arbitrage.

We have used relevance tags provided by the date vendor to ascertain which tickers
a particular news headline concerns. In general, it is quite common for a news article
to mention multiple companies with varying degrees of emphasis within its body, and
most news providers appoint relevance scores to news items, quantifying to what degree
a particular article is about a specific company. Within the M& A domain, there is rel-
atively less ambiguity since the tickers mentioned are predominantly the target and the
acquirer.

Our NLP analysis pipeline consisted of the common steps already discussed in
Section 10.4. We first preprocessed the manually labelled data to reduce noise and
transform the input to be machine readable. To this end, the textual news headlines
were first tokenized. Following tokenization, we have removed punctuation and English
stop words and have also applied stemming to reduce derivationally related forms of
a word to a common base form, such as transforming ‘acquiring’ to ‘acquire’. These
steps have helped to consolidate the unique terms in the dataset. Furthermore, we have
also reduced our vocabulary by term frequency, including only the most frequent 5000
words as distinct terms and representing the rest under the umbrella category of ‘Other’.

For inference, we have used an array of binary classifiers ranging from conventional
ones as Sparse Naive Bayes, Ridge Regression and Random Forest to various neural
network architectures. Alongside computer vision, NLP is one of the fields that has
benefited greatly from the resurgence of neural networks in the past five years. In our
analyses, we have used the following network architectures listed below. For a thorough
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coverage of the topic, the reader is referred to the Deep Learning book by Goodfellow
et al. (2016).

1. Feed-forward neural network (FNN): an FNN contains a (possibly large) number of
simple neuron-like nodes, organized in layers. Like all neural network architectures,
data enters the network at the input layer and, as the name suggests, is fed forward
through the network, layer by layer, until it arrives at the output layer. Nodes in
a layer alone never have connections and in general two adjacent layers are fully
connected (every neuron form one layer to every neuron to another layer). As the
information propagates forward, there are no cycles or feedback loops between
layers. FNNs were the first and the simplest network structure to be devised.

2. RNN: in contrast with feed-forward architectures, an RNN contains recursive
loops that allow it to exhibit dynamic temporal behaviour and capture long-term
dependencies in sequential inputs. As a result, RNNs are suitable for NLP since
they can evaluate each word/token input in context of the words that appear
before it. However, the training of such architectures can be problematic due to
the recursive nature of the information and gradient flow. In order to alleviate
these, different gating mechanisms have been proposed, resulting in various RNN
architectures. In our study we use a popular recursive architecture called long
short-term memory (LSTM) (Hochreiter and Schmidhuber 1997).

3. CNN: these consist of a sequence of convolutional blocks in between the input
and output layers. For NLP applications, a single convolutional block usually con-
sists of a convolution kernel that convolves the previous layer’s input over a single
spatial dimension, followed by a max pooling layer for down-sampling the convo-
lutional output to produce a tensor of outputs. The convolution kernels are used to
generate position-invariant features that exhibit compositionality. In other words,
a CNN can combine basic features, e.g. edges in an image, to form more com-
plex features like silhouettes of objects, etc. As such, CNNs have traditionally been
applied in computer vision applications to automatically train position-invariant
and compositional features that can detect objects in images, among other applica-
tions. Now, it is evident that text inputs have similar properties to images, whereby
characters combine to form words; words form n-grams, phrases and sentences.
Hence, the use of CNNs for NLP tasks has become gradually more prominent in
recent years (Conneau et al. 2016; Yin et al. 2017). In practical implementations
like ours, the output from the convolutional block sequence is usually appended
with a shallow FNN to further process the convolutional features before producing
the output. In our analyses we use a CNN with varying kernel window size with
the aim of extracting linguistic features of varying length — we will refer to this as
a multi-size CNN.

In terms of feature representation, for the neural network classifiers we have opted
to use a distributed representation, using pre-trained GloVe (Pennington et al. 2014)
embeddings. We used the version of GloVe that was trained on a 2014-dated snapshot of
Wikipedia, and the Gigaword 5 dataset, which is a comprehensive archive of newswire
text data containing close to 10 million articles. Applying transfer learning in this
manner allowed us to leverage the rich semantic information and linguistic patterns cap-
tured by the large-scale news and Wikipedia article corpora that GloVe was trained on.
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For all other ‘conventional’ classifiers, we have used a term frequency—inverse document
frequency (tf—idf) representation, which has already been discussed in Section 10.2. All
NLP-related preprocessing steps were done by the spaCy package (s. d. team 2017)
in Python. For inference, we have used the conventional classifiers as implemented by
scikitlearn (Pedregosa et al. 2011) and used tensorflow (Abadi et al. 2016) and keras
(Chollet 2015) to build the neural network architecture explained above.

10.5.1 Results

We carried out multiple experiments by partitioning the manually labelled dataset into
five equally-sized parts with approximately equal prior outcome probabilities, where
probability of ‘Relevant’ was approximately 0.69. For each experiment, classifiers were
trained on four partitions and tested on the remaining one. By iterating this process over
all five partitions, we ensured the inclusion of all news headlines in the experiments. The
performances of all predictive models were evaluated based on the AUROC, AUPRC
values and predictive accuracies of these stratified fivefold cross-validations.

Table 10.1 provides fivefold cross-validated predictive performance results for our
binary classification task. To serve as benchmarks, rows i and ii represent predictive
results by two rudimentary classifiers. As the name suggests, the Random Predictor
randomly assigns half of the news headlines as ‘Related’ and the rest as ‘Unrelated’ to
merger arbitrage. The Prior Predictor is very similar, apart from the fact that it does
the random label allocations in line with the prior class distributions rather than with
equal probability. As expected, both the Random and Prior predictors perform poorly
in predicting the correct class labels.

Rows iii and iv in Table 10.1 give the results of two instance-based classifiers,
namely k-nearest neighbour (k-NN) and nearest centroid. These produce class labels
for a new news article based on the class labels of the training samples to which it is the
most similar. While substantially outperforming the random classifiers, instance-based
classifiers do not perform particularly well. An interesting observation is that while the
average accuracies of the instance-based classifiers are almost identical at 0.793, the
AUPRC and AUROC metrics indicate that the nearest centroid overall does a better job
in classifying articles as ‘Related’ versus ‘Unrelated’ to merger arbitrage.

Rows v and vi give the results of two NB variants, namely multinomial and
Bernoulli NB. The multinomial NB normally requires integer word counts in the
document-term matrix. However, in practice, fractional counts such as tf-idf are
also commonly used. In contrast, Bernoulli NB works with binary features, whereby
the tf-idf frequencies are reduced to 0 and 1. It is therefore interesting to note
that the Multinomial representation, which is richer, only marginally outperforms the
Bernoulli NB.

Rows viii to xiv feature other commonly used classifiers ranging from Perceptron to
Random Forest and variants of Support Vector Machines with different (L1 and L2) reg-
ularization penalties. These can be categorized as conventional but relatively sophisti-
cated classifiers, and as their performance reflects, they do a respectable job in accurately
classifying the news items.

Row xv provides the predictive results of an ensemble classifier that takes the
majority vote of all conventional classifiers listed between rows iii and xiv for each news
article in the test set. As commonly reported in the literature, the ensemble classifier
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TABLE 10.1 Fivefold cross validated predictive performance results for the NewsFilter sample

dataset
Accuracy AUPRC AUROC
i Random Predictor 0.498 +£0.005 0.488 +0.006 0.497 +0.005
il Prior Predictor 0.56+0.01 0.421+0.014 0.493+0.012
iii k-NN 0.793 +£0.005 0.707+0.01 0.724 +0.003
v Nearest Centroid 0.793 £0.005 0.74+0.011 0.785+0.007
v Sparse Bernoulli NB 0.808 +0.011 0.733+0.008 0.756 +0.012
vi Sparse Multinomial NB 0.812 +£0.01 0.746 +0.01 0.779+£0.012
vil Passive-Aggressive 0.833+0.009 0.778 £0.007 0.812+0.008
viii Perceptron 0.829 +0.009 0.774 +0.009 0.81+0.01
ix Random Forest 0.851+0.005 0.797 +£0.009 0.812+0.007
b SVM L1 0.854+0.005 0.803 +£0.008 0.83+0.004
xi SVM L2 0.858 +0.006 0.808 +0.006 0.832+0.006
xii Linear SVM with L-1 feature 0.855+0.006 0.804 +0.009 0.829+0.007
selection

xiii Ridge Classifier 0.858 +0.004 0.808 +0.005 0.827+0.005
xiv Elastic Net 0.86+0.003 0.809 +0.009 0.827+0.005
XV Ensemble [iii—xiv] 0.863 +0.004 0.814 +£0.003 0.83+0.003
xvi Neural Net - FNN 0.849 +0.005 0.802 +0.007 0.906 +0.003
xvii Neural Net - LSTM 0.869 +0.006 0.805+0.006 0.908 +0.003
xviil Neural Net — Multi-size CNN 0.875+0.005 0.817+0.006 0.912+0.004

The columns indicate increased predictive performance. The cells contain the expected values and the standard
deviations of the cross-validation results.

unsurprisingly outperforms all its constituents, providing a predictive performance
that is marginally better than its best-performing constituent, namely the elastic net in
rOw Xiv.

Finally, we can see how the three neural network architectures fared in rows xvi to
xviii. The predictive performance of the FNN is better than that of the perceptron. This
can be explained by the higher number of hidden layers in the FNN that give it a higher
representation power, and also the GloVe vector embeddings that we use for the neural
network architectures are likely to give a richer representation of the words. Comparing
FNN to the recurrent and convolutional architectures, it is evident that the LSTM and
the Multi-size convolutional net significantly outperform the simpler FNN architecture.
Comparing the LSTM with the multi-size CNN, we see that the latter outperforms the
former, albeit marginally. There is no consensus in the current literature as to whether a
recurrent or convolutional architecture is more suitable for NLP tasks (Yin et al. 2017).

10.5.2 Discussion

NewsFilter, as detailed in this section, can be categorized as a risk-orientated NLP
application that helps bring securities associated with M&A-related activity to the
investment manager’s attention in order to exclude idiosyncratic risk from one’s port-
folio. With every machine learning application, it is important to be conscious of the
potential monetary impact of the inaccuracies, such as false positives and false nega-
tives, of the model. Given the application context, the consequences of misclassification
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by NewsFilter is limited to erroneous exclusion/inclusion of certain securities from the
investment universe. This worst-case scenario is arguably lighter compared with the
immediate financial consequences of some automated trading or market making appli-
cations (covered in Section 10.3) going awry.

More importantly, as opposed to an automated trading application — for instance,
based on trade signals derived from sentiment analysis — the inference generated by the
model is used to aid the investment manager’s decision making, leaving room for expert
discretion to pick up and alleviate any potential shortcomings of the model.

Despite the hype around the more complex and powerful neural network method-
ologies listed herein, it is important to justify the usage of these tools by analyzing the
performance edge gained compared with simpler classifiers. This is due to the fact that
complex models with larger degrees of freedom are prone to implementation errors
and overfitting, and at the hands of the uninformed user the unintended consequences
may outweigh the perceived benefits. In addition, as is commonly quoted in machine
learning, ‘there is no free lunch’. In other words, there is no perfect one-size-fits-all
approach in any machine learning problem and as many alternatives as possible should
be explored before settling on a final methodology.

While NewsFilter achieves fairly satisfactory predictive performance levels, it
relies on news feed metadata for entity extraction, in other words determining which
securities/tickers a particular article is referring to. We are currently working on enrich-
ing the entity extraction capabilities of the model to complement the tags reported in
the metadata. In addition to entity extraction, another active area of research is novelty
detection of articles in order to distinguish new information from those that have
been recycled. Without this filtering it is possible to be bogged down with duplicate
stories, which may result in amplifying the strength/importance of a news-related
signal unjustifiably.

10.6 CONCLUSION

Rather than serving as an exhaustive review, this chapter has aimed to provide the
uninitiated with a gateway into the increasingly popular application domain of finance
in NLP. The application of NLP in finance has become more prominent due to the
exponential increase in computing power over the past 30years and the increased
focus on textual methods driven by the requirements to process an ever-growing
volume of news data. A 2016 report by MarketsandMarkets estimated the value of the
NLP market as $7.6 billion in 2016 and projected it to grow to $16 billion by 2021
(Marketsandmarkets 2016).

The explosion of financial news data in the past decade has been largely driven by
the electronification of mainstream media, the adoption of web-based dissemination by
regulators as well as exchanges, and the rise of web-based social media. In the finan-
cial domain, news is considered as an ‘information event’ that influences the market
microstructure. Using NLP techniques, the vast computing capabilities of modern com-
puters are able to identify and exploit patterns embedded in textual data for financial
applications ranging from systematic investing to market making and risk control. In
all of these domains, inference from NLP techniques serve as an additional information
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source that complements the traditional mix of market data and has the potential to
uncover patterns not captured by technical or fundamental analyses.

In contrast to conventional market time series data, the vast majority of news
data is created for human consumption and as such is stored in an unstructured
format. This unstructured format, i.e. human language, is inherently complex and
relies not only on the letters and symbols that constitute text but also on the human
brain’s ability to understand connotation and context. Despite not having reached the
point where computers understand all intricacies of language yet, ongoing research
in NLP brings us ever closer to this reality. One of the remaining challenges in
textual analysis is to move beyond assuming words occur as independent units, a
topic we briefly discussed in Section 10.4 in the contexts of feature representation
and inference.

In general, unsupervised and semi-supervised learning are less developed research
areas in NLP applied to financial news. However, their prominence grows with the
unprecedented surge in the pace of data generation, most of which is in unlabelled
and also unstructured form. Supervised learning relies on labelled data, and manual
labelling of news items is a labour-intensive step. Consistency of labelling, in the case
of multiple human labellers, is a vital prerequisite for any inference extracted by the
machine to be usable. Particularly in sentiment analysis, discrepancies in the way
different market participants are affected by the same events may result in having
multiple interpretations of the same events. Even in an application as discussed in
Section 10.5, conflicts in labelling may arise as to which news items should be regarded
as relevant or irrelevant to M&A activity. These inconsistencies in human labelling nat-
urally become more prominent in cases where multiple experts work on labelling
a dataset.

Another potential concern with NLP analyses applied to financial news is the fact
that most of these analyses are powered by common sets of data provided by data
vendors or accessible publicly, e.g. SEC filings. It has been argued that this may make
it more difficult to gain a competitive advantage over other market participants with
similar algorithms. While this is a valid concern, the same argument can be made for
conventional market data where lack of variability in data sources is just as pervasive.
In addition, different applications have variations in the NLP steps we have covered
in Section 10.4, the way they label data and some proprietary hand-crafted features to
achieve different goals (Mittermayer and Knolmayer 2006). As a result, standing out
from the crowd with careful implementation and tailored use cases is not only possible
but highly probable.

Although we are still not close to achieving full semantic and contextual under-
standing of financial news, the field of NLP has made significant progress, allowing for
technologies that have and will continue to revolutionize how financial institutions oper-
ate. The adoption of NLP in finance leads to the enhancement of performance, yet it can
have its unintended consequences. The improved speed that NLP provides us to respond
to news also increases the requirement that the response be the right one. Responding
rapidly but in the wrong way can lead to increased market instability. Going forward,
the challenge for the regulatory authorities is to understand the combined impact of
these technologies and postulate regulations which can control volatility, improve the
provision for liquidity and generally stabilize the market behaviour.
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Support Vector Machine-Based Glohal
Tactical Asset Allocation

Joel Guglietta

11.1  INTRODUCTION

In this chapter we show how machine learning, more specifically support vector
machine/regression (SVM/R, can help building global tactical asset allocation (GTAA)
portfolio. First, we will present a quick literature review on GTAA, explaining the
different families of asset allocation. We will then go through a historical perspective of
tactical asset allocation in the last 50 years, introducing the seminal concepts behind it.
Section 11.3 will explain the definition of support vector machine (SVM) and support
vector relevance (SVR). Section 11.4 will present the machine learning model used for
tactical asset allocation and will discuss the results.

11.2  FIFTY YEARS OF GLOBAL TACTICAL ASSET ALLOCATION

Running the risk of stating the obvious, the objective of asset allocation is to obtain
the best expected return-to-risk portfolio (Dahlquist and Harvey, 2001). The authors
distinguish three families of asset allocation: (i) benchmark asset allocation, (ii) strategic
asset allocation, (iii) GTAA (see Figure 11.1). The investment portfolio strategy built in
this chapter belongs to the third class of model where predictions models use today’s
information set in order to forecast asset returns.

Practitioners have been managing GTAA strategies for almost 50 years. GTAA
broadly refers to active managed portfolios that seek to enhance portfolio performance
by ‘opportunistically shifting the asset mix in a portfolio in response to the changing
patterns of return and risk’ (Martellini and Sfeir, 2003). Ray Dalio, CEO of Bridgewater,
made this approach popular in the 1990s with his ‘All-Weather’ portfolio.

The theory backing such an investment approach is well documented. W. Sharpe
showed in 1963 that assets’ returns can be decomposed into a systematic and a specific
component. Armed with this time-honoured framework, portfolio managers deploy
two forms of active strategies: (i) market timing, which aims at exploiting predictabil-
ity in systematic return, and (ii) stock picking, which aims at exploiting predictabil-
ity in specific return. The academic literature suggests that there is ample evidence

Big Data and Machine Learning in Quantitative Investment, First Edition.
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FIGURE 11.1 Three families of asset allocation.
Source: Dahlquist and Harvey (2001).

of predictability in the systematic component (Keim and Stambaugh 1986; Campbell
1987; Campbell and Shiller 1988; Fama and French 1989; Ferson and Harvey 1991;
Bekaert and Hodrick 1992; Harasty and Roulet 2000), which is less true for the specific
component.

After Samuelson (1969) and Merton (1969, 1971, 1973), who showed that optimal
portfolio strategies are significantly affected by the presence of a stochastic opportunity
set, optimal portfolio decision rules have been enriched to factor in the presence of
predictable returns (Barberis 2000; Campbell and Viceira 1998; Campbell et al. 2000;
Brennan et al. 1997; Lynch and Balduzzi 1999, 2000; Ait-Sahalia and Brandt 2001).
In a nutshell, all these models suggest that investors should increase their allocation
to risky assets in periods of high expected returns (market timing) and decrease their
allocation in periods of high volatility (volatility timing). Interestingly enough, Kandel
and Stambaugh (1996) argue that even a low level of statistical predictability can gen-
erate economic significance and abnormal returns may be attained even if the market is
successfully timed only 1 out of 100 times.

In essence, GTAA is a two-step process where first practitioners forecast asset
returns by asset classes, then they build portfolios based on this forecast. Close to
GTAA but without the forecasting part, risk parity portfolios (Hurst et al. 2010)
are now a behemoth in the making, with almost US$3 trillion managed according
to this method. Risk parity is often said to be the ‘cheap’ version of Bridgewater’s
‘All-Weather’ portfolio. We agree. GTAA and risk parity bear some similarities as they
both try to exploit the one and only free lunch out there: diversification. However,
risk parity is nothing but a mere ‘technicality’ for portfolio construction (the so-called
‘one-to-sigma’ approach where the weight of a given instrument is inverse in its
realized — sometimes expected — volatility). GTAA tries to condition the asset mix
based on the current information set in order to build a portfolio which is ‘better’ (i.e.
hopefully delivering a higher return-to-risk profile) fitted to the current (or expected)
economic cycle. For instance, Chong and Phillips (2014) build a GTAA based on
18 economic factors using their ‘Eta pricing model’. Whereas one is mean—variance
optimized (ECR-MVO), the other is constructed to reduce its economic exposure
(MIN). Both are long-only portfolios and are rebalanced semi-annually.
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To conclude, the holy grail of GTAA remains to build a portfolio which performs
equally well in any kind of economic environment. In order to achieve this, the portfolio
manager has to find the optimal asset mix. The asset mix is usually made of fixed income
(long-term and intermediary), equity and commodity (others sometimes add real estate).
The economic cycle impacting this asset mix can be modelled with different granularity.
We follow R. Dalio in trying not to over-complexify things and chose a sparse model of
the economic cycle, only using soft data (survey) for real business cycle (RBC) indicators
and realized inflation.

11.3 SUPPORT VECTOR MACHINE IN THE ECONOMIC LITERATURE

A thorough introduction to SVM and support vector regression is beyond the scope
of this chapter. However, we feel it is appropriate to explain briefly how SVM and
support vector regression operate for financial practitioners (and to take time to define
some useful mathematical notions) who are not familiar with it and why we chose this
method over alternative machine learning algorithms. We address basic technicalities
of SVM here.

As Y. Abu-Mostafa (Caltech) puts it, SVM is arguably the most successful classi-
fication method in machine learning with a neat solution which has a very intuitive
interpretation. Motivated by Statistical Learning Theory, SVM is a ‘learning machine’
introduced by Boser, Guyon and Vapnik in 1992 that falls into the category of super-
vised estimation algorithms (a learning algorithm that analyzes the training data and
produces an inferred function, which can be used for mapping new data points). It is
made up of three steps:

(1) Parameter estimation, i.e. training from a data set.
(ii) Computation of the function value, i.e. testing.
(iii) Generalization accuracy, i.e. performance.

As M. Sewell (2008, 2010) notes, ‘the development of Artificial Neural Networks
(ANNSs) followed a heuristic path, with applications and extensive experimentation pre-
ceding theory. In contrast, the development of SVMs involved sound theory first, then
implementation and experiments.’

As far as parameter estimation is concerned, ‘a significant advantage of SVMs is that
whilst ANNSs can suffer from multiple local minima, the solution to an SVM is global
and unique’. This is due to the fact that training involves optimization of a convex cost
function, which explains why there is no local minimum to complicate the learning
process. Testing is based on the model evaluation using the most informative patterns
in the data, i.e. support vectors (the points upon which the separating hyperplanes lie).
Performance is based on error rate determination as test set size grows to infinity.

SVMs have more advantages over ANNSs. First, they have a simple geometric inter-
pretation and give a sparse solution. Unlike ANNs, the computational complexity of
SVMs does not depend on the dimensionality of the input space. Second, while ANNs
use empirical risk minimization (that does not work very well in practice as the bounds
are way too loose), SVMs use structural risk minimization (SRM). In their seminal 1974
paper, V. Vapnik and A. Chervonenkis set out the SRM principle which uses the VC
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(for Vapnik—Chervonenkis) dimension. The VC dimension is a measure of the capacity
(complexity) of a space of functions that can be learned by a statistical classification
algorithm. The SRM is an inductive principle for model selection used for learning from
finite training data sets. It describes a general model of capacity control and provides
a tradeoff between hypothesis space complexity and the quality of fitting the training
data (empirical error). Sewell (ibid) defines the procedure as below.

(i) Using a priori knowledge of the domain, choose a class of functions, such as poly-
nomials of degree 7, neural networks having # hidden layer neurons, a set of splines
with 7 nodes or fuzzy logic (a form of many-valued logic in which the truth values
of variables may be any real number between 0 and 1) models having 7 rules.

(ii) Divide the class of functions into a hierarchy of nested subsets in order of increasing
complexity. For example, polynomials of increasing degree.

(iii) Perform empirical risk minimization on each subset (this is essentially parameter
selection).

(iv) Select the model in the series whose sum of empirical risk and VC confidence is
minimal.

SVMs often outperform ANNSs in practice because they deal with the biggest prob-
lem that ANNS face, i.e. overfitting. As they are less prone to such a cardinal disease,
they ‘generalize’ in a much better way. We should note, however, that while the use
of kernel function enables the curse of dimensionality to be addressed, proper kernel
function for certain problems is dependent on the specific dataset and as such there is
no good method for the choice of kernel function (Chaudhuri 2014). From a practical
point of view, the biggest limitation of the support vector approach lies in choice of the
kernel (Burges 1998; Horvath 2003).

SVM can be applied to both classification and regression. When an SVM is applied
to a regression problem, it is called support vector regression. What is the difference
between SVM and SVR? SVR is based on the computation of a linear regression func-
tion in a high-dimensional feature space where the input data is mapped via a non-linear
function. In order to give an intuition of how SVR works, let’s assume we are given a
linearly separable set of points of two different classes y; € {—1,+ 1}. The objective of
an SVM is to find a particular hyperplane separating these two classes y; with min-
imum error while also making sure that the perpendicular distance between the two
closes points from either of these two classes is maximized. In order to determine this
hyperplane, we set constraints like this:

wx,—b=1,ify;=1 and wx —b=-1,ify;=-1

It is straightforward to transform this classification problem into a regression prob-
lem. Let’s write: y; —w. x; —b<e and —(y;,—w. x; — b) <e

The two equations above state that the hyperplane has points on either side of it
such that the distance between these points and the hyperplane should not be further
than e. In a two-dimension plane, this comes down to trying to draw a line somewhere
in the middle of the set of points such that this line is as close to them as possible.
This is precisely what SVR is doing. Instead of minimizing the observed training error,
SVR attempts to minimize the generalization error bound so as to achieve generalized
performance.
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SVM provides a novel approach to the two-category classification problem such
as crisis or a non-crisis (Burges 1998). The method has been successfully applied to
a number of applications, ranging from particle identification, face identification and
text categorization to engine detection, bioinformatics and database marketing. For
instance, A. Chaudhuri uses an SVM for currency crisis detection. Lai and Liu (2010)
compare the performance in financial market prediction of an ANNs approach and the
regression feature of SVM. The historical values used are those of the Hang Sang Index
(HSI) from 2002 to 2007 and data for January 2007 and January 2008. SVM performs
well in the short-term forecast. Other authors such as Shafiee et al. (2013) get an accu-
racy rate as high as 92.16% in forecasting Iranian stock returns. Using daily closing
prices for 34 technology stocks to calculate price volatility and momentum for individ-
ual stocks and for the overall sector, Mage (2015) use an SVM to predict whether a stock
price some time in the future will be higher or lower than it is on a given day. Though the
author finds little predictive ability in the short run, he finds definite predictive ability
in the long run.

Bajari et al. (2015) note that applied econometricians voice scepticism about
machine learning models because they do not have a clear interpretation and it is not
obvious how to apply them to estimate causal effects. Some recent works suggest,
however, that such machine learning methods yield interesting results. For instance,
McNelis and McAdam (2004) apply linear and neural network-based ‘thick’ models
for forecasting inflation based on Phillips—curve formulations in the US, Japan and
the euro area. Thick models represent ‘trimmed mean’ forecasts from several neural
network models. They outperform the best-performing linear models for ‘real-time’
and ‘bootstrap’ forecasts for service indices for the euro are, and do well, sometimes
better, for the more general consumer and producer price indices across a variety of
countries. Back to the SVM, Bajari and Ali, tackling the problem of demand estimation,
focus on three classes of model: (i) linear regression as the baseline model, (ii) logit as
the econometric model, (iii) stepwise, forward stage-wise, LASSO, random forest, SVM
and bagging as the machine learning models. Interestingly enough, they show that
machine learning models consistently give better out-of-sample prediction accuracy
while holding in-sample prediction error comparable in order to estimate. SVR has
been applied in time series and financial prediction. For example, Zhang and Li (2013)
use SVR to model to forecast CPI. Money gap and CPI historical data are utilized
to perform forecasts. Furthermore, the grid search method is applied to select the
parameters of SVR. In addition, this study examines the feasibility of applying SVR in
inflation forecasting by comparing it with back-propagation neural network and linear
regression. The result shows that SVR provides a promising alternative to inflation
prediction.

11.3.1 Understanding SYM

SVM is essentially an algorithm used to solve a classification problem such as deciding
which stocks to buy and to sell. The main notion boils down to maximizing the ‘margin’
between these two groups of stocks. The so-called ‘kernel trick’ (defined below) is used
to address non-linearities. The main mathematics involved is some college geometry and
quadratic optimization (derivative calculus).

We first assume a linearly separable data set, for example a set of four stocks.
In order to better visualize our problem, let’s assume we measure two attributes x;
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(a) (b) (c)
FIGURE 11.2 The kernel trick

on these four stocks (such as earning quality and price momentum for example) in the
input space X. These two attributes form a two-dimension space. At a given time, one
can plot the four stocks in this plane (scatter plots in Figure 11.2). Let’s assume two
classes y; € {—1,+ 1}, with long stocks (+1, the green dots) and short stocks (-1, the
red dots). The problem we try to solve is whether there is any advantage to choosing a
separating line over other lines. One first should note that such a line is a hyperplane
(of dimension 1, a line then) with equation w’. x = 0, with w the vector of weights (w’
being the transpose).

Let’s examine the three examples above and ask ourselves which is the best line to
separate the points. In case (a) the margin is lower than the one in case (b), which is
lower than the one in case (c). In the three cases, the in-sample error is zero. As far
as generalization is concerned, as we deal with four points in a linear separable state,
generalization as an estimate will be the same. Intuitively however, one should feel that
a fat margin (case c) is better. This brings two questions: (i) Why is a fatter margin
better? (ii) How can we solve for the weight w that maximizes this margin?

In all likelihood, the process that generates the data is noisy. Therefore, when the
margin is thin, the chance of having a point which is misclassified is higher than in
the case of a fatter margin. This gives an intuition as to why a fatter margin is better.
The proof is based on the so-called Vapnik-Chervonenkis analysis where one can show
that a fatter margin ushers in a lower Vapnik-Chervonenkis dimension (the VC dimen-
sion being the cardinality of the largest set of points that the algorithm can shatter).
Practically, a fatter margin implies better out-of-sample performance.

Now, let’s find the weight w that maximizes the margin. The margin is simply the
distance D from a plane to a point, which brings us back to our college geometry. Let’s
define x,, as the nearest data point to the separating line (hyperplane) w’. x = 0. How
far is this point from the hyperplane? Before doing this, let’s address two technicalities.

First, we normalize w. Let’s note that for every point, we have li/. x,| > 0 for every
point. The objective is to relate w to the margin. Note that we can scale w up and
down as the hyperplane equation (w’. x = 0) is scale-invariant. Without loss of gener-
ality, we consider all the representations of the same hyperplane and just pick the one
for which we have lw'. x,| = 1 for the minimal point. This will simplify the analysis
latter on.

Second, we introduce an artificial coordinate x,. Think of it as a constant to which
we assign a weight w. In order to avoid confusion, we rename this weight w, as the
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bias b. We have now a new (‘new’ compared with the vector w used in w’. x = 0) weight
vector w = (wy, ..., w,), with p the number of attributes (such as earning quality, price
momentum, Merton’s distance to default, liquidity). We will see that this new vector
w and b have different roles when we solve for the maximum margin and it is no longer
convenient to have both blended in the same vector. The equation for the hyperplane is
now: w.x+b=0and w = (w,, ey W)

We can now compute the distance D between x,, and the hyperplane of equation
w'.x+b=0where |&.x,+b| =1.

First, the vector w is perpendicular to the plane in the input space X. This is
straightforward to show. Let’s consider any two points x; and x, on the plane. We
have «/'. x; +b = 0 and w'. x, + b = 0. The difference between these two points is w'.
(x; —x,) = 0, which shows that «' is orthogonal to every vector (x; —x,) in the plane
and therefore is orthogonal to the plane.

Second, we take any point x on the plane. The projection of the vector going from
point x to point x,, (i.e. vector x,, —x) on the vector w orthogonal to the plane is the
distance D to the plane. In order to do so we compute first the unit vector i, i.e. the
vector normalized by its norm ||w||, such that i = w/||w/||. The distance is the inner (dot)
product such that D = |&/.(x,, — x)|. Hence, D =1/||w|| * lw/'. (x,, —x)| = 1/|jw| * /.
x,+b—w'. x—=bl = 1|\w| as lw'. x, +bl =1 and lw'. x— bl = 0. One sees that the
distance between the nearest point to the hyperplane and this hyperplane is nothing but
one over the norm ||w/|| of w.

We can now formulate our optimization problem. Our objective is to

Maximize 1/||w||

subject to min,, _ 1’2,“.9N|w/. x,+bl = 1 (meaning minimization over all the points
1,2, ..., N of the data set).

This not a friendly optimization problem as the constraint has a minimum (and an
absolute value in it, but this one is easy to solve). As a consequence, we try to find an
equivalent problem which is easier to solve, i.e. getting rid of the minimization in the
constraint mainly.

First, we consider only the points that separate the data set correctly, i.e. the points
for which the label y,, (long or short) agrees with the signal («/. x,, + b), so that we have
lw'. x,+ bl =y, x,,+ b), which allows us to get rid of the absolute value.

Second instead of maximizing 1/||w||, we minimize the following quadratic quantity
(objective function) 1/2* w'. w

subject to y,,(w'. x,,+ b) > 1 for all pointsn=1,2, ..., N.

Formally speaking, we face a constrained optimization problem where the objective
function is to minimize 1/2" w/. w. This is usually solved in writing a Lagrangian expres-
sion. The minor problem here is that we have an inequality in the constraint. Solving
such a Lagrangian under inequality constraint is known as the Karush-Kuhn-Tucker
approach (KKT).

The first step is to rewrite the inequality constraint y, («/. x,,+ b) > 1 in a zero form,
i.e. to write it as a ‘slack’ y, (/. x,+b)—1>0 and then multiply it by the Lagrange
multiplier «, so that we get the expression a,,(y,(w'. x,,+b)—1) that we add to the
objective function.
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The Lagrange formulation of our optimization problem becomes:

N
minimise L(w, b, a) = 1/2u/w — z a,(y,w x,+b)—1),

n=1

w.r.t. w and b with a,>0 (we put a restriction on the domain) being the Lagrange
multipliers, each point in the data set having such a Lagrange multiplier.

Writing the gradient V,,L of L(w, b, a) with respect to the vector w, we get the
following condition:

V,L=w- ZnN=1 a,y,x, =0 (we want the gradient to be the vector 0, this is the
condition we put to get the minimum).

Writing the partial derivative of L(w,b,a) with respect the scalar b we get another
condition:

N
oL/ob =~ a,y,=0.

n=1

At this juncture, in order to make the problem easier to solve, we substitute these
two conditions in the original Lagrangian and transform this minimization problem
into a maximization problem so that maximization over a (which is tricky as « has a
range) becomes free from w and b. This refers to the dual formulation of the problem.

From the above condition we get:

N N
w= Z a,y,x, and Z a,y, = 0.
n=1 n=1

If we substitute these expressions in the Lagrangian L(w,b,a), after some manipu-
lation, we get the following minor constrained optimization problem:

N N N
Lwba)=L(a) = Z a, — 0.5 = Z VY s @ Co X X s
1

n=1 n=1m=

one sees that w and b drop from the optimization problem.

We maximize the above expression L( a) w.r.t. a subject to (the annoying constraint)
a,>0forn=1,2,...,Nand ZnN=1 a,y, = 0.

Solving the above problem requires quadratic programming (quadratic program-
ming package usually uses minimization). We therefore minimize:

N N N
: * /
min, { 0.5 z z YV ¥ @y Xy Xy — Z a,
n=1m=1 n=1

The quadratic programming package gives us a vector of @ = ay, a5, ..., a, from
which we infer the w. N
n=1
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FIGURE 11.3 The kernel trick: a non-separable case

The condition which is key to the final support vector is the KKT condition which
is satisfied at the minimum. The zero form of this condition is a,,(y,(w . x, +b) — 1) = 0
forn=1,2, ..., N. Which means either the Lagrange multiplier «,, is 0 or the slack
(y,(2'. x, +b) — 1) is zero. For all the interior points, the slack is strictly positive, which
means the Lagrange multiplier a,, is 0.

The most important points in the dataset are those which define the hyperplane and
the margin. These points x,, are called support vectors — they support the hyperplane
and are the ones for which a, > 0. All the other points are interior points.

Once we have found w we pick any support vector and easily infer b from the
equation y,(w'. x, +b) = 1.

So far, we have talked about the linearly separable case. But what about the
non-separable case? We can handle this case in transforming the x into new vari-
ables z through a non-linear function. The optimization problem becomes L(a) =
ZN a,—0.5" ZnN=1 Zfiﬂ Y Ym @ X2 This is the ‘kernel’ trick which make SVM

n=1"%n

so powerful in dealing with non-linearities. Rather than using a scalar product in the
high-dimensional feature space X, we use a kernel function Z such as z = Z(x) in Rk,
which plays the role of a scalar product in X. As an example, let’s assume we are
given a necklace with 30 pearls — 10 black pearls in the middle and then 10 red pearls
on both sides. We are asked to draw one line and one line only to separate the black
pearls from the red pearls. Let’s assume the pearls are first on a one-dimension space
(line, case a). Separating the pearls with one line only is not possible. However, in a
two-dimension space with the help of a simple kernel (Z(x) = z = x7), this becomes
easy, as Figure 11.3 shows in case (b).

11.4 A SVR-BASED GTAA

Our GTAA is deployed using exchange traded funds (ETFs) covering all the asset classes
usually found in such portfolios (14 instruments) (Table 11.1).
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TABLE 11.1 Universe traded

Sector Bloomberg ticker Instrument name Expense ratio
SPY US Equity SPDR S&P500 ETF Trust 0.09%
QQQ US Equity Powershares QQQ Trust Series 1 0.20%
Equity VGK US Equity Vanguard FTSE Europe ETF 0.10%
EW] US Equity iShares MSCI Japan ETF 0.48%
VWO US Equity Vanguard FTSE Emerging Markets 0.14%
REIT VNQ US Equity VANGUARD REIT ETF 0.12%
AGG US Equity iShares Core U.S. Aggregate Bo 0.05%
LQD US Equity iShares iBoxx $ Investment Gra 0.15%
Fixed income TIP US Equity iShares TIPS Bond ETF 0.20%
MUB US Equity iShares National Muni Bond ETF 0.25%
HYG US Equity iShares iBoxx $ High Yield Cor 0.50%
EMB US Equity iShares JP Morgan USD Emerging 0.40%
GLD US Equity SPDR Gold Shares 0.40%
DBC US Equity PowerShares DB Commodity Index 0.89%

Source: J. Guglietta.

11.4.1 Data

We use ETFs as they have a number of features that make them ideal investments for
this purpose. The most attractive feature is diversity as the range of available ETFs
includes almost every asset class. The wide range of ETFs allows us to construct a
diversified portfolio using fewer investments and therefore less capital. ETFs are now a
US$3 trillion global market, are more liquid than mutual funds and can be traded
throughout the day. Finally, ETFs are cheaper to run than mutual funds. This lower
cost tends to get passed on to investors.

11.4.2 Model description

As explained above, we build a predictions model using today’s information in order to
forecast asset returns. Each and every week ¢, for each and any instrument 7, we forecast
return Ri+k one week ahead (k = § as our data base is daily) using an SVR with a linear
kernel (using gaussian, radial basis function or polynomial kernels does not help) and
three different categories of factors as ‘predictor’ variables. Formally speaking we have:

Ri+k = SVR(MacroFactors,, GreedFearIndex,, Momenta,), fori = 1,2, ...N
and T, the rolling period over which the SVR is calibrated.

The first block is made of macro factors. Following R. Dalio/Bridgewater, we avoid
over-complexification and chose a limited number of economics time series in order to
model the economic cycle. While Bridgewater uses (quarterly) gross domestic product
(GDP) to model the RBC, we use four monthly soft data (survey). We use the same
macro-economic factors for all assets. These macro factors do not change from one
week to the other. However, our experience suggests that it is wrong to believe financial
markets factor in macro-economic information quickly and updating weekly forecast
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based on monthly data adds value. As this model is still under production, we do not
disclose which time series we use. The fifth time series captures inflation.

The second category of factors is a measure of systemic risk. We use our preferred
greed and fear index, which is based on the variance risk premium (i.e. distance between
the implied and realized volatility) of US equity.

The third and last group of factors are endogenous and have different price momen-
tum, with lookback periods varying from one week to one year.

We chose to rebalance our GTAA on a weekly basis. Note that monthly or quarterly
rebalancing yields good results too.

At the end of each and every week, the SVR hands us 14 (number of instruments)

—_—

orecast returns / . e constrain the portfolio to be long only. As it can happen tha
f t ret R}, - Wi train the portfolio to be long only. As it happen that

R;+1 < 0, we use a transformation (function) ¢ to constrain the forecast returns to be

—_— —_—

P> 00> ¢(R | <0)and $(R ) >0 for all i. Finally,
we scale these forecast returns by the realized volatility of the instruments’ daily returns
in order to have a signal-to-noise ratio such as:

strictly positive such that ¢(R

SN; = $(R}, )/o}_y,

The last step boils down to plugging in these signal-to-noise ratios to a portfolio
optimization algorithm in order to build the portfolio. Portfolio construction, i.e. find-
ing the optimal weights, is a rich field of research and a detailed discussion is beyond
the scope of this chapter.

Many portfolio constructions are possible. Risk-parity (the so-called one-to-sigma)
portfolio is the simplest one. Other choices exist, from mean—variance optimization to
equal risk contribution or maximum diversified portfolio (that gives interesting results).
We believe that portfolio managers are much more worried about left-hand-side risk
than they are about volatility per se. This is the reason why our favourite portfolio
construction method is a conditional value-at-risk (CVaR) portfolio, a method we use
in many of the models currently in production.

CVaR is defined as the expected loss exceeding value-at-risk (VaR). Minimizing
CVaR rather than VaR is preferred as VaR is not a coherent measure of risk. However,
portfolios with low CVaR necessarily have low VaR as well. We are aware of the limita-
tion of the CVaR portfolio which may give some instable solutions. However, we would
want to note that this criticism extends to all portfolio construction methods.

Our GTAA is therefore a two-step process where each and every week we forecast
next week returns based on an SVR fed with macro factors, our greed and fear index and
instrument price momenta. These expected returns are transformed into signals which
are subsequently plugged into a conditional CVaR portfolio. The portfolio weights are
given at the end of the week based on close price and executed at the open the next
trading day (returns are computed net of expense fees and transaction costs).

11.4.3 Model results

Figure 11.4 shows the relative performance of our process compared with the often-used
(Hurst et al. 2010) benchmark strategy invested 60% in bond and 40% in equity.
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returns).

Source: Bloomberg, J. Guglietta.

The total compounded geometric return over the period (March 2001 to March 2017)
is 189% compared with 102% for the benchmark strategy. Our strategy outperforms
the benchmarked strategy by 87% and exhibits smaller drawdown, especially during
the global financial crisis. The one- and two-year rolling information ratios (units of
returns per unit of risk) are (of course) not constant but have been hovering 2 in the
recent past. The total-period information ratio is 0.77, i.e. 52.6% higher than that
of the benchmark strategy (0.50). The annualized realized volatility of the strategy
is 8.9%, i.e. 0.44% lower than the one of the chosen benchmark. The stability of
the strategy, measured as the R? of a linear fit to the cumulative log returns, has a
value of 91.7%, i.e. 40% higher than the one of the benchmark (65.4%) (Figures 11.4
and 11.3).

11.5 CONCLUSION

We have presented a GTAA portfolio resting on a transparent ‘quantamental’ frame-
work. We believe that diversification remains the only (almost) free lunch, and therefore
being able to build robust diversified portfolios should be sought after by all investors.
Because of its machine learning characteristics, our SVR-based GTAA portfolio can
adapt (modify the asset mix) to different economic environments and provide such
investors with a robust solution improving what we described as the main goal of asset
allocation: getting the best expected return-to-risk profile.
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Reinforcement Learning in Finance

Gordon Ritter

12.1 INTRODUCTION

We live in a period characterized by rapid advances in artificial intelligence (Al) and
machine learning, which are transforming everyday life in amazing ways. AlphaGo Zero
(Silver et al. 2017) showed that superhuman performance can be achieved by pure rein-
forcement learning, with only very minimal domain knowledge and (amazingly!) no
reliance on human data or guidance. AlphaGo Zero learned to play after merely being
told the rules of the game, and playing against a simulator (itself, in that case).

The game of Go has many aspects in common with trading. Good traders often
use complex strategy and plan several periods ahead. They sometimes make decisions
which are ‘long-term greedy’ and pay the cost of a short-term temporary loss in order to
implement their long-term plan. In each instant, there is a relatively small, discrete set
of actions that the agent can take. In games such as Go and chess, the available actions
are dictated by the rules of the game.

In trading, there are also rules of the game. Currently the most widely used trading
mechanism in financial markets is the ‘continuous double auction electronic order book
with time priority’. With this mechanism, quote arrival and transactions are continuous
in time and execution priority is assigned based on the price of quotes and their arrival
order. When a buy (respectively, sell) order x is submitted, the exchange’s matching
engine checks whether it is possible to match x to some other previously submitted
sell (respectively, buy) order. If so, the matching occurs immediately. If not, x becomes
active and it remains active until either it becomes matched to another incoming sell
(respectively, buy) order or it is cancelled. The set of all active orders at a given price level
is a FIFO queue. There’s much more to say about microstructure theory and we refer
to the book by Hasbrouck (2007), but these are, in a nutshell, the ‘rules of the game’.

These observations suggest the inception of a new subfield of quantitative finance:
reinforcement learning for trading (Ritter 2017). Perhaps the most fundamental ques-
tion in this burgeoning new field is the following.

Big Data and Machine Learning in Quantitative Investment, First Edition.
Tony Guida.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
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FUNDAMENTAL QUESTION 1

Can an artificial intelligence discover an optimal dynamic trading strategy (with trans-
action costs) without being told what kind of strategy to look for?

If it existed, this would be the financial analogue of AlphaGo Zero.

In this note, we treat the various elements of this question:

1. What is an optimal dynamic trading strategy? How do we calculate its costs?

2. Which learning methods have even a chance at attacking such a difficult problem?

3. How can we engineer the reward function so that an Al has the potential to learn
to optimize the right thing?

The first of these sub-problems is perhaps the easiest. In finance, optimal means
that the strategy optimizes expected utility of final wealth (utility is a subtle concept
and will be explained below). Final wealth is the sum of initial wealth plus a number of
wealth increments over shorter time periods:

T
maximize: E[u(wy)] = E lu (wo + éwt>] (12.1)
t=1

where 6w, = w,—w,_;. Costs include market impact, crossing the bid-offer spread,
commissions, borrow costs, etc. These costs generally induce a negative drag on wy
because each 6w, is reduced by the cost paid in that period.

We now discuss the second question: which learning methods have a chance of
working? When a child tries to ride a bicycle (without training wheels) for the first
time, the child cannot perfectly know the exact sequence of actions (pedal, turn handle-
bars, lean left or right, etc.) that will result in the bicycle remaining balanced and going
forward. There is a trial and error process in which the correct actions are rewarded;
incorrect actions incur a penalty. One needs a coherent mathematical framework which
promises to mimic or capture this aspect of how sentient beings learn.

Moreover, sophisticated agents/actors/beings are capable of complex strategic plan-
ning. This usually involves thinking several periods ahead and perhaps taking a small
loss to achieve a greater anticipated gain in subsequent periods. An obvious example is
losing a pawn in chess as part of a multi-part strategy to capture the opponent’s queen.
How do we teach machines to ‘think strategically’?

Many intelligent actions are deemed ‘intelligent’ precisely because they are optimal
interactions with an environment. An algorithm plays a computer game intelligently if it
can optimize the score. A robot navigates intelligently if it finds a shortest path with no
collisions: minimizing a function which entails path length with a large negative penalty
for collision.

Learning, in this context, is learning how to choose actions wisely to optimize your
interaction with your environment, in such a way as to maximize rewards received over
time. Within artificial intelligence, the subfield dedicated to the study of this kind of
learning is called reinforcement learning. Most of its key developments are summarized
in Sutton and Barto (2018).

An oft-quoted adage is that there are essentially three types of machine learning:
supervised, unsupervised and reinforcement. As the story goes, supervised learning is
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learning from a labelled set of examples called a ‘training set” while unsupervised learn-
ing is finding structure hidden in collections of unlabelled data, and reinforcement
learning is something else entirely. The reality is that these forms of learning are all
interconnected. Most production-quality reinforcement learning systems employ ele-
ments of supervised and unsupervised learning as part of the representation of the value
function. Reinforcement learning is about maximizing cumulative reward over time, not
about finding hidden structure, but it is often the case that the best way to maximize
the reward signal is by finding hidden structure.

12.2 MARKOV DECISION PROCESSES: A GENERAL FRAMEWORK
FOR DECISION MAKING

Sutton and Barto (1998) say:

The key idea of reinforcement learning generally, is the use of value functions
to organize and structure the search for good policies.

The foundational treatise on value functions was written by Bellman (1957), at a time
when the phrase ‘machine learning’ was not in common usage. Nonetheless, reinforce-
ment learning owes its existence, in part, to Richard Bellman.

A value function is a mathematical expectation in a certain probability space. The
underlying probability measure is the one associated to a system which is very familiar to
classically trained statisticians: a Markov process. When the Markov process describes
the state of a system, it is sometimes called a state-space model. When, on top of a
Markov process, you have the possibility of choosing a decision (or action) from a
menu of available possibilities (the ‘action space’), with some reward metric that tells
you how good your choices were, then it is called a Markov decision process (MDP).

In a Markov decision process, once we observe the current state of the system,
we have the information we need to make a decision. In other words (assuming we
know the current state), then it would not help us (i.e. we could not make a better
decision) to also know the full history of past states which led to the current state. This
history-dependence is closely related to Bellman’s principle.

Bellman (1957) writes: ‘In each process, the functional equation governing the pro-
cess was obtained by an application of the following intuitive.’

An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.

Bellman (1957)

The ‘functional equations’ that Bellman is talking about are essentially (12.7) and
(12.8), as we explain in the next section. Consider an interacting system: agent inter-
acts with environment. The ‘environment’ is the part of the system outside of the agent’s
direct control. At each time-step ¢, the agent observes the current state of the environ-
ment S, € S and chooses an action A, € A. This choice influences both the transition to
the next state and the reward the agent receives (Figure 12.1).
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observation, reward

FIGURE 12.1 Interacting
system: agent interacts with
environment.

Underlying everything, there is assumed to be a distribution
p (so, r]s, a)

for the joint probability of transitioning to state s € S and receiving reward 7, con-
ditional on the previous state being s and the agent taking action a. This distribution
is typically not known to the agent, but its existence gives mathematical meaning to
notions such as ‘expected reward’.

The agent’s goal is to maximize the expected cumulative reward, denoted by

Gt=R,  +7R, s +1¥*R,5... (12.2)

where 0 <y < 1 is necessary for the infinite sum to be defined.

A policy z is, roughly, an algorithm for choosing the next action, based on the state
you are in. More formally, a policy is a mapping from states to probability distributions
over the action space. If the agent is following policy =, then in state s, the agent will
choose action a with probability z(als).

Reinforcement learning is the search for policies which maximize

EIG,]=E [Rt+1 + 7R + YZRt+3 + ]

Normally, the policy space is too large to allow brute-force search, so the search
for policies possessing good properties must proceed by the use of value functions.
The state-value function for policy r is defined to be

v, (s) =E,IG, | S, = 5]

where Ex denotes the expectation under the assumption that policy z is followed. For
any policy 7 and any state s, the following consistency condition holds:

v.(s) =E.[G, | S, =s] (12.3)
= E,[Rpy1 +7Gpyq 1S, =5l (12.4)
=Y 2@l ) Y, ' 7| 5. +VE Gy | Sy =11 (12.5)

= Z z(a|s) Zp(s’,r |'s,a)lr +yv,(s)] (12.6)
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The end result of the above calculation,

v, (s) = Z m(a | s)ps',r|s,a)lr+yv,(sh]

as'r

is called the Bellman equation. The value function v, is the unique solution to its Bell-
man equation. Similarly, the action-value function expresses the value of starting in state
s, taking action 4, and then following policy = thereafter:

q,(s,a) :=Ex[G, | S, =s,A, = 4]
Policy 7 is defined to be at least as good as z* if
v(s) > v, 0(s)

for all states s.

An optimal policy is defined to be one which is at least as good as any other pol-
icy. There need not be a unique optimal policy, but all optimal policies share the same
optimal state-value function

v,(s) = mle v,(s)

and optimal action-value function
q.(s,a) = m”ax q,(s,a).
Note that v:(s) = max, g-(s,a), so the action-value function is more general than
the state-value function.

The optimal state-value function and action-value function satisfy the Bellman
equations

v,(s) = max Z ps', 7| s,d)r +yv, ()] (12.7)
g.(s,@) = Y p(s',7 | s,@)r +y max q,(s', )] (12.8)

where the sum over s°,7 denotes a sum over all states s and all rewards 7.

If we possess a function g(s,a) which is an estimate of g-(s,a), then the greedy policy
(associated to the function g) is defined as picking at time ¢ the action @} which max-
imizes q(s,,a) over all possible a, where s, is the state at time ¢. Given the function g,
the associated greedy policy is the optimal policy. Hence we can reduce the problem to
finding g-, or producing a sequence of iterates that converges to g-.

It is worth noting at this point that modern approaches to multi-period portfolio
optimization with transaction costs (Garleanu and Pedersen 2013; Kolm and Ritter
2015; Benveniste and Ritter 2017) are also organized as optimal control problems
which, in principle, could be approached by finding solutions to (12.7), although these
equations are difficult to solve with constraints and non-differentiable costs.

There is a simple algorithm which produces a sequence of functions converging to
g+, known as Q-learning (Watkins 1989). Many subsequent advancements built upon
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Watkins’ seminal work, and the original form of Q-learning is perhaps no longer the
state of the art. Among its drawbacks include that it can require a large number of
time-steps for convergence.

The Watkins algorithm consists of the following steps. One initializes a matrix Q
with one row per state and one column per action. This matrix can be initially the zero
matrix, or initialized with some prior information if available. Let S denote the current
state.

Repeat the following steps until a pre-selected convergence criterion is obtained:

1. Choose action A € A using a policy derived from Q which combines exploration
and exploitation.

2. Take action A, after which the new state of the environment is S° and we observe
reward R.

3. Update the value of O(S,A): set.

Target = R + y max Q(S', a)
a

and
OGS, A)+ = a[Target — O(S, A)] (12.9)

V~

TD-error

where a € (0,1) is called the step-size parameter. The step-size parameter does not have
to be constant and indeed can vary with each time-step. Convergence proofs usually
require this; presumably the MDP generating the rewards has some unavoidable pro-
cess noise which cannot be removed with better learning, and thus the variance of the
TD-error never goes to zero. Hence a, must go to zero for large time-step ¢.

Assuming that all state-action pairs continue to be updated, and assuming a variant
of the usual stochastic approximation conditions on the sequence of step-size param-
eters (see (12.10) below), the Q-learning algorithm has been shown to converge with
probability 1 to g-.

In many problems of interest, either the state space, or the action space, or both are
most naturally modelled as continuous spaces (i.e. sub-spaces of R? for some appropri-
ate dimension d). In such a case, one cannot directly use the algorithm above. Moreover,
the convergence result stated above does not generalize in any obvious way.

Many recent studies (for example, Mnih et al. (2015)) have proposed replacing the
Q-matrix in the above algorithm with a deep neural network. Unlike a lookup table,
a neural network has a vector of associated parameters, sometimes called weights. We
could then write the Q-function as Q(s,a;0), emphasizing its parameter dependence.
Instead of iteratively updating values in a table, we will iteratively update the parame-
ters, 0, so that the network learns to compute better estimates of state-action values.

Although neural networks are general function approximators, depending on the
structure of the truly-optimal Q-function g-, it may be the case that a neural network
learns very slowly, both in terms of the CPU time needed to train and also in terms of
efficient sample use (defined as a lower number of samples required to achieve accept-
able results). The network topology and the various choices such as activation functions
and optimizer (Kingma and Ba 2014) matter quite a bit in terms of training time and
efficient sample use.
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In some problems, the use of simpler function-approximators (such as ensembles of
regression trees) to represent the unknown function Q(s,a;0) may lead to much faster
training time and much more efficient sample use. This is especially true when g- can
be well approximated by a simple functional form such as a locally linear form.

The observant reader will have noticed the similarity of the Q-learning update pro-
cedure to stochastic gradient descent. This fruitful connection was noted and exploited
by Baird III and Moore (1999), who reformulate several different learning procedures
as special cases of stochastic gradient descent.

The convergence of stochastic gradient descent has been studied extensively in
the stochastic approximation literature (Bottou 2012). Convergence results typically
require learning rates satisfying the conditions

Y af <ooand ) @ =oco (12.10)
t t

The theorem of Robbins and Siegmund (1985) provides a means to establish almost
sure convergence of stochastic gradient descent under surprisingly mild conditions,
including cases where the loss function is non-smooth.

12.3 RATIONALITY AND DECISION MAKING UNDER UNCERTAINTY

Given some set of mutually exclusive outcomes (each of which presumably affects
wealth or consumption somehow), a lo#tery is a probability distribution on these events
such that the total probability is 1. Often, but not always, these outcomes involve gain
or loss of wealth. For example, ‘pay 1000 for a 20% chance to win 10,000’ is a lottery.

Nicolas Bernoulli described the St Petersburg lottery/paradox in a letter to Pierre
Raymond de Montmort on 9 September 1713. A casino offers a game of chance for
a single player in which a fair coin is tossed at each stage. The pot starts at $2 and is
doubled every time a head appears. The first time a tail appears, the game ends and the
player wins whatever is in the pot. The mathematical expectation value is

= 2+>44 =4

1,
2 4

This paradox led to a remarkable number of new developments as mathematicians
and economists struggled to understand all the ways it could be resolved.

Daniel Bernoulli (cousin of Nicolas) in 1738 published a seminal treatise in the
Commentaries of the Imperial Academy of Science of Saint Petersburg; this is, in
fact, where the modern name of this paradox originates. Bernoulli’s work possesses
a modern translation (Bernoulli 1954) and thus may be appreciated by the English-
speaking world.

The determination of the value of an item must not be based on the price, but
rather on the utility it yields... There is no doubt that a gain of one thousand
ducats is more significant to the pauper than to a rich man though both gain

the same amount.
Bernoulli (1954)
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Among other things, Bernoulli’s paper contains a proposed resolution to the para-
dox: if investors have a logarithmic utility, then their expected change in utility of wealth
by playing the game is finite.

Of course, if our only goal were to study the St Petersburg paradox, then there
are other, more practical resolutions. In the St Petersburg lottery only very unlikely
events yield the high prizes that lead to an infinite expected value, so the expected value
becomes finite if we are willing to, as a practical matter, disregard events which are
expected to occur less than once in the entire lifetime of the universe.

Moreover, the expected value of the lottery, even when played against a casino
with the largest resources realistically conceivable, is quite modest. If the total resources
(or total maximum jackpot) of the casino are W dollars, then L = blog,(W)c is the
maximum number of times the casino can play before it no longer fully covers the next
bet, i.e. 2L < W but 241 > W. The mutually exclusive events are that you flip one time,
two times, three times, ..., L times, winning 21,2%,23, ... 2 or finally, you flip 25+1
times and win W. The expected value of the lottery then becomes:

L

o1 1
k _ —L
/;_1?-2 +<1— E —k>W_L+W2

k=12

If the casino has W = $1 billion, the expected value of the ‘realistic St Petersburg
lottery’ is only about $30.86.

If lottery M is preferred over lottery L, we write L < M. If M is either preferred over
or viewed with indifference relative to L, we write L < M. If the agent is indifferent
between L and M, we write L ~ M. Von Neumann and Morgenstern (1945) provided
the definition of when the preference relation is rational, and proved the key result that
any rational preference relation has an expression in terms of a utility function.

Definition 1 (Von Neumann and Morgenstern 1945). A preference relation is said to
be rational if all of the four axioms hold:

1. For any lotteries L,M, exactly one of the following holds:
L<MM<L,orL~M

2.IfL<Mand M<Nthen L<N
3. If L < M < Nthen there exists p € [0,1] such that

pL+(1 -p)N~M
4. If L < M, then for any N and p € (0,1], one has
pL+ (1 —-p)N <pM+ (1 —-p)N.
The last axiom is called ‘independence of irrelevant alternatives’.

An agent whose preferences satisfy the VNM axioms is called “VNM-rational’. I will
leave further discussion of ‘what is rationality’ to the philosophers, but someone whose
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preferences don’t satisfy these axioms probably shouldn’t be allowed near a race track
(or the stock market).

Theorem 1  (Von Neumann and Morgenstern 1945). For any VNM-rational agent (i.e.
satisfying 1-4), there exists a function # assigning to each outcome A a real number #(A)
such that for any two lotteries,

L < M iff E(u(L)) < E(u(M)).

Conversely, any agent acting to maximize the expectation of a function # will obey
axioms 1-4.
Since
Eu(piA1+ ... +p,A,) =pu(A)+ - +p,ulA,).

it follows that # is uniquely determined (up to adding a constant and multiplying by a
positive scalar) by preferences between simple lotteries, i.e. lotteries of the form pA +
(1 —p)B having only two outcomes.

We now illustrate the intuition behind, and proper use of, utility functions in practi-
cal situations requiring decision making under risk. We do this by means of a humorous
story of adventure on the high seas. The year is 1776 and you own goods located abroad,
worth the equivalent of one standard-size gold bar. These goods cannot increase your
wealth until they are shipped back to you via sailing vessels on the high seas, but it’s a
perilous journey; the probability that a ship is lost at sea is 1/2.

You were planning to have the entire load sent on one ship. Captain Cook advises
you that this is unwise and generously offers to split the load in half and send each half
on a separate ship at no extra cost. Should you accept Cook’s offer?

one ship : E[wr] = % x 1= 0.5 gold bar

= 0.5 gold bar

N =

+ax
2

N =

two ships: E[wr] = % X

You are about to advise Captain Cook that, due to extremely clever use of proba-
bility theory, you have proven that it doesn’t matter — he can simply use one ship. Just
then, Professor Daniel Bernoulli arrives and advises you to instead calculate E[u(wr)]
where u(w) = 1 — ™%, leading to:

one ship : E[1 — e™#T] = % x(1-eNH~0.32
. —w 1 0y, 1 “172y, 1 -1
twoships:E[1 —e™T]==(1-e N+ z(1—-e"/)+-(1-¢")
3 2 3
~ 0.35

Using Bernoulli’s method, it seems that two ships are preferred, although the reason
for the method’s efficacy is perhaps still obscure. Bernoulli asks whether you bothered
to consider the risk when you compared the two scenarios. You reply angrily that
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you prefer to act first and consider the risks later. But to make Bernoulli happy, you
calculate:

one ship : V[wy] = %(0 -0.5)% + %(1 - 0.5)?
=0.25
o 1 2, 1 2, 1 2
two ships: V[wr] = Z(O -0.5"+ 5(0.5 -0.5"+ Z(l -0.5)
=0.125

Bernoulli says that if
1 — exp(—kw)
uw) = ——— 77
K

where x> 0 is any positive scalar, then supposing wr is normal,
Elu(wp)] = u (Elwy] - SV0wq]) (12.11)
This implies that maximizing E[u#(w7)] is equivalent to maximizing

E[wy] — g\/[wT] (12.12)

since # is monotone. It turns out this is true for many fat-tailed distributions as well, as
we show in the next section.

12.4 MEAN-VARIANCE EQUIVALENCE

In the previous section we recalled the well-known result that for an exponential util-
ity function and for normally distributed wealth increments, one may dispense with
maximizing E[u(wy)] and equivalently solve the mathematically simpler problem of
maximizing E[wy] — (k/2)V[wr]. Since this is actually the problem our reinforcement
learning systems are going to solve, naturally we’d like to know the class of problems
to which it applies. It turns out that neither of the conditions of normality or exponential
utility is necessary; both can be relaxed very substantially.

Definition 2 A utility function # : R — R is called standard if it is increasing, concave
and continuously differentiable.

The properties which define a ‘standard’ utility function make economic sense.
Even great philanthropists have increasing utility of wealth in their investment port-
folio — they would prefer to be able to do more to end hunger, disease, etc. Hence a
quadratic function that is not linear can never be a standard utility function. A strictly
concave quadratic must go up and come back down, as if after some point, more wealth
is somehow worse. In particular (12.12) is not a utility function.

Concavity corresponds to risk aversion. Finally, if the utility function is not con-
tinuously differentiable, it implies that there is a certain particular level of wealth for
which one penny above that is very different than one penny below.
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Definition 3 Let ‘denote a lottery, and let 2’ denote the (random) final wealth associ-
ated to lottery’. For two scalars m € R and s > 0, let L(u,) denote the space of lotteries’
under which E[w:] = u and V[w/] = w?. We say expected utility is a function of mean
and variance if E[u(w)] is the same for all ‘€ L(u,w). This means that the function U
defined by R

U(u, w):={E[u(w")] :" € L(u,w)}

is single-valued; the right-hand side is always a single number.
Let r € R” denote the return over the interval [t,z+ 1]. Hence r € R” is an
n-dimensional vector whose i-th component is

r=p;E+1D/pd) -1

where p;(#) is the i-th asset’s price at time ¢ (adjusted for splits or capital actions if
necessary).

Let h € R” denote the portfolio holdings, measured in dollars or an appropriate
numeraire currency, at some time ¢ in the future. Let h, denote the current portfolio.
Hence the (one-period) wealth random variable is

w=hr
and the expected-utility maximizer chooses the optimal portfolio h™ defined by

h* := argmaxE[u(w™)] (12.13)

Definition 4 The underlying asset return distribution, p(r), is said to be meanvariance
equivalent if first and second moments of the distribution exist, and for any standard
utility function u, there exists some constant ¥ > 0 (where x depends on #) such that

h* = argmax{E[w] — (x/2)V[w]} (12.14)

where h* = argmaxE[u(w)] as defined by (12.13).

The multivariate Cauchy distribution is elliptical, but its moments of orders 1 and
higher are all infinite/undefined. Therefore, it is not mean-variance equivalent because
the requisite means and variances would be undefined.

Which distributions, then, are mean-variance equivalent? We showed previously
that the normal distribution is; this is easy. Many distributions, including heavy-tailed
distributions such as the multivariate Student-#, are also mean-variance equivalent.

Assuming all lotteries correspond to holding portfolios of risky assets, then
Definition 3, like Definition 4, is a property of the asset return distribution p(r); some
distributions have this property and some do not.

If Definition 3 does not hold for a given distribution, then there isn’t much hope for
mean-variance equivalence to hold either. Intuitively, if Definition 3 does ot hold then
E[u(w/)] must depend on something apart from E[w:] and V[w/] so it should be easy to
construct a counterexample where the right-hand side (12.14) is suboptimal because of
this ‘extra term’.
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Definition S An indifference curve is a level curve of the surface U, or equivalently a
set of the form ﬁ‘l(c)

The intuition behind the terminology of Definition 5 is that the investor is indiffer-
ent among the outcomes described by the various points on the curve.

Tobin (1958) assumed that expected utility is a function of mean and variance and
showed mean-variance equivalence as a consequence. Unfortunately, Tobin’s proof was
flawed — it contained a derivation which is valid only for elliptical distributions. The
flaw in Tobin’s proof, and a counterexample, was pointed out by Feldstein (1969). After
presenting a correct proof, we will discuss the flaw.

Recall that for a scalar-valued random variable X, the characteristic function is

defined by ‘
bx (@ = E[e™],

If the variable has a density, then the characteristic function is the Fourier trans-
form of the density. The characteristic function of a real-valued random variable always
exists, since it is the integral of a bounded continuous function over a finite measure
space.

Generally speaking, characteristic functions are especially useful when analyzing
moments of random variables and linear combinations of random variables. Charac-
teristic functions have been used to provide especially elegant proofs of some of the key
results in probability theory, such as the central limit theorem.

If a random variable X has moments up to order k, then the characteristic function
¢x is k times continuously differentiable on R. In this case

ELX ] = (=) ¢ (0).

If @y has a k-th derivative at zero, then X has all moments up to k if k is even, but
only up to k—1 if k is odd, and

¢P(0) = FE[XK]
If X4,...,X, are independent random variables, then

ox1t+ ... + X, =) Py, (D).

Definition 6 An R"-valued random variable x is said to be elliptical if its characteristic
function, defined by ¢(t) = E[exp(it°x)] takes the form

o(t) = exp(it’ )y (t°Qr) (12.15)

where u € R” is the vector of medians, and Q is a matrix, assumed to be positive definite,
known as the dispersion matrix. The function y does not depend on 7.

We denote the distribution with characteristic function (12.15) by E,, (4,9).

The name ‘elliptical’ arose because the isoprobability contours are ellipsoidal. If
variances exist, then the covariance matrix is proportional to , and if means exist, u
is also the vector of means.



Reinforcement Learning in Finance 237

Equation (12.15) does not imply that the random vector x has a density, but if it
does, then the density must be of the form

() = Q172 g, [(x — u/ Q7' (x — )] (12.16)

Equation (12.16) is sometimes used as the definition of elliptical distributions, when
existence of a density is assumed. In particular, (12.16) shows that if 7z = 1, then the

va

transformed variable z = (x — y)/\/Q satisfies 2 ~ E,,(0,1).

The multivariate normal is the most well-known elliptical family; for the
normal, one has g,(s) = ¢, exp(—s/2) (where ¢, is a normalization constant) and
w(T) = exp(—T/2). Note that g,, depends on 7z while w does not. The elliptical class also
includes many non-normal distributions, including examples which display heavy tails
and are therefore better suited to modelling asset returns. For example, the multivariate
Student-¢ distribution with v degrees of freedom has density of the form (12.16) with

gn(s)x (v+s)—(n+v)/2 (12.17)

and for v = 1 one recovers the multivariate Cauchy.

One could choose g,,(s) to be identically zero for sufficiently large s, which would
make the distribution of asset returns bounded above and below. Thus, one criticism of
the CAPM - that it requires assets to have unlimited liability — is not a valid criticism.

Let v = Tx denote a fixed (non-stochastic) linear transformation of the random
vector x. It is of interest to relate the characteristic function of v to that of x.

b, (0) = E[e""] = E[¢" ] = ¢ (T't) = " Ty (¢ TQT't)
= My (' At) (12.18)

where for convenience we define m = Ty and A = TQTY.

Even with the same function y, the functions f,,,g, appearing in the density (12.16)
can have rather different shapes for different # (=the dimension of R”), as we see in
(12.17). However, the function y does not depend on 7. For this reason, one sometimes
speaks of an elliptical “family’ which is identified with a single function y, but possibly
different values of u,Q and a family of functions g,, determining the densities — one such
function for each dimension of Euclidean space. Marginalization of an elliptical family
results in a new elliptical of the same family (i.e. the same w-function).

Theorem 2 1f the distribution of r is elliptical, and if # is a standard utility function,
then expected utility is a function of mean and variance, and moreover

9,0(u,) > 0and 9, U, ®) < 0 (12.19)

Proof. For the duration of this proof, fix a portfolio with holdings vector h € R” and
let x = h'r denote the wealth increment. Let u = h°E[r] and @? = h°Qh denote moments
of x. Applying the marginalization property (12.18) with the 1 x 7z matrix T = h° yields

@.(1) = ey (o).
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The k-th central moment of x will be

k
z’—k %w(tZwZ)
t

t=0

From this it is clear that all odd moments will be zero and the 2k-th moment will
be proportional to w?*. Therefore the full distribution of x is completely determined by
u,m, so expected utility is a function of y,w.

We now prove the inequalities (12.19). Write

f](ﬂ,co) = E[u(x)] = /00 u(x)f (x)dx. (12.20)

—o0

Note that the integral is over a one-dimensional variable. Using the special case of
Eq. (12.16) with n = 1, we have

fix) = 07 gy [(x — )* /1. (12.21)
Using (12.21) to update (12.20), we have
U(u, ) = E[u(x)] = / o g[(x — p)*/w?dx.

Now make the change of variables z = (x — u)/w and dx = w dz, which yields

Uu, ) = / u(p + wR)g, (F*)dz.

(e

The desired property 9, U(u, ») > 0 then follows immediately from the condition
from Definition 2 that # is increasing.
The case for 9, U goes as follows:

0, ﬁ(y, w) = / 7s'(u + wz)zgl(zz)dz

0 )
l/ +/ ] ' (U + 02)2g,(2)dz
—00 0

=— / u'(u— coz)zgl(zz)dz + / u' (u + w2)zg, (2H)dz
0 0

= / Zgl(zz)[u'(y + w2) —u' (4 — w2)]dz
0

A differentiable function is concave on an interval if and only if its derivative is
monotonically decreasing on that interval, hence

1y + wz) — u’(u — wz) < 0
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while g;(z?) > 0 since it is a probability density function. Hence on the domain of
integration, the integrand of [~ zg;(#*)[#/ (4 + wz) — ' (4 — w2)]dz is non-positive and
hence 9, Uy, ) <0, completing the proof of Theorem 2.

Recall Definition 5 above of indifference curves. Imagine the indifference curves
written in the o, plane with ¢ on the horizontal axis. If there are two branches of the
curve, take only the upper one. Under the conditions of Theorem 2, one can make two
statements about the indifference curves:

du/de > 0 or an investor is indifferent about two portfolios with different variances
only if the portfolio with greater ¢ also has greater u,

d?>u/de?* > 0, or the rate at which an individual must be compensated for accepting
greater o (this rate is du/do) increases as ¢ increases

These two properties say that the indifference curves are convex.
In case you are wondering how one might calculate du/do along an indifference
curve, we may assume that the indifference curve is parameterized by

A= (u(d),0(A)
and differentiate both sides of
E[u(x)] = u(p + 02)gq (221dz.

with respect to 4. By assumption, the left side is constant (has zero derivative) on an
indifference curve. Hence

0= / ' (1 + 02) (' (A) + 20" (A)g (2%)dz

du W) Jg (+02)g1(@)dz
dO' 0"(],) fRu,(# 4 O_z)gl(zz) dz

If u° > 0 and % < 0 at all points, then the numerator RR z #°(u + 62)g,(2?)dz is
negative, and so du/de > 0.

The proof that d?u/de?* > 0 is similar (exercise).

What, exactly, fails if the distribution p(r) is not elliptical? The crucial step of this
proof assumes that a two-parameter distribution f{x;u,c) can be put into ‘standard form’
f(z;0,1) by a change of variables z = (x — u)/o. This is not a property of all two-parameter
probability distributions; for example, it fails for the lognormal.

One can see by direct calculation that for logarithmic utility, #(x) = logx and for a
log-normal distribution of wealth,

exp(—(log x — m)?/2s?)

flx;m,s) =
sx\2rx

then the indifference curves are not convex. The moments of x are

u=em+ 52/2, and 02 = (em+ 52/2)2(352 -1
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and with a little algebra one has
Eu =log u— %log(crz/u2 +1)

One may then calculate du/do and d*u/do? along a parametric curve of the form
Eu = constant

and see that du/de > 0 everywhere along the curve, but d?u/de? changes sign. Hence
this example cannot be mean-variance equivalent.

Theorem 2 implies that for a given level of median return, the right kind of investors
always dislike dispersion. We henceforth assume, unless otherwise stated, that the first
two moments of the distribution exist. In this case (for elliptical distributions), the
median is the mean and the dispersion is the variance, and hence the underlying asset
return distribution is mean-variance equivalent in the sense of Definition 4. We empha-
size that this holds for any smooth, concave utility.

12.5 REWARDS

In some cases the shape of the reward function is not obvious. It’s part of the art of
formulating the problem and the model. My advice in formulating the reward function
is to think very carefully about what defines ‘success’ for the problem at hand, and
in a very complete way. A reinforcement learning agent can learn to maximize only
the rewards it knows about. If some part of what defines success is missing from the
reward function, then the agent you are training will most likely fall behind in exactly
that aspect of success.

12.5.1 The form of the reward function for trading

In finance, as in certain other fields, the problem of reward function is also subtle, but
happily this subtle problem has been solved for us by Bernoulli (1954), Von Neumann
and Morgenstern (1945), Arrow (1971) and Pratt (1964). The theory of decision mak-
ing under uncertainty is sufficiently general to encompass very many, if not all, portfolio
selection and optimal-trading problems; should you choose to ignore it, you do so at
your own peril.

Consider again maximizing (12.12):

maximize: { Elowr] — %\/[a)T]} (12.22)

Suppose we could invent some definition of ‘reward’ R, so that

M =

Elor] — g\/[a)j—] ~ YR, (12.23)

Il
—_

t

Then (12.22) looks like a ‘cumulative reward over time’ problem.
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Reinforcement learning is the search for policies which maximize
E[Gt]=E[Rt+1+yRt +2+y2Rt +3 + ...]

which by (12.23) would then maximize expected utility as long as y ~ 1.
Consider the reward function

R, := 6w, — é(éwt -y’ (12.24)

where /i is an estimate of a parameter representing the mean wealth increment over one
period, u = E[éw,].

1+ 1 v k1w
Tlet= Tzléwt—szl(éwt—ﬁ)z
= = t=
— — —
—E[6w;] —-V[éw;]

Then and for large T, the two terms on the right-hand side approach the sample
mean and the sample variance, respectively.

Thus, with this one special choice of the reward function (12.24), if the agent learns
to maximize cumulative reward, it should also approximately maximize the meanvari-
ance form of utility.

12.9.2 Accounting for profit and loss

Suppose that trading in a market with N assets occurs at discrete times ¢t = 0,1,2,...,T.
Let 1, € ZN denote the holdings vector in shares at time ¢, so that

ht .= ntpt € RN

denotes the vector of holdings in dollars, where p, denotes the vector of midpoint prices
at time ¢.

Assume for each ¢, a quantity 6n, shares are traded in the instant just before ¢ and
no further trading occurs until the instant before #+ 1. Let

v, = nav, + cash, where nav, = n, - p,

denote the ‘portfolio value’, which we define to be net asset value in risky assets, plus
cash. The profit and loss (PL) before commissions and financing over the interval [tz + 1)
is given by the change in portfolio value év, , ;.

For example, suppose we purchase 67, = 100 shares of stock just before ¢ at a
per-share price of p, = 100 dollars. Then nav, increases by 10 000 while cash, decreases
by 10000, leaving v, invariant. Suppose that just before ¢+ 1, no further trades have
occurred and p,,; = 105; then év,,; = 500, although this PL is said to be unrealized
until we trade again and move the profit into the cash term, at which point it is realized.

Now suppose p, = 100 but due to bid-offer spread, temporary impact or other
related frictions our effective purchase price was p, = 101. Suppose further that we
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continue to use the midpoint price p, to ‘mark to market’, or compute net asset value.
Then, as a result of the trade, nav, increases by (61,)p, = 10 000 while cash, decreases
by 10 100, which means that v, is decreased by 100 even though the reference price p,
has not changed. This difference is called slippage; it shows up as a cost term in the cash
part of v,.

Executing the trade list results in a change in cash balance given by

8(cash), = —6n, - p,
where p, is our effective trade price including slippage. If the components of 67, were
all positive then this would represent payment of a positive amount of cash, whereas if
the components of 61, were negative we receive cash proceeds.

Hence before financing and borrow cost, one has

bv;:i=v, — v,_; = 6(nav), + 5(cash),

=, Py ==y - Py—1 — S, P, (12.25)
=nt-pt—nt—1-pt+nt—1-pt—nt—1-pt—1—ént-pt (12.26)
=ént-(pt—pt)+nt—1-(pt—pt—1) (12.27)
=6n,- (P, =P+ 1 (12.28)

where the asset returns are r, = p,/p,_; — 1. Let us define the fozal cost ¢, inclusive of
both slippage and borrow/financing cost as follows:

¢, :=slip, + fin,, where (12.29)

slip, := 6n, - (p, — py) (12.30)

where fin, denotes the commissions and financing costs incurred over the period, com-
missions are proportional to 67, and financing costs are convex functions of the com-
ponents of 7,. The component slip, is called the slippage cost. Our conventions are such

that fin, > 0 always, and slip, > 0 with high probability due to market impact and
bid-offer spreads.

12.6 PORTFOLIO VALUE VERSUS WEALTH

Combining (12.29),(12.30) with (12.28) we have finally
v, =h,_-1,—¢ (12.31)

If we could liquidate the portfolio at the midpoint price vector p,, then v, would
represent the total wealth at time # associated to the trading strategy under considera-
tion. Due to slippage it is unreasonable to expect that a portfolio can be liquidated at
prices p,, which gives rise to costs of the form (12.30).
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Concretely, v, = nav, + cash, has a cash portion and a non-cash portion. The cash
portion is already in units of wealth, while the non-cash portion nav, = n, -p, could be
converted to cash if a cost were paid; that cost is known as liquidation slippage:

ligslip, := —#, - (1~7t — Py

Hence it is the formula for slippage, but with 67, = —n,. Note that liquidation is
relevant at most once per episode, meaning the liquidation slippage should be charged
at most once, after the final time T.

To summarize, we may identify v, with the wealth process w, as long as we are
willing to add a single term of the form

Efligslip] (12.32)

to the multi-period objective. If T'is large and the strategy is profitable, or if the portfolio
is small compared with the typical daily trading volume, then ligslip r < vy and (12.32)
can be neglected without much influence on the resulting policy. In what follows, for
simplicity we identify v, with total wealth w,.

12.7 A DETAILED EXAMPLE

Formulating an intelligent behaviour as a reinforcement learning problem begins with
identification of the state space S and the action space A. The state variable s, is a data
structure which, simply put, must contain everything the agent needs to make a trading
decision, and nothing else. The values of any alpha forecasts or trading signals must be
part of the state, because if they aren’t, the agent can’t use them.

Variables that are good candidates to include in the state:

1. The current position or holding.

2. The values of any signals which are believed to be predictive.

3. The current state of the market microstructure (i.e. the limit order book), so that
the agent may decide how best to execute.

In trading problems, the most obvious choice for an action is the number of shares
to trade, 6n,, with sell orders corresponding to 67, < 0. In some markets there is an
advantage to trading round lots, which constrains the possible actions to a coarser lat-
tice. If the agent’s interaction with the market microstructure is important, there will
typically be more choices to make, and hence a larger action space. For example, the
agent could decide which execution algorithm to use, whether to cross the spread or be
passive, target participation rate, etc.

We now discuss how the reward is observed during the trading process. Immediately
before time #, the agent observes the state p, and decides an action, which is a trade list
6n, in units of shares. The agent submits this trade list to an execution system and then
can do nothing until just before ¢+ 1.

The agent waits one period and observes the reward

k
Ry ® 60 — §(5Ut+1)2' (12.33)
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The goal of reinforcement learning in this context is that the agent will learn how
to maximize the cumulative reward, i.e. the sum of (12.33) which approximates the
mean-variance form E[6v] — (x/2)V][év].

For this example, assume that there exists a tradable security with a strictly positive
price process p, > 0. (This ‘security’ could itself be a portfolio of other securities, such
as an ETF or a hedged relative-value trade.)

Further suppose that there is some ‘equilibrium price’ p, such that x, = log(p,/p,)
has dynamics

dx, = —Ax, + 6 &, (12.34)

where &, ~N(0,1) and &,,&, are independent when # 6 = s. This means that p, tends to
revert to its long-run equilibrium level p, with mean-reversion rate A. These assumptions
imply something similar to an arbitrage! Positions taken in the appropriate direction
while very far from equilibrium have very small probability of loss and extremely asym-
metric loss-gain profiles.

For this exercise, the parameters of the dynamics (12.34) were taken to be
A =log(2)/H, where H = § is the half-life, ¢ = 0.1 and the equilibrium price is p, = 50.

All realistic trading systems have limits which bound their behaviour. For this
example we use a reduced space of actions, in which the trade size én, in a single
interval is limited to at most K round lots, where a ‘round lot’ is usually 100 shares
(most institutional equity trades are in integer multiples of round lots). Also we assume
a maximum position size of M round lots. Consequently, the space of possible trades,
and also the action space, is

A = LotSize - {-K,-K+1, ...,K}
Letting H denote the possible values for the holding 7,, then similarly
H={-M,-M+1, ..., M}.

For the examples below, we take K = 5§ and M = 10.

Another feature of real markets is the tick size, defined as a small price increment
(such as US$0.01) such that all quoted prices (i.e. all bids and offers) are integer multi-
ples of the tick size. Tick sizes exist in order to balance price priority and time priority.
This is convenient for us since we want to construct a discrete model anyway. We use
TickSize = 0.1 for our example.

We choose boundaries of the (finite) space of possible prices so that sample paths of
the process (12.34) exit the space with vanishingly small probability. With the parame-
ters as above, the probability that the price path ever exits the region [0.1, 100] is small
enough that no aspect of the problem depends on these bounds.

Concretely, the space of possible prices is:

P = TickSize - {1,2, ...,1000} c R+

We do not allow the agent, initially, to know anything about the dynamics. Hence,
the agent does not know 4,0, or even that some dynamics of the form (12.34) are valid.
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The agent also does not know the trading cost. We charge a spread cost of one tick size
for any trade. If the bid-offer spread were equal to two ticks, then this fixed cost would
correspond to the slippage incurred by an aggressive fill which crosses the spread to
execute. If the spread is only one tick, then our choice is overly conservative. Hence

SpreadCost(6n) = TickSize - |6#] (12.35)

We also assume that there is permanent price impact which has a linear functional
form: each round lot traded is assumed to move the price one tick, hence leading to a
dollar cost 167,] x TickSize/LotSize per share traded, for a total dollar cost for all shares

ImpactCost(6n) = (6n)% x TickSize /LotSize. (12.36)
The total cost is the sum

SpreadCost(67) + ImpactCost(6n)
= TickSize - |61 + (61)* x TickSize /LotSize.

Our claim is not that these are the exact cost functions for the world we live in, although
the functional form does make some sense.

The state of the environment s, = (p,,7,_4) will contain the security prices p,, and
the agent’s position, in shares, coming into the period: 7,_;. Therefore the state space
is the Cartesian product S = H x P. The agent then chooses an action

a,=én, €A
which changes the position to 7, = n,_; + 61, and observes a profit/loss equal to
ovt =nt(pt+1—pt) —ct

and a reward .
Rpp1 = 0044 = zk(‘svtﬂ)z

as in Eq. (12.33).

We train the Q-learner by repeatedly applying the update procedure involving
(12.9). The system has various parameters which control the learning rate, discount
rate, risk aversion, etc. For completeness, the parameter values used in the following
example were: k = 107%, y = 0.999, @ = 0.001, £ = 0.1. We use 7,,,, = 107 training
steps (each ‘training step’ consists of one action-value update as per (12.9)) and then
evaluate the system on 5000 new samples of the stochastic process (see Figure 12.2).

The excellent performance out-of-sample should perhaps be expected; the assump-
tion of an Ornstein-Uhlenbeck process implies a near arbitrage in the system. When
the price is too far out of equilibrium, a trade betting that it returns to equilibrium has
a very small probability of a loss. With our parameter settings, even after costs this is
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FIGURE 12.2 Cumulative simulated out-of-sample P/L of trained model. Simulated net P/L over
5000 out—of—sample periods.

true. Hence the existence of an arbitrage-like trading strategy in this idealized world is
not surprising, and perfect mean-reverting processes such as (12.34) need not exist in
real markets.

Rather, the surprising point is that the Q-learner does not, at least initially, know
that there is mean-reversion in asset prices, nor does it know anything about the cost
of trading. At no point does it compute estimates for the parameters A,c. It learns to
maximize expected utility in a model-free context, i.e. directly from rewards rather than
indirectly (using a model).

We have also verified that expected utility maximization achieves a much
higher out-of-sample Sharpe ratio than expected-profit maximization. Understanding
of this principle dates back at least to 1713 when Bernoulli pointed out that a
wealth-maximizing investor behaves nonsensically when faced with gambling based
on a martingale (see Bernoulli (1954) for a recent translation).

12.7.1 Simulation-based approaches

A major drawback of the procedure we have presented here is that it requires a large
number of training steps (a few million, on the problem we presented). There are, of
course, financial datasets with millions of time-steps (e.g. high-frequency data sampled
once per second for several years), but in other cases, a different approach is needed.
Even in high-frequency examples, one may not wish to use several years’ worth of data
to train the model.
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Fortunately, a simulation-based approach presents an attractive resolution to these
issues. We propose a multi-step training procedure:

1. Posit a reasonably parsimonious stochastic process model for asset returns with
relatively few parameters.

2. Estimate the parameters of the model from market data, ensuring reasonably small
confidence intervals for the parameter estimates.

3. Use the model to simulate a much larger dataset than the real world presents.

4. Train the reinforcement-learning system on the simulated data.

For the model dx, = —Ax, + o &,, this amounts to estimating 4,0 from market data,
which meets the criteria of a parsimonious model.

The ‘holy grail’ would be a fully realistic simulator of how the market microstruc-
ture will respond to various order-placement strategies. In order to be maximally useful,
such a simulator should be able to accurately represent the market impact caused by
trading too aggressively.

With these two components — a random-process model of asset returns and a good
microstructure simulator — one may generate a training dataset of arbitrarily large size.
The learning procedure is then only partially model-free: it requires a model for asset
returns but no explicit functional form to model trading costs. The ‘trading cost model’
in this case would be provided by the market microstructure simulator, which arguably
presents a much more detailed picture than trying to distil trading costs down into a
single function.

We remark that automatic generation of training data is a key component of
AlphaGo Zero (Silver et al. 2017), which was trained primarily by means of self-
play — effectively using previous versions of itself as a simulator. Whether or not a
simulator is used to train, the search continues for training methods which converge
to a desired level of performance in fewer time-steps. In situations where all of the
training data is real market data, the number of time-steps is fixed, after all.

12.8 CONCLUSIONS AND FURTHER WORK

In the present chapter, we have seen that reinforcement learning concerns the search
for good value functions (and hence, good policies). In almost every subfield of finance,
this kind of model of optimal behaviour is fundamental. For examples, most of the
classic works on market microstructure theory (Glosten and Milgrom 1985; Copeland
and Galai 1983; Kyle 1985) model both the dealer and the informed trader as opti-
mizing their cumulative monetary reward over time. In many cases the cited authors
assume the dealer simply trades to maximize expected profit (i.e. is risk-neutral). In
reality, no trader is risk-neutral, but if the risk is controlled in some other way (e.g.
strict inventory controls) and the risk is very small compared to the premium the
dealer earns for their market-making activities, then risk-neutrality may be a good
approximation.

Recent approaches to multi-period optimization (Garleanu and Pedersen 2013;
Kolm and Ritter 2015; Benveniste and Ritter 2017; Boyd et al. 2017) all follow
value-function approaches based around Bellman optimality.
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Option pricing is based on dynamic hedging, which amounts to minimizing variance
over the lifetime of the option: variance of a portfolio in which the option is hedged
with the replicating portfolio. With transaction costs, one actually needs to solve this
multi-period optimization rather than simply looking at the current option Greeks. For
some related work, see Halperin (2017).

Therefore, we believe that the search for and use of good value functions is per-
haps one of the most fundamental problems in finance, spanning a wide range of fields
from microstructure to derivative pricing and hedging. Reinforcement learning, broadly
defined, is the study of how to solve these problems on a computer; as such, it is fun-
damental as well.

An interesting arena for further research takes inspiration from classical physics.
Newtonian dynamics represent the greedy policy with respect to an action-value func-
tion known as Hamilton’s principal function. Optimal execution problems for port-
folios with large numbers (thousands) of assets are perhaps best treated by viewing
them as special cases of Hamiltonian dynamics, as showed by Benveniste and Ritter
(2017). The approach in Benveniste and Ritter (2017) can also be viewed as a spe-
cial case of the framework above; one of the key ideas there is to use a functional
method related to gradient descent with regard to the value function. Remarkably,
even though it starts with continuous paths, the approach in Benveniste and Ritter
(2017) generalizes to treat market microstructure, where the action space is always
finite.

Anecdotally, it seems that several of the more sophisticiated algorithmic execution
desks at large investment banks are beginning to use reinforcement learning to optimize
their decision making on short timescales. This seems very natural; after all, reinforce-
ment learning provides a natural way to deal with the discrete action spaces presented
by limit order books which are rich in structure, nuanced and very discrete. The classic
work on optimal execution, Almgren and Chriss (1999), does not actually specify how
to interact with the order book.

If one considers the science of trading to be split into (1) large-scale portfolio alloca-
tion decisions involving thousands of assets and (2) the theory of market microstructure
and optimal execution, then both kinds of problems can be unified under the frame-
work of optimal control theory (perhaps stochastic). The main difference is that in
problem (2), the discreteness of trading is of primary importance: in a double-auction
electronic limit order book, there are only a few price levels at which one would typi-
cally transact at any instant (e.g. the bid and the offer, or conceivably nearby quotes)
and only a limited number of shares would transact at once. In large-scale portfolio allo-
cation decisions, modelling portfolio holdings as continuous (e.g. vectors in R”) usually
suffices.

Reinforcement learning handles discreteness beautifully. Relatively small, finite
action spaces such as those in the games of Go, chess and Atari represent areas where
reinforcement learning has achieved superhuman performance. Looking ahead to the
next 10years, we therefore predict that among the two research areas listed above,
although reward functions like (12.24) apply equally well in either case, it is in the
areas of market microstructure and optimal execution that reinforcement learning will
be most useful.
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Deep Learning in Finance: Prediction
of Stock Returns with Long
Short-Term Memory Networks

Miquel N. Alonso, Gilberto Batres-Estrada and Aymeric Moulin

13.1 INTRODUCTION

Recurrent neural networks are models that capture sequential order and therefore are
often used for processing sequential data. RNNs are powerful models due to their ability
to scale too much longer sequences than would be possible for regular neural networks.
They suffer from two serious problems: the first has to do with vanishing gradients and
the second with exploding gradients (Graves 2012; Hochreiter and Schmidhuber 1997;
Sutskever 2013). Both of these are solved by the LSTM. In recent years LSTMs have
solved many problems in speech recognition and machine translation, where the goal is
often to match an input series to an output series. The LSTM network can be used to
solve both classification and regression problems. There are two important things that
distinguish these two domains in machine learning. The first is the type of the output,
where in regression it takes values in the real numbers, whereas in classification it takes
values in a discrete set. The second is the type of cost function used during training.

The chapter is ordered as follows. Section 13.2 presents related work on the sub-
ject of finance and deep learning, Section 13.3 discusses time series analysis in finance.
Section 13.4 introduces deep learning in general, Section 13.5 covers RNN:gs, its building
blocks and methods of training. Section 13.6 describes LSTM networks, Section 13.7
covers the financial problem we try to solve with LSTM, the data used and methods. In
the same section we present the results. Section 13.8 concludes.

13.2 RELATED WORK

For many years there was little research on finance and neural networks, especially
using RNNs. Recently some very interesting papers have been published on the sub-
ject, for instance Lee and Yoo (2017) study the construction of portfolios and focus on
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10 stocks to trade. They achieve good results constructing portfolios that exhibit a con-
sistent risk-return profile at various threshold levels. Their LSTM has a hidden layer
with 100 hidden units. Fischer and Krauss (n.d.) make an exhaustive study compar-
ing many machine learning algorithms and showing that LSTMs outperform the other
models in the study. They take a look at the whole S&P 500 list. According to their
results, they achieve a return of 0.23% per day, prior to transaction costs.

13.3 TIME SERIES ANALYSIS IN FINANGE

An asset return (e.g. log return of a stock) can be considered as a collection of random
variables over time. Then this random variable 7, is a time series. Linear time series anal-
ysis provides a natural framework to study the dynamic structure of such a series. The
theories of linear time series include stationarity, dynamic dependence, autocorrelation
function, modelling and forecasting.

The standard econometric models include autoregressive (AR) models, moving
average (MA) models, mixed autoregressive moving average (ARMA) models, seasonal
models, unit-root nonstationarity, regression models with time series errors, and
fractionally differenced models for long-range dependence.

For an asset return 7,, simple models attempt to capture the linear relationship
between r, and information available prior to time #. The information may contain
the historical values of 7, and the random vector Y, which describes the economic
environment under which the asset price is determined. As such, correlation plays an
important role in understanding these models. In particular, correlations between the
variable of interest and its past values become the focus of linear time series analysis.
These correlations are referred to as serial correlations or autocorrelations. They are
the basic tools for studying a stationary time series. For example, Box—Jenkins ARIMA
makes use of underlying information in terms of the lagged variable itself and errors in
the past; GARCH can capture the volatility clustering of stock returns. Also, there are
many other derivative models like nonlinear GARCH (NGARCH), integrated GARCH
(IGARCH), exponential GARCH (EGARCH) which can perform well in situations with
different settings (Qian n.d.).

13.3.1 Multivariate time series analysis

One of the most important areas of financial modelling is the modelling of multivariate
time series analysis. We have several modelling choices:

Multivariate distributions.

® Copulas: mainly for risk management and regulatory purposes.

Factor models: widely used for prediction, interpretation, dimension reduction, esti-
mation, risk and performance attribution.

Multivariate time series models.

Vector autoregression (VAR) models are one of the most widely used family of mul-
tivariate time series statistical approaches. These models have been applied in a wide
variety of applications, ranging from describing the behaviour of economic and financial
time series to modelling dynamical systems and estimating brain function connectivity.
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VAR models show good performance in modelling financial data and detecting var-
ious types of anomalies, outperforming the existing state-of-the-art approaches. The
basic multivariate time series models based on linear autoregressive, moving average
models are:

Vector autoregression VAR(p)

p
¢
y = C+Z(Diyt—i+8t
=1

Vector moving average VMA(q)

q
Y =c+ Z B+
=1

Vector autoregression moving average VARMA (p, q)

P q
t
Yy =c + Z q)iyt—i + Z @l‘et_f' + €
=1 j=1

Vector autoregression moving average with a linear time trend VARMAL(p, q)

4 q
yt =cCc+ ot + Z q)iyt—i + z @l‘et_i + St
=1 =1

Vector autoregression moving average with exogenous inputs VARMAX(p, q)

P q
t
vy =c + ﬂxt + Z q)iyt—i + Z @7»81_1» + &
i=1 =1

Structural vector autoregression moving average SVARMA(p, q)

P q
q)()yt =c+ ﬁxt + Z q)iyt_,' + Z ®i8t_f + @Oet
=1 j=1

The following variables appear in the equations:

= v, is the vector of response time series variables at time #. y, has 7 elements.

¢ is a constant vector of offsets, with 7 elements.

®; are n-by-n matrices for each i, where ®; are autoregressive matrices. There are
p autoregressive matrices and some can be entirely composed of zeros.

" g, is a vector of serially uncorrelated innovations, vectors of length n. The , are
multivariate normal random vectors with a covariance matrix X.

©; are n-by-n matrices for each j, where ©, are moving average matrices. There are
q moving average matrices and some can be entirely composed of zeros.

® § is a constant vector of linear time trend coefficients, with » elements.
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® x, is an r-by-1 vector representing exogenous terms at each time ¢ and r is the num-
ber of exogenous series. Exogenous terms are data (or other unmodelled inputs) in
addition to the response time series y,. Each exogenous series appears in all response
equations.

® fis an n-by-r constant matrix of regression coefficients of size r. So the product fx,
is a vector of size 7.

LSTMs provide a very interesting non-linear version of these standard models. This
paper uses multivariate LSTMs with exogenous variables in a stock picking prediction
context in experiment 2.

13.3.2 Machine learning models in finance

Machine learning models have gained momentum in finance applications over the past
five years following the tremendous success in areas like image recognition and natural
language processing. These models have proven to be very useful to model unstruc-
tured data. In addition to that, machine learning models are able to model flexibly
non-linearity in classification and regression problems and discover hidden structure
in supervised learning. Combinations of weak learners like XGBoost and AdaBoost
are especially popular. Unsupervised learning is a branch of machine learning
used to draw inferences from datasets consisting of input data without labelled
responses — principal component analysis is an example. The challenges of using
machine learning in finance are important as, like other models, it needs to deal
with estimation risk, potentially non-stationarity, overfitting and in some cases
interpretability issues.

13.4 DEEP LEARNING

Deep learning is a popular area of research in machine learning, partly because it has
achieved big success in artificial intelligence, in the areas of computer vision, natural
language processing, machine translation and speech recognition, and partly because
now it is possible to build applications based on deep learning. Everyday applications
based on deep learning are recommendation systems, voice assistants and search engine
technology based on computer vision, to name just a few. This success has been possible
thanks to the amount of data, which today is referred to as big data, now available
and the possibility to perform computation much faster than ever before. Today it is
possible to port computation from the computer’s central processing unit (CPU) to its
graphical processing unit (GPU). Another approach is to move computations to clusters
of computers in local networks or in the cloud.

The term deep learning is used to describe the activity of training deep neural
networks. There are many different types of architectures and different methods for
training these models. The most common network is the feed-forward neural network
(FNN) used for data that is assumed to be independent and identical distributed (i.i.d.).
RNNs, meanwhile, are more suitable for sequential data, such as time series, speech
data, natural language data (Bengio et al. n.d.) and other data where the assumption
of i.i.d. is not fulfilled. In deep learning, the main task is to learn or approximate some
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function f that maps inputs x to outputs y. Deep learning tries to solve the following
learning problem § = f(8;x) where x is the input to the neural network, j is its output
and 6 is a set of parameters that gives the best fit of /. In regression, ¥ would be repre-
sented by real numbers whereas in classification it would be represented by probabilities
assigned to each class in a discrete set of values.

13.4.1 Deep learning and time series

Time series models in finance need to deal with autocorrelation, volatility clustering,
non-Gaussianity, and possibly cycles and regimes. Deep learning and RNNs in partic-
ular can help model these stylized facts. On this account, an RNN is a more flexible
model, since it encodes the temporal context in its feedback connections, which are
capable of capturing the time varying dynamics of the underlying system (Bianchi et al.
n.d.; Schifer and Zimmermann 2007). RNNs are a special class of neural networks
characterized by internal self-connections which in principle can approximate or model
any nonlinear dynamical system, up to a given degree of accuracy.

13.5 RECURRENT NEURAL NETWORKS

13.9.1 Introduction

RNNs are suitable for processing sequences, where the input might be a sequence
(x1,%3, ...,x1) with each datapoint x, being a real valued vector or a scalar value.
The target signal (yq,y,,...,y7) can also be a sequence or a scalar value. The RNN
architecture is different from that of a classical neural network. It has a recurrent
connection or feedback with a time delay. The recurrent connections represent the
internal states that encode the history of the sequence processed by the RNN (Yu
and Deng 2015). The feedback can be implemented in many ways. Some common
examples of the architecture of RNNs are taking the output from the hidden layer
and feeding it back to the hidden layer together with new arriving input. Another
form of recurrent feedback is taking the output signal from the network at time step
t—1 and feeding it as new input together with new input at time step ¢ (Goodfellow
et al. 2016).

An RNN has a deep architecture when unfolding it in time (Figure 13.1), where its
depth is as long as the temporal input to the network. This type of depth is different from
a regular deep neural network, where depth is achieved by stacking layers of hidden
units on top of each other. In a sense, RNNs can be considered to have depth in both time
and feature space, where depth in feature space is achieved by stacking layers of hidden
units on top of each other. There even exist multidimensional RNNs suitable for video
processing, medical imaging and other multidimensional sequential data (Graves 2012).
RNNs have been successful for modelling variable length sequences, such as language
modelling (Graves 2012; Sutskever 2013), learning word embeddings (Mokolov et al.
2013) and speech recognition (Graves 2012).

13.5.2 Eman recurrent neural network

The Elman recurrent neural network (ERNN), also known as simple RNN or vanilla
RNN, is considered to be the most basic version of RNN. Most of the more complex
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FIGURE 13.1 Recurrent neural network unrolled
in time.

RNN architectures, such as LSTM and gated recurrent units (GRUs), can be interpreted
as a variation or as an extension of ERNNs. ERNNs have been applied in many differ-
ent contexts. In natural language processing applications, ERNNs demonstrated to be
capable of learning grammar using a training set of unannotated sentences to predict
successive words in the sentence (Elman 1995; Ogata et al. 2007). Mori and Ogasawara
(1993) studied ERNN performance in short-term load forecasting and proposed a learn-
ing method, called ‘diffusion learning’ (a sort of momentum-based gradient descent), to
avoid local minima during the optimization procedure. Cai et al. (2007) trained an
ERNN with a hybrid algorithm that combines particle swarm optimization and evolu-
tionary computation to overcome the local minima issues of gradient-based methods.

The layers in an RNN can be divided in an input layer, one or more hidden layers
and an output layer. While input and output layers are characterized by feed-forward
connections, the hidden layers contain recurrent ones. At each time step ¢, the input
layer process the component x[t] € RNi of a serial input x. The time series x has length
T and it can contain real values, discrete values, one-hot vectors and so on. In the
input layer, each component x[¢] is summed with a bias vector b[i] € RN», where N, is
the number of nodes in the hidden layer, and then is multiplied with the input weight
matrix W,” € RN»Np,

The internal state of the network h[t — 1] € RN» from the previous time interval
is first summed with a bias vector b € RN» and then multiplied by the weight matrix
W,” € RN»*Niy of the recurrent connections. The transformed current input and past
network state are then combined and processed by the neurons in the hidden layers,
which apply a non-linear transformation. The difference equations for the update of
the internal state and the output of the network at a time step ¢ are:

h(t) = f(W(x(®) + b) + W (h(t = 1) + b)) (13.1)
y(t) = g(W?h(t) + b,) (13.2)
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where f{-) is the activation function of the neurons, usually implemented by a sigmoid
or by a hyperbolic tangent. The hidden state h[¢], which conveys the content of the
memory of the network at time step ¢, is typically initialized with a vector of zeros and it
depends on past network states and inputs. The output y[t] € RNo is computed through
a transformation g(-), usually linear in a regression setting or non-linear for classification
problems using the matrix of the output weights W,° € RNT*No applied to the current
state b[¢] and the bias vector b, € RNo, All the weight matrices and biases can be trained
through gradient descent, with the back-propagation through time (BPPT) procedure.
Unless differently specified, in the following to compact the notation we omit the bias
terms by assuming x = [x;1], » = [b;1], y = [y;1] and by augmenting Wih, Wl’?’, Ww,°
with an additional column.

13.5.3 Activation function

Activation functions are used in neural networks to transform the input of a neural
network, expressed as a linear combination of weights and bias, to an output in feature
space

h=g(W'x+b)

where T denotes the transpose of the weight matrix. In the forward pass these transfor-
mations are propagated forward and eventually reach the last layer of the network and
become the output of the whole network. This transformation is what makes neural
networks learn nonlinear functions. The rectified linear unit (ReLu) (Figure 13.2) is the
most common type of hidden unit used in modern neural networks (Goodfellow et al.
2016). It is defined as g(z) = max{0,z}.

Another activation function is the logistic sigmoid, o(x) = (14 exp.(—x))~!, which
is a differentiable squashing function (see Figure 13.2). One of its drawbacks is that

Rectified linear unit (ReLu)

2 .

1 4
01 T T T T T
-3 —2 -1 0 1 2

Sigmoid function

1.0

0.5

0.0 -

-3 —2 -1 0 1 2
FIGURE 13.2 The rectified linear unit (ReLu) and

sigmoid functions.
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learning becomes slow due to saturations when its argument either becomes too negative
or when it becomes too big. Nowadays its use is discouraged, especially in feed-forward
neural networks (Goodfellow et al. 2016). In RNNSs the logistic sigmoid can be used
as hidden as well as output units. The tanh(x) is very similar to the sigmoid but with
a range in the interval (—1,1). It is employed as an activation function in all types of
neural networks: FNN, RNN, LSTM.

13.5.4 Training recurrent neural networks

We start this section with a short introduction to the training procedure of an RNN.
In order to train an RNN, we need to compute the cost function in the forward pass.
Then we back-propagate the errors committed by the network and use those errors to
optimize the parameters of the model, with gradient descent.

The algorithm used to compute the gradients, in the context of RNNs, is called
Backpropagation Through Time (BPTT). We introduce the loss and cost functions, then
we show how the parameters of the model are updated and finally we present the BPTT
algorithm.

13.5.5 Loss function

The loss function measures the discrepancy between the predictions made by the neu-
ral network and the target signal in the training data. To assess whether our model
is learning we compute the cost (see below) during training and test its generalization
power on a test set not seen by the model during training. Depending on the predic-
tion task on which we want to apply our RNN, there are several loss functions to
choose from. In what follows we make use of the following definitions. Let y be the
target signal and f{x,0) the output from the network. Then for a binary classification
task the target belongs to the set y = {0,1}. In this case the loss function is given by
(Bishop 2006):

L(y,f(x,0) =— Z ynlog fn+ (1 — yn)log(1 — fn).
i=1

Its derivation is as follows. An outcome from a binary classification problem is
described by a Bernoulli distribution p(y|x, 8) = f(x, 8)’(1 —f(x, 8))' 7. Taking the
natural logarithm on the Bernoulli distribution gives a likelihood function, which in
this case is equal to the cost function, giving the stated result. In this case the output is
given by f=o(a) = (1 + exp(—a))~! satisfying 0 < f(x,0) < 1. For multi-class classification
we often use the loss function

N K

Lyf(x,0) = Y, Y —ykn log fk(xn,0)

n=1k=1
where the output of our model is given by the softmax function

exp(ag(x, 0))

s 9 - =~
filx.6) 2 exp(a;(x, 0))
j
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subject to the conditions 0 <f, <1 and Py, f;, = 1. In regression estimation tasks we make
use of the mean-squared error as the loss function (Bishop 2006)

N
LOWfG.0) = 3 DI (5,:0) = v,
n=1

where f,, is the output of the network, x,, are input vectors, with n = 1,...,N, and v,
are the corresponding target vectors. In unsupervised learning, one of the main tasks is
that of finding the density p(x,0) from a set of densities such that we minimize the loss
function (Vapnik 2000)

L(p(x,0)) = —log p(x, 0).

13.9.6 Cost function

Learning is achieved by minimizing the empirical risk. The principle of risk minimiza-
tion can be defined as follows (Vapnik 2000). Define the loss function L(y,(x,0)) as the
discrepancy between the learning machine’s output and the target signal y. The risk
functional or cost function is then defined as

J0) = /L(y, f(x, 0)dF(x,y)

where F(x,y) is a joint probability distribution. The machine learning algorithm then
has to find the best function f that minimizes the cost function. In practice, we have
to rely on minimizing the empirical risk due to the fact that the joint distribution is
unknown for the data generating process (Goodfellow et al. 2016). The empirical cost
function is given by

E sy L 0. 9] = = ; L, 0),y)

where the expectation, E, is taken over the empirical data distribution *p(x,y).

13.5.7 Gradient descent

To train RNNs we make use of gradient descent, an algorithm for finding the optimal
point of the cost function or objective function, as it is also called. The objective function
is a measure of how well the model compares to the real target. For computing gradient
descent we need to compute the derivatives of the cost function with respect to the
parameters. This can be achieved, for training RNNs, by employing BPTT, shown later
in this section. As stated before, we are going to ignore the derivations for the bias
terms. Similar identities can be obtained from the ones for the weights.

The name gradient descent refers to the fact that the updating rule for the weights
chooses to take its next step in the direction of steepest gradient in weight space. To
understand what this means, let us think of the loss function J(w) as a surface spanned
by the weights w. When we take a small step w + w away from w, the loss function
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changes as 6] *6uwT AJ(w). Then the vector AJ(w) points in the direction of greatest rate
of change (Bishop 2006). Optimization amounts to finding the optimal point where the
following condition holds:

AJ(w) = 0.

If at iteration #» we don’t find the optimal point, we can continue downbhill the
surface spanned by w in the direction —AJ(w), reducing the loss function until we even-
tually find the optimal point. In the context of deep learning, it is very difficult to find a
unique global optimal point. The reason is that the deep neural networks used in deep
learning are compositions of functions of the input, the weights and the biases. This
function composition spanning many layers of hidden units makes the cost function to
be a nonlinear function of the weights and biases, thus leaving us with a non-convex
optimization problem. Gradient descent is given by

w(t+ 1) = wt) — nAJ(w(t))

where 7 is the learning rate. In this form, gradient descent processes all the data at
once to do an update of the weights. This form of learning is called batch learning and
refers to the fact that the whole training set is used at each iteration for updating the
parameters (Bishop 2006; Haykin 2009). Batch learning is discouraged (Bishop 2006,
p. 240) for gradient descent as there are better batch optimization methods, such as
conjugate gradients or quasi-Newton methods (Bishop 2006). It is more appropriate
to use gradient descent in its online learning version (Bishop 2006; Haykin 2009). This
means simply that the parameters are updated using some portion of the data or a single
point at a time after each iteration. The cost function takes the form

N
Jaw) =Y J,@0)
n=1

where the sum runs over each data point. This leads to the online or stochastic gradient
descent algorithm

w(t+1) = w(t) — nAJ,(w(?)).

Its name, stochastic gradient descent, derives from the fact that the update of param-
eters happens either one training example at a time or by choosing points at random
with replacement (Bishop 2006).

13.5.7.1 Back-Propagation Through Time The algorithm to compute the gradients used in
gradient descent, in the case of the RNN, is called BPTT. It is similar to the regular
back-propagation algorithm used to train regular FNNs. By unfolding the RNN in time
we can compute the gradients by propagating the errors backward in time. Let us define
the cost function as the sum of squared errors (Yu and Deng 2015):

T T L
1 1 - '
1= 3 Zlln=nlf = 3 2 3 66~

t=1 j=1
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where 7, represents the target signal and y, the output from the RNN. The sum over
the ¢ variable runs over time steps ¢ = 1,2, ...,T and the sum over j runs over the j units.
To further simplify notation let us redefine the equations of the RNN as:

b, =f(WTh,_; + Ulx, + b) (13.3)
v, =g(VTh,). (13.4)

Employing the local potentials or activation potentials #, = W T h,_; + UT x, and
v, = VT b, by way of Egs. (13.3) and (13.4) and using 8 = {W,U, V}, we can define the
errors (Yu and Deng 2015)

a/(0

5() = —% (13.5)
2/(6

81(j) = ‘aii(/)) (13.6)

as the gradient of the cost function with respect to the units’ potentials. The BPTT
proceeds iteratively to compute the gradients over the time steps, ¢t = T down to ¢ = 1.
For the final time step we compute

aJ(©) dyr())
oy 1(j) ovr(j)

for the set of units j = 1,2, ...,L. This error term can be expressed in vector notation as
follows:

&) =

= (7() = yr(Mgywr()

&y = (rr = yp) © gy(v),

where is the element-wise Hadamard product between matrices. For the hidden layers
we have:

< ; . L
h_ o] ovr(i) obr(j) L
= ,; v (i) Ob1(i) our() ,; & (D (i, N (7))

forj=1,2,...,N. This expression can also be written in vector form as
80 = VT8 of (ur).

Iterating for all other time steps t = T—1,T—2,...,1 we can summarize the error
for the output as:

63/ =(r;,—Y) 0O g’(Ut)’
for all units j = 1,2, ...,L. Similarly, for the hidden units we can summarize the result as

& =(W's!  + Vs of ()

t+1

where 5,7 is propagated from the output layer at time ¢ and 5f+1 is propagated back
from the hidden layer at time step ¢+ 1.
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13.5.7.2 Regularization Theory Regularization theory for ill-posed problems tries to
address the question of whether we can prevent our machine learning model from
overfitting and therefore plays a big role in deep learning.

In the early 1900s it was discovered that solutions to linear operator equations of
the form (Vapnik 2000)

Af =F

for a linear operator A and a set of functions f € T, in an arbitrary function space I'
were ill-posed. That the above equation is ill-posed means that a small deviation like
changing F by F; satisfying kF — F;k <6 for § arbitrary small leads kf; — fk to become
large. In the expression for the functional R(f) = kAf — Fsk?, if the functions f; minimize
the functional R(f), there is no guarantee that we find a good approximation to the right
solution even if 6 — 0.

Many problems in real life are ill-posed, e.g. when trying to reverse the cause-effect
relations, a good example being to find unknown causes from known consequences.
This problem is ill-posed even though it is a one-to-one mapping (Vapnik 2000).
Another example is that of estimating the density function from data (Vapnik 2000). In
the 1960s it was recognized that if one instead minimizes the regularized functional
(Vapnik 2000)

R*(f) = IIAf = F5II* + v(®)Q(P),

where Q(f) is a functional and y(8) is a constant, then we obtain a sequence of solu-
tions that converges to the correct solution as § — 0. In deep learning, the first term
in the functional, R"(f), will be replaced by the cost function, whereas the regulariza-
tion term depends on the set of parameters 6 to be optimized. For L; regularization
7(8)R(f) = Y} | Wi |whereas for L, regularization, this term equals %Il W||? (see Bishop
2006; Friedman et al. n.d.).

13.5.7.3 Dropout Dropout is a type of regularization which prevents neural networks
from overfitting (Srivastava et al. 2014). This type of regularization is also inexpensive
(Goodfellow et al. 2016), especially when it comes to training neural networks. During
training, dropout samples from an exponentially number of different thinned networks
(Srivastava et al. 2014). At test time the model is an approximation of the average of
all the predictions of all thinned networks only that it is a much smaller model with
less weights than the networks used during training. If we have a network with L hid-
den layers, then [ € {1,...,L} is the index of each layer. If 2!/ is the input to layer I,
then y) is the output from that layer, with y(®) = x denoting the input to the network.
Let W) denote the weights and b") denote the bias, then the network equations are
given by:

z§l+1) — w§i+1)yl + b§l+1) (13.7)

YW = fH), (13.8)
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where fis an activation function. Dropout is then a factor that randomly gets rid of some
of the outputs from each layer by doing the following operation (Srivastava et al. 2014):

r;l) ~ Bernoulli(p),
5= g 0
d+1) _  (+D~ +1)
g U =w Uy b

I+1) (+1)
Y; = f(zi )

where * denotes element-wise multiplication.

13.6 LONG SHORT-TERM MEMORY NETWORKS

The LSTM architecture was originally proposed by Hochreiter and Schmidhuber (1997)
and is widely used nowadays due to its superior performance in accurately modelling
both short- and long-term dependencies in data. For these reasons we choose the LSTM
architecture over the vanilla RNN network.

When computing the gradients with BPTT, the error flows backwards in time.
Because the same weights are used at each time step in an RNN, its gradients depend
on the same set of weights, which causes the gradients to either grow without bound
or vanish (Goodfellow et al. 2016; Hochreiter and Schmidhuber 1997; Pascanu et al.
2013). In the first case the weights oscillate; in the second, learning long time lags takes a
prohibitive amount of time (Hochreiter and Schmidhuber 1997). In the case of explod-
ing gradients there is a solution referred to as clipping the gradients (Pascanu et al.
2013), given by the procedure below, where *g is the gradient, & is a threshold and L is
the loss function. But the vanishing gradient problem did not seem to have a solution.
To solve this problem, Hochreiter and Schmidhuber (1997) introduced the LSTM net-
work, similar to the RNN but where the hidden units are replaced by memory cells. The
LSTM is an elegant solution to the vanishing and exploding gradients encountered in
RNNs. The hidden cell in the LSTM (Figure 13.3) is a structure that holds an internal
state with a recurrent connection of constant weight which allows the gradients to pass
many times without exploding or vanishing (Lipton et al. n.d.).

Algorithm 1  Gradient clipping

~ 0L
8§ =

00
if|gll =6 then
~ 6 A
8§ —=8
gl
end if
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FIGURE 13.3 Memory cell or hidden unit in an LSTM recurrent neural network.

The LSTM network is a set of subnets with recurrent connections, known as
memory blocks. Each block contains one or more self-connected memory cells and three
multiplicative units known as the input, output and forget gates, which respectively
support read, write and reset operations for the cells (Graves 2012). The gating units
control the gradient flow through the memory cell and when closing them allows the
gradient to pass without alteration for an indefinite amount of time, making the LSTM
suitable for learning long time dependencies, thus overcoming the vanishing gradient
problem that RNNs suffer from. We describe in more detail the inner workings of an
LSTM cell. The memory cell is composed of an input node, an input gate, an internal
state, a forget gate and an output gate. The components in a memory cell are as
follows:

® The input node takes the activation from both the input layer, x,, and the hidden
state b,_; at time #— 1. The input is then fed to an activation function, either a tanh
or a sigmoid.

® The input gate uses a sigmoidal unit that get its input from the current data x,
and the hidden units at time step ¢ — 1. The input gate multiplies the value of the
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input node and because it is a sigmoid unit with range between zero and one, it can
control the flow of the signal it multiplies.

® The internal state has a self-recurrent connection with unit weight, also called the
constant error carousel in Hochreiter and Schmidhuber (1997), and is given by
st=g,0i,+f 0s,_q. The Hadamard product denotes element-wise product and
f; is the forget gate (see below).

= The forget gate, f,, was not part of the original model for the LSTM but was intro-
duced by Gers et al. (2000). The forget gate multiplies the internal state at time step
t—1 and in that way can get rid of all the contents in the past, as demonstrated by
the equation in the list item above.

® The resulting output from a memory cell is produced by multiplying the value of
the internal state s, by the output gate o,. Often the internal state is run through a
tanh activation function.

The equations for the LSTM network can be summarized as follows. As before, let
g stand for the input to the memory cell, i for the input gate, f for the forget gate, o for
the output gate and (Figure 13.4)

g = o(Wx, + Wb, | +b,) (13.13)
i, = o(Wxx, + Wb, | +b,) (13.14)
fo=o(Wx, + Wh,_| +by) (13.15)
0, = c(Wx, + Wb, | +b,) (13.16)
$=804L+s10f (13.17)
b, = ¢(s,) ® o,. (13.18)

where the Hadamard product denotes element-wise multiplication. In the equations, b,
is the value of the hidden layer at time z, while »,_; is the output by each memory cell
in the hidden layer at time # — 1. The weights { W&X, WX, WX WX} are the connections
between the inputs x, with the input node, the input gate, the forget gate and the output
gate respectively. In the same manner, {Wg?, Wi W Wob) represent the connections
between the hidden layer with the input node, the input gate, the forget gate and the
output gate respectively. The bias terms for each of the cell’s components is given by

{bysbisbpb,).

e
®© © o

FIGURE 13.4 LSTM recurrent neural network unrolled
in time. s for the cell state (Lipton et al. n.d.).
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13.7 FINANCIAL MODEL

The goal with this work is to predict the stock returns for 50 stocks from the S&P 500.
As input to the model we used the stock returns up to time # and the prediction from the
model, an LSTM, is the stock returns at time #+ 1. The predictions from the model help
us decide at time ¢ which stocks to buy, hold or sell. This way we have an automated
trading policy. For stock i we predict the return at time ¢+ 1 using historical returns up
to time .

13.7.1 Return series construction

The returns are computed as: A
7

Ri =+1 1

t+1 = i
Pt

where P, is the price at time ¢ for stock or commodity i and R, is its return at time

t+ 1. Our deep learning model then tries to learn a function G,(-) for predicting the
return at time ¢+ 1 for a parameter set 0:

Rti+1 =Gy(Rp, Ry, - Ryp)

where k is the number of time steps backward in time for the historical returns.
We used a rolling window of 30 daily returns to predict the return for day 31 on
a rolling basis. This process generated sequences of 30 consecutive one-day returns

{R;_29, R;—zs’ ..., R}}, where > 30 for all of stocks .

13.7.2 Evaluation of the model

One solution to machine learning-driven investing with the use of deep learning would
be to build a classifier with class 0 denoting negative returns and class 1 denoting pos-
itive returns. However, in our experiments we observed that solving the problem with
regression gave better results than using pure classification. When learning our models,
we used the mean squared error (MSE) loss as objective function. First, after the models
were trained and validated with a validation set, we made predictions on an indepen-
dent test set, or as we call it here, live dataset. These predictions were tested with respect
to the target series of our stock returns (see experiments 1 and 2) on the independent
set, with a measure for correctness called the hit ratio. In line with Lee and Yoo (2017),
we chose the HR as a measure of how correct the model predicts the outcome of the
stock returns compared to the real outcome. The HR is defined as:

N
1
HR== ) U,
p
where N is the total number of trading days and U, is defined as:

U= {1 ifR,R,

0 otherwise
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where R, in the realized stock returns and R, is the predicted stock returns at trad-
ing day t. Thus, HR is the rate of correct predictions measured against the real target
series. By using the HR as a measure of discrepancy we could conclude that the pre-
dictions either moved in the same direction as the live target returns or moved in the
opposite direction. If HR equals one, it indicates perfect correlation and a value of zero
indicates that the prediction and the real series moved in opposite directions. A value
of HR > 0.50 indicates that the model is right more than 50% of the time while a value of
HR <0.50 indicates that the model guesses the outcome.

For the computations we used Python, as well as Keras and PyTorch deep learning
libraries. Keras and PyTorch use tensors with strong GPU acceleration. The GPU com-
putations were performed both on an NVIDIA GeForce GTX 1080 Ti and an NVIDIA
GeForce GTX 1070 GDDRS card on two separate machines.

13.7.3 Data and results

We conducted two types of experiments. The first was intended to demonstrate the
predictive power of the LSTM using one stock at a time as input up to time ¢ and as
target the same stock’s returns at time #+ 1. From now on we refer to it as experiment 1.
The second experiment was intended to predict the returns for all stocks simultaneously.
This means that all of our 50 stock returns up to time ¢ were fed as input to an LSTM
which was trained to predict the 50 stock returns at time #+ 1. Additionally, to the
50 stocks we fed to the model the returns from crude oil futures, silver and gold returns.
We refer to this as experiment 2. All the stocks used in this chapter are from the S&P
500, while the commodity prices were from data provider Quandl (Quandl n.d.).

13.7.3.1 Experiment 1

13.7.3.1.1 Main Experiments For experiment 1, our model used the stock returns
as input up to time #, one at a time, to predict the same returns at time #+ 1 — see
the discussion above on return series construction. A new model was trained for each
stock. Most of the parameters where kept constant during training for every stock. The
learning rate was set to 0.001 and we used a dropout rate of 0.01, the only exception
being the number of hidden units. The number of hidden units is different for different
stocks. For every stock we started with an LSTM with 100 hidden units and increased
that number until the condition HR > 0.70 was met, increasing the number of units
with 50 units per iteration up to 200 hidden units.

Note that the condition HR > 0.70 was never met, but this value was chosen merely
to keep the computations running until an optimum was found. At most we ran the
experiments for 400 epochs but stopped if there was no improvement in the test error
or if the test error increased. This technique is called early stopping. For early stopping
we used a maximum number of 50 epochs before stopping the training. The training
was performed in batches of 512.

Because we trained different LSTMs for different stocks, we ended up with different
amounts of data for training, testing and validating the models. Sometimes we refer
to the test data as live data. The data was divided first in 90% to 10%, where the
10% portion was for testing (live data) and corresponded to the most recent stock
prices. The 90% portion was then divided once again in 85% to 15% for training
and validation respectively. The number of data points and periods for the datasets are
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given in the appendix in Table 13.A.1. For optimization we tested both the RMSProp
and Adam algorithms, but found that the best results were achieved with stochastic
gradient descent and momentum. This is true only when processing one time series at
a time. For experiment 2 we used the Adam optimization algorithm. The results from
experiment 1 are shown in Table 13.1.

13.7.3.1.2 Baseline Experiments The LSTM model was compared to two other mod-
els. The baseline models were a support vector machine (SVM) (Friedman et al. n.d.)
and a neural network (NN). The NN consisted of one hidden layer, where the number
of hidden units were chosen with the same procedure as that for the LSTM, the only
difference being that the range for choosing hidden units lies in the range 50-150. Addi-
tionally, we used the same learning rate, number of epochs, batch size and drop rate as
those used for the LSTM. For the NNs we trained the models in a regression setting
using the MSE. For the predictions produced by the NN we computed the HR on the
live dataset. The results are presented together with those for the LSTM in Table 13.1.

By inspecting Table 13.1 we can get the following figures. The LSTM achieved a
value HR > 0.50 for 43 stocks out of 50 and did not better than chance (HR <0.50) for
the remaining 7 stocks. The SVM got it ‘right’ (HR > 0.50) for 21 stocks, while the NN
did just a little better with 27 stocks moving in the same direction as the true series. If
we imagine that HR = 0.51 can be achieved by rounding the results, those values can
be questioned as also being achieved by chance. The LSTM had a value of HR = 0.51
for 10 stocks, the SVM for 3 stocks while the NN for 8 stocks. Even if the LSTM seems
superior to the other models, the difference in performance is not that big, except for
some cases. On some stocks both the SVM and the NN can be as good as the LSTM or
better. But what this experiment shows is that the LSTM is consistent in predicting the
direction in which its predictions move with respect to the real series.

13.7.3.2 Experiment 2 In this experiment we used the returns of all the 50 stocks. Addi-
tionally, we used oil, gold and S&P 500 return series of the 30 previous days as input.
The output from our model is the prediction of the 50 stock returns. To test the robust-
ness of the LSTM we also performed experiments against a baseline model, which in
this case consisted of an SVM (Friedman et al. n.d.), suited for regression. To test the
profitability of the LSTM, we ran experiments on a smaller portfolio consisting of 40
of our initial stocks (see Table 13.4) and the return series from the S&P 500, oil and
gold. This part of the experiment is intended to show that the LSTM is consistent in
its predictions independent of the time periods. Especially we were interested to see
whether the model was robust to the subprime financial crisis. These results are shown
in Table 13.5.

Because this section consists of many experiments, we present the experiment per-
formed on the 50 stocks plus commodities in the main experiment subsection. The
baseline experiment is presented in the subsection above and the last experiment for
time periods in the ‘Results in different market regimes’ subsection below.

13.7.3.2.1 Main Experiment All the features in this experiment were scaled with the
min-max formula:

xXX=Ax-(b-a)+a,
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TABLE 13.1 Experiment 1: comparison of performance measured as the HR for LSTM, SVM

and NN

Stock Hidden units HR LSTM HR SVM HR NN
AAPL 150 0.53 0.52 0.52 (130)
MSFT 100 0.51 0.49 0.49 (150)
FB 100 0.58 0.58 0.56 (90)
AMZN 100 0.55 0.56 0.53 (90)
JNJ 100 0.52 0.47 0.50 (50)
BRK/B 150 0.51 0.51 0.51 (50)
JPM 100 0.52 0.51 0.50 (90)
XOM 100 0.52 0.52 0.49 (50)
GOOGL 100 0.54 0.53 0.53 (70)
GOOG 100 0.55 0.55 0.55 (50)
BAC 100 0.47 0.50 0.59 (50)
PG 100 0.50 0.50 0.50 (110)
T 150 0.52 0.48 0.50 (70)
WEC 150 0.51 0.47 0.50 (70)
GE 100 0.51 0.50 0.50 (110)
CVX 150 0.50 0.53 0.50 (70)
PFE 100 0.49 0.49 0.49 (50)
VZ 150 0.51 0.53 0.50 (50)
CMCSA 150 0.54 0.49 0.50 (110)
UNH 100 0.52 0.48 0.52 (130)
A\ 100 0.59 0.51 0.55 (70)
C 150 0.52 0.50 0.51 (50)
PM 100 0.56 0.56 0.52 (110)
HD 100 0.53 0.50 0.53 (70)
KO 150 0.51 0.48 0.50 (70)
MRK 200 0.54 0.49 0.50 (110)
PEP 100 0.55 0.52 0.51 (50)
INTC 150 0.53 0.45 0.51 (110)
CSCO 100 0.51 0.48 0.50 (90)
ORCL 150 0.52 0.48 0.50 (130)
DWDP 150 0.51 0.48 0.50 (90)
DIS 150 0.53 0.49 0.52 (130)
BA 100 0.54 0.53 0.51 (50)
AMGN 100 0.51 0.52 0.53 (90)
MCD 150 0.55 0.48 0.52 (130)
MA 100 0.57 0.57 0.55 (130)
IBM 100 0.49 0.49 0.50 (50)
MO 150 0.55 0.47 0.52 (50)
MMM 100 0.53 0.46 0.52 (90)
ABBV 100 0.60 0.38 0.41 (110)
WMT 100 0.52 0.50 0.51 (50)
MDT 150 0.52 0.49 0.50 (50)
GILD 100 0.50 0.52 0.51 (70)
CELG 100 0.51 0.52 0.50 (90)
HON 150 0.55 0.46 0.52 (130)
NVDA 100 0.56 0.55 0.54 (90)
AVGO 100 0.57 0.57 0.51 (130)
BMY 200 0.52 0.49 0.50 (50)
PCLN 200 0.54 0.54 0.53 (70)
ABT 150 0.50 0.47 0.50 (70)

The results are computed for the independent live dataset. The numbers in parentheses in the NN column

stand for the number of hidden units.
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x — min(x)

where Ax = ,and a, b is the range (a,b) of the features. It is common to

max(x) — min(x)
seta =0and b = 1. The training data consisted of 560 days from the period 2014-05-13
to 2016-08-01. We used a validation set consisting of 83 days for choosing the meta
parameters, from the period 2016-08-02 to 2016-11-25 and a test set of 83 days from
the period 2016-11-28 to 2017-03-28. Finally, we used a live dataset of 111 days for
the period 2017-03-29 to 2017-09-05.

We used an LSTM with one hidden layer LSTM and 50 hidden units. As activation
function we used the ReLu; we also used a dropout rate of 0.01 and a batch size of 32.
The model was trained for 400 epochs. The parameters of the Adam optimizer were a
learning rate of 0.001, g, = 0.9, f, = 0.999, & = 10" and the decay parameter was
set to 0.0 As loss function we used the MSE.

To assess the quality of our model and to try to determine whether it has value for
investment purposes, we looked at the ‘live dataset’, which is the most recent dataset.
This dataset is not used during training and can be considered to be an independent
dataset. We computed the HR on the predictions made with the live data to assess
how often our model was right compared to the true target returns. The hit ratio gives
us information if the predictions of the model move in the same direction as the true
returns. To evaluate the profitability of the model we built daily updated portfolios
using the predictions from the model and computed their average daily return. A typi-
cal scenario would be that we get predictions from our LSTM model just before market
opening for all 50 daily stock returns. According to the direction predicted, positive or
negative, we open a long position in stock 7 if R,’> 0. If R,’ <0 we can either decide to
open a short position (in that case we call it a long-short portfolio) for stock i or do
nothing and if we own the stocks we can choose to keep them (we call it a long port-
folio). At market closing we close all positions. Thus, the daily returns of the portfolio
on day ¢ for a long-short portfolio is 21'5:01 sign(ﬁt) -R,.

Regarding the absolute value of the weights for the portfolio we tried two kinds of
similar, equally-weighted portfolios. Portfolio 1: at the beginning we allocate the same
proportion of capital to invest in each stock, then the returns on each stock are indepen-
dently compounded, thus the portfolio return on a period is the average of the returns
on each stock on the period. Portfolio 2: the portfolio is rebalanced each day, i.e. each
day we allocate the same proportion of capital to invest in each stock, thus the portfolio
daily return is the average of the daily returns on each stock. Each of the portfolios has
a long and a long-short version. We are aware that not optimizing the weights might
result in very conservative return profiles in our strategy. The results from experiment 2
are presented in Table 13.2.

13.7.3.2.2 Baseline Experiments This experiment was designed first to compare the
LSTM to a baseline, in this case an SVM, and second to test the generalization power
between the models with respect to the look-back period used as input to the LSTM
and the SVM. We noticed that using a longer historic return series as input, the LSTM
remains robust and we don’t see overfitting, as is the case for the SVM. The SVM had
very good performance on the training set but performed worse on the validation and
test sets. Both the LSTM and the SVM were tested with a rolling window of days in the
set: {1,2,5,10}.
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TABLE 13.2 Experiment 2 (main experiment)

Stock HR Avg Ret %(L) Avg Ret %(L/S)
Portfolio 1 0.63 0.18 0.27
Portfolio 2 0.63 0.18 0.27
AAPL 0.63 0.24 0.32
MSFT 0.71 0.29 0.45
FB 0.71 0.31 0.42
AMZN 0.69 0.27 0.41
JNJ 0.65 0.12 0.19
BRK/B 0.70 0.19 0.31
JPM 0.62 0.22 0.38
XOM 0.70 0.11 0.25
GOOGL 0.72 0.31 0.50
GOOG 0.75 0.32 0.52
BAC 0.70 0.30 0.55
PG 0.60 0.60 0.90
T 0.61 0.80 0.22
WEC 0.67 0.16 0.38
GE 0.64 0.50 0.24
CVX 0.71 0.18 0.31
PFE 0.66 0.70 0.14
VZ 0.50 0.10 0.10
CMCSA 0.63 0.23 0.36
UNH 0.59 0.20 0.22
A% 0.65 0.23 0.31
C 0.69 0.28 0.39
PM 0.64 0.17 0.28
HD 0.61 0.10 0.17
KO 0.61 0.80 0.90
MRK 0.61 0.90 0.16
PEP 0.60 0.80 0.11
INTC 0.63 0.16 0.31
CSCO 0.68 0.14 0.31
ORCL 0.52 0.80 0.40
DWDP 0.60 0.21 0.35
DIS 0.59 0 0.90
BA 0.57 0.23 0.16
AMGN 0.65 0.21 0.36
MCD 0.58 0.16 0.12
MA 0.66 0.25 0.34
IBM 0.54 -0.40 0.60
MO 0.59 0.10 0.13
MMM 0.63 0.16 0.24
ABBV 0.61 0.18 0.22
WMT 0.50 0.14 0.16
MDT 0.59 0.90 0.17
GILD 0.50 0.16 0.11
CELG 0.64 0.28 0.45
HON 0.66 0.15 0.20
NVDA 0.68 0.54 0.68
AVGO 0.65 0.37 0.59
BMY 0.57 0.13 0.19
PCLN 0.61 0.14 0.24
ABT 0.63 0.21 0.28

HR, average daily returns for long portfolio (L) and long-short portfolio (L/S) in percent. The results are
computed for the independent live dataset.
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TABLE 13.3 Experiment 2 (baseline experiment)

Model HR Avg Ret %(L) Avg Ret %(L/S)
LSTM (1) 0.59 0.14 0.21
LSTM (2) 0.61 0.17 0.26
LSTM (5) 0.62 0.17 0.26
LSTM (10) 0.62 0.17 0.26
SVM (1) 0.59 0.14 0.21
SVM (2) 0.58 0.13 0.18
SVM (5) 0.57 0.12 0.16
SVM (10) 0.55 0.11 0.14

The table shows the HR and the daily average returns for each model; all computations are performed on the
out-of-sample live dataset. The number in parentheses in the model name indicates the look-back length of
the return series, i.e. trading days.

The results of the baseline experiment are shown in Table 13.3. We can see from the
results that the LSTM improves its performance in the HR and the average daily returns
in both the long and long-short portfolios. For the SVM, the opposite is true, i.e. the
SVM is comparable to the LSTM only when taking into account the most recent history.
The more historic data we use, the more the SVM deteriorates in all measures, HR, and
average daily returns for the long and long-short portfolios. This is an indication that the
SVM overfits to the training data the longer backward in time our look-back window
goes, whereas the LSTM remains robust.

13.7.3.2.3 Results in Different Market Regimes To validate our results for this exper-
iment, we performed another experiment on portfolio 1. This time, instead of using all
50 stocks as input and output for the model, we picked 40 stocks. As before, we added
the return series for the S&P 500, oil and gold in this portfolio. The data was divided
as training set 66%, validation (1) 11%, validation (2) 11%, live dataset 11%. The
stocks used for this portfolio are presented in Table 13.4 and the results are shown in
Table 13.5. Notice that the performance of the portfolio (Sharpe ratio) reaches a peak
in the pre-financial crisis era (2005-2008) just to decline during the crisis but still with

TABLE 18.4 Experiment 2 (stocks used for this portfolio)

AAPL MSFT US AMZN US Equity JNJ US
BRK/B JPM XOM BAC
PG T WEFC GE
CVX PFE \V4 CMCSA
UNH C HD KO
MRK PEP INTC CSCO
ORCL DWDP DIS BA
AMGN MCD IBM MO
MMM WMT MDT GILD
CELG HON BMY ABT

The 40 stocks used for the second part of experiment 2.
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TABLE 13.9 Experiment 2 (results in different market regimes)

Avg. Ret Avg. Ret Sharpe Sharpe
Training period HR % % (L) % (L/S) ratio (L) ratio (L/S)
2000-2003 49.7 -0.05 -0.12 -0.84 -1.60
2001-2004 48.1 0.05 -0.02 2.06 -0.73
2002-2005 52.5 0.11 0.10 6.05 3.21
2003-2006 55.9 0.10 0.16 5.01 5.85
2004-2007 54.0 0.14 0.12 9.07 5.11
2005-2008 61.7 0.26 0.45 7.00 9.14
2006-2009 59.7 0.44 1.06 3.10 6.22
2007-2010 53.8 0.12 0.12 5.25 2.70
2008-2011 56.5 0.20 0.26 6.12 6.81
2009-2012 62.8 0.40 0.68 6.31 9.18
2010-2013 55.4 0.09 0.14 3.57 3.73
2011-2014 58.1 0.16 0.21 5.59 6.22
2012-2015 56.0 0.15 0.21 S5.61 5.84

This table shows HR, average daily return for a long (L) portfolio, average daily return for a long-short (L/S)
and their respective Sharpe ratios (L) and (L/S). The results are computed for the independent live dataset.
Each three-year period is divided into 66 % training, 11% validation (1), 11% validation (2) and 11% live set.

a performance quite high. These experiments are performed with no transaction costs
and we still assume that we can buy and sell without any market frictions, which in
reality might not be possible during a financial crisis.

The LSTM network was trained for periods of three years and the test on live data
was performed on data following the training and validation period. What this exper-
iment intends to show is that the LSTM network can help us pick portfolios with very
high Sharpe ratio independent of the time period chosen in the backtest. This means
that the good performance of the LSTM is not merely a stroke of luck in the good times
that stock markets are experiencing these times.

13.8 CONCLUSIONS

Deep learning has proven be one of the most successful machine learning families of
models in modelling unstructured data in several fields like computer vision and nat-
ural language processing. Deep learning solves this central problem in representation
learning by introducing representations that are expressed in terms of other, simpler
representations. Deep learning allows the computer to build complex concepts out of
simpler concepts. A deep learning system can represent the concept of an image of a
person by combining simpler concepts, such as corners and contours, which are in turn
defined in terms of edges.

The idea of learning the right representation for the data provides one per-
spective on deep learning. You can think about it as the first layers ‘discovering’
features that allow an efficient dimensionality reduction phase and perform non-linear
modelling.
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Another perspective on deep learning is that depth allows computers to learn a
multi-step computer program. Each layer of the representation can be thought of as the
state of the computer’s memory after executing another set of instructions in parallel.
Networks with greater depth can execute more instructions in sequence. Sequential
instructions offer great power because later instructions can refer back to the results of
earlier instructions.

Convolutional neural networks for image processing and RNNs for natural lan-
guage processing are being used more and more in finance as well as in other sciences.
The price to pay for these deep models is a large number of parameters to be learned,
the need to perform non-convex optimizations and the interpretability. Researchers
have found in different contexts the right models to perform tasks with great accu-
racy, reaching stability, avoiding overfitting and improving the interpretability of these
models.

Finance is a field in which these benefits can be exploited given the huge amount
of structured and unstructured data available to financial practitioners and researchers.
In this chapter we explore an application on time series. Given the fact that autocor-
relations, cycles and non-linearities are present in time series, LSTM networks are a
suitable candidate to model time series in finance. Elman neural networks are also a
good candidate for this task, but LSTMs have proven to be better in other non-financial
applications. Time series also exhibit other challenging features such as estimation and
non-stationarity.

We have tested the LSTM in a univariate context. The LSTM network performs
better than both SVMs and NNs — see experiment 1. Even though the difference in
performance is not very important, the LSTM shows consistency in its predictions.

Our multivariate LSTM network experiments with exogeneous variables show
good performance consistent with what happens when using VAR models compared
with AR models, their ‘linear’ counterpart. In our experiments, LSTMs show better
accuracy ratios, hit ratios and high Sharpe ratios in our equally-weighted long-only
and unconstrained portfolios in different market environments.

These ratios show good behaviour in-sample and out-of-sample. Sharpe ratios of
our portfolio experiments are 8 for the long-only portfolio and 10 for the long-short
version, an equally-weighted portfolio would have provided a 2.7 Sharpe ratio
using the model from 2014 to 2017. Results show consistency when using the
same modelling approach in different market regimes. No trading costs have been
considered.

We can conclude that LSTM networks are a promising modelling tool in financial
time series, especially in the multivariate LSTM networks with exogeneous vari-
ables. These networks can enable financial engineers to model time dependencies,
non-linearity, feature discovery with a very flexible model that might be able to
offset the challenging estimation and non-stationarity in finance and the potential
of overfitting. These issues can never be underestimated in finance, even more so in
models with a high number of parameters, non-linearity and difficulty to interpret like
LSTM networks.

We think financial engineers should then incorporate deep learning to model not
only unstructured but also structured data. We have interesting modelling times ahead
of us.
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APPENDIX A

TABLE 13.A.1  Periods for training set, test set and live dataset in experiment 1

Stock

Training period

Test period

Live period

AAPL
MSFT
FB
AMZN
JNJ
BRK/B
JPM
XOM
GOOGL
GOOG
BAC
PG

T
WFC
GE
CVX
PFE
\4
CMCSA
UNH
%

C

PM
HD
KO
MRK
PEP
INTC
CSCO
ORCL
DWDP
DIS
BA
AMGN
MCD
MA
IBM
MO
MMM
ABBV
WMT
MDT
GILD
CELG
HON
NVDA
AVGO
BMY
PCLN
ABT

1982-11-15 2009-07-08 (6692)
1986-03-17 2010-04-21 (6047)
2012-05-21 2016-06-20 (996)
1997-05-16 2012-12-07 (3887)
1977-01-05 2008-02-20 (7824)
1996-05-13 2012-09-11 (4082)
1980-07-30 2008-12-19 (7135)
1980-07-30 2008-12-19 (7136)
2004-08-20 2014-08-25 (2490)
2014-03-31 2016-11-22 (639)
1980-07-30 2008-12-19 (7134)
1980-07-30 2008-12-19 (7136)
1983-11-23 2009-10-02 (6492)
1980-07-30 2008-12-19 (7135)
1971-07-08 2006-11-06 (8873)
1980-07-30 2008-12-19 (7136)
1980-07-30 2008-12-19 (7135)
1983-11-23 2009-10-02 (6492)
1983-08-10 2009-09-09 (6549)
1985-09-04 2010-03-08 (6150)
2008-03-20 2015-06-26 (1800)
1986-10-31 2010-06-14 (5924)
2008-03-19 2015-06-26 (1801)
1981-09-24 2009-03-31 (6913)
1968-01-04 2006-01-13 (9542)
1980-07-30 2008-12-19 (7135)
1980-07-30 2008-12-19 (7135)
1982-11-15 2009-07-08 (6692)
1990-02-20 2011-03-24 (5287)
1986-04-16 2010-04-29 (6032)
1980-07-30 2008-12-19 (7135)
1974-01-07 2007-06-06 (8404)
1980-07-30 2008-12-19 (7136)
1984-01-04 2009-10-13 (6473)
1980-07-30 2008-12-19 (7135)
2006-05-26 2015-01-23 (2149)
1968-01-04 2006-01-13 (9541)
1980-07-30 2008-12-19 (7134)
1980-07-30 2008-12-19 (7135)
2012-12-12 2016-08-05 (888)
1972-08-29 2007-02-09 (
1980-07-30 2008-12-19 (7135

(

(

(

(

(

(

(

(

8664

)
)
1992-01-24 2011-09-07 (4912)
1987-09-02 2010-08-27 (57595)
1985-09-23 2010-03-11 (6139)
1999-01-25 2013-05-03 (3562)
2009-08-07 2015-10-22 (1533)
1980-07-30 2008-12-18 (7135)
1999-03-31 2013-05-20 (3527)
1980-07-30 2008-12-19 (7135)

2009-07-09 2014-03-18 (1181)
2010-04-22 2014-07-17 (1067)
2016-06-21 2017-03-02 (176)
2012-12-10 2015-08-31 (686)
2008-02-21 2013-08-14 (1381)
2012-09-12 2015-07-24 (720)
2008-12-22 2013-12-20 (1259)
2008-12-22 2013-12-20 (1259)
2014-08-26 2016-05-23 (439)
2016-11-23 2017-05-08 (113)
2008-12-22 2013-12-20 (1259)
2008-12-22 2013-12-20 (1259)
2009-10-05 2014-04-24 (1146)
2008-12-22 2013-12-20 (1259)
2006-11-07 2013-01-29 (1566)
2008-12-22 2013-12-20 (1259)
2008-12-22 2013-12-20 (1259)
2009-10-05 2014-04-24 (1146)
2009-09-10 2014-04-14 (1156)
2010-03-09 2014-06-27 (1085)
2015-06-29 2016-09-29 (318)
2010-06-15 2014-08-08 (1046)
2015-06-29 2016-09-29 (318)
2009-04-01 2014-02-04 (1220
2006-01-17 2012-09-20 (
2008-12-22 2013-12-20 (
2008-12-22 2013-12-20 (1259
2009-07-09 2014-03-18 (1181
2011-03-25 2014-12-08 (933)
2010-04-30 2014-07-22 (1064

(

(

(

(

(

(

(

(

(

(

(

(

(

)
1684)
1259)
)
)

)
2008-12-22 2013-12-20 (1259)
2007-06-07 2013-04-26 (1483)
2008-12-22 2013-12-20 (1259)
2009-10-14 2014-04-29 (1142)
2008-12-22 2013-12-20 (1259)
2015-01-26 2016-07-26 (379)
2006-01-17 2012-09-20 (1684)
2008-12-22 2013-12-20 (1259)
2008-12-22 2013-12-20 (1259)
2016-08-08 2017-03-22 (157)
2007-02-12 2013-03-08 (1529)
2008-12-22 2013-12-20 (1259)
2011-09-08 2015-02-19 (867)
2010-08-30 2014-09-11 (1016)
2010-03-122014-06-30 (1083)
2013-05-06 2015-10-29 0(466)
2015-10-23 2016-11-17 (271)
2008-12-19 2013-12-19 (1259)
2013-05-21 2015-11-05 (622)

2008-12-22 2013-12-20 (1259)

2014-03-19 2017-09-05
2014-07-18 2017-09-05
2017-03-03 2017-09-05
2015-09-01 2017-09-05 (508

875)
)
)
)
2013-08-15 2017-09-05 (1023)
)
)
)
)

791
130

(

(

(

(

(
2015-07-27 2017-09-05 (534
2013-12-23 2017-09-05 (933
2013-12-23 2017-09-05 (933
2016-05-24 2017-09-05 (325
2017-05-09 2017-09-05 (84)
2013-12-23 2017-09-05 (933)
2013-12-23 2017-09-05 (933)
2014-04-25 2017-09-05 (849)
2013-12-23 2017-09-05 (933)
2013-01-30 2017-09-05 (1160)
2013-12-23 2017-09-05 (933)
2013-12-23 2017-09-05 (933)
2014-04-25 2017-09-05 (849)
2014-04-15 2017-09-05 (856)
2014-06-30 2017-09-05 (804)
2016-09-30 2017-09-05 (235)
2014-08-11 2017-09-05 (775)
2016-09-30 2017-09-05 (235)
2014-02-05 2017-09-05 (904)
2012-09-21 2017-09-05 (1247)
2013-12-23 2017-09-05 (933)
2013-12-23 2017-09-05 (933)
2014-03-19 2017-09-05 (875)
2014-12-09 2017-09-05 (691)
2014-07-23 2017-09-05 (788)
2013-12-23 2017-09-05 (933)
2013-04-29 2017-09-05 (1099)
2013-12-23 2017-09-05 (933)
2014-04-30 2017-09-05 (846)
2013-12-23 2017-09-05 (933)
2016-07-27 2017-09-05 (281)
2012-09-21 2017-09-05 (1247)
2013-12-23 2017-09-05 (933)
2013-12-23 2017-09-05 (933)
2017-03-23 2017-09-05 (116)
2013-03-11 2017-09-05 (1133)
2013-12-23 2017-09-05 (933)
2015-02-20 2017-09-05 (642)
2014-09-12 2017-09-05 (752)
2014-07-01 2017-09-05 (803)
2015-10-30 2017-09-05 (466)
2016-11-18 2017-09-05 (200)
2013-12-20 2017-09-01 (933)
015-11-06 2017-09-05 (461)
2013-12-23 2017-09-05 (933)

In parentheses we show the number of trading days in each dataset.
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M. Berkan Sesen, PhD, vice president, is a quantitative researcher and portfolio manager
in a major US asset manager. Prior to this, he worked as a quantitative analyst at Citi-
group, supervising a small team with the mandate to build/maintain statistical models
to assist algorithmic trading and electronic market making. He also co-led the global
data analytics working group within the quantitative analysis department in Citigroup.
Berkan holds a doctorate in artificial intelligence from the University of Oxford and
specializes in machine learning and statistics. He also holds an MSc with Distinction in
Biomedical Engineering from the University of Oxford.

Yazann Romahi, PhD, CFA, managing director, is CIO at a major US asset man-
ager focused on developing the firm’s factor-based franchise across both alternative
beta and strategic beta. Prior to that he was Head of Research and Quantitative Strate-
gies, responsible for the quantitative models that help establish the broad asset alloca-
tion reflected across multi-asset solutions portfolios globally. Yazann has worked as a
research analyst at the Centre for Financial Research at the University of Cambridge and
has undertaken consulting assignments for a number of financial institutions, including
Pioneer Asset Management, PricewaterhouseCoopers and HSBC. Yazann holds a PhD
in Computational Finance/Artificial Intelligence from the University of Cambridge and
is a CFA charter holder.

Victor Li, PhD, CFA, executive director, is Head of Equity and Alternative Beta
Research and a portfolio manager at a major US asset manager. Victor’s primary focus
includes management of the research agenda, as well as model development and port-
folio management for the quantitative beta suite of products. Victor holds a PhD in
Communications and Signal Processing from Imperial College London, where he was
also employed as a full-time research assistant. Victor obtained an MSc with Distinc-
tion in Communications Engineering from the University of Manchester and is a CFA
charter holder.

CHAPTER 11

Joel Guglietta is Macro Quantitative Portfolio Manager of Graticule Asset Management
in Hong Kong, managing a multi-assets hedge funds using machine learning algorithms.
Prior to that Joel was a macro quantitative strategist and portfolio manager for hedge
funds and investment banks in Asia and Australia (Brevan Howard, BTIM, HSBC)
for more than 12 years. His expertise is in quantitative models for asset allocation,
portfolio construction and management using a wide range of techniques, including
machine learning techniques and genetic algorithms. Joel is currently a PhD candidate
at GREQAM (research unit jointly managed by CNRS, EHESS and Ecole Centrale). He
has been a speaker at many deep learning and machine learning events in Asia.

CHAPTER 12

Gordon Ritter completed his PhD in Mathematical Physics at Harvard University in
2007, where his published work ranged across the fields of quantum computation,
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quantum field theory, differential geometry and abstract algebra. Prior to Harvard
he earned his bachelor’s degree with honours in mathematics from the University of
Chicago. Gordon is a senior portfolio manager at GSA Capital and leader of a team
trading a range of systematic absolute return strategies across geographies and asset
classes. GSA Capital has won the Equity Market Neutral & Quantitative Strategies
category at the EuroHedge Awards four times, with numerous other awards including
in the long-term performance category. Prior to joining GSA, Gordon was a vice
president of Highbridge Capital and a core member of the firm’s statistical arbitrage
group, which although operating with fewer than 20 people, was responsible for
billions in profit and trillions of dollars of trades across equities, futures and options
with low correlation to traditional asset classes. Concurrently with his positions in
industry, Gordon teaches courses including portfolio management, econometrics,
continuous-time finance and market microstructure in the Department of Statistics
at Rutgers University, and also in the MFE programmes at Baruch College (CUNY)
and New York University (both ranked in the top five MFE programmes). Gordon
has published original work in top practitioner journals including Risk and academic
journals including European Journal of Operational Research. He is a sought-after
speaker at major industry conferences.

CHAPTER 13

Miquel Noguer Alonso is a financial markets practitioner with more than 20 years of
experience in asset management. He is currently Head of Development at Global Al
(big data artificial intelligence in finance company) and Head of Innovation and Tech-
nology at IEF. He worked for UBS AG (Switzerland) as Executive Director. He has been
a member of the European Investment Committee for the past 10 years. He worked
as a chief investment officer and CIO for Andbank from 2000 to 2006. He started his
career at KPMG. Miquel is Adjunct Professor at Columbia University, teaching asset
allocation, big data in finance and FinTech. He is also Professor at ESADE, teaching
hedge funds, big data in finance and FinTech. He taught the first FinTech and big data
course at London Business School in 2017. Miquel received an MBA and a degree
in Business Administration and Economics at ESADE in 1993. In 2010 he earned a
PhD in Quantitative Finance with a Summa Cum Laude distinction (UNED - Madrid,
Spain). He completed a postdoc at Columbia Business School in 2012. He collaborated
with the mathematics department of Fribourg University, Switzerland, during his
PhD. He also holds the Certified European Financial Analyst (CEFA) 2000 distinction.
His academic collaborations include a visiting scholarship in the Finance and Eco-
nomics Department at Columbia University in 2013, in the mathematics department
at Fribourg University in 2010, and presentations at Indiana University, ESADE and
CAIA, plus several industry seminars including the Quant Summit USA 2017 and 2010.

Gilberto Batres-Estrada is a senior data scientist at Webstep in Stockholm, Sweden,
where he works as a consultant developing machine learning and deep learning algo-
rithms for Webstep’s clients. He develops algorithms in the areas of computer vision,
object detection, natural language processing and finance, serving clients in the financial
industry, telecoms, transportation and more. Prior to this Gilberto worked developing
trading algorithms for Assa Bay Capital in Gothenburg, Sweden. He has more than
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nine years of experience in I'T working for a semi-government organization in Sweden.
Gilberto holds both an MSc in Theoretical Physics from Stockholm university and an
MSc in Engineering from KTH Royal Institute of Technology in Stockholm, with a
specialization in applied mathematics and statistics.

Aymeric Moulin is a graduate student at Columbia University in the [EOR depart-
ment where he is majoring in Operations Research. He studied theoretical mathematics
and physics in classes préparatoiresin France and completed a Bachelor of Science at
CentraleSupélec engineering school, from which he will soon receive a master’s degree.
He has spent the past few years focusing on deep learning and reinforcement learn-
ing applications to financial markets. He is currently an intern at JP Morgan in Global
Equities.



