

LAMPIRAN

Region Growing.m

function [segmented_image, region_total, e]=region_growing(I, threshold, neighbours)

%%

% This function will segment an image using region growing method with one

% seed point in (1,1) and mean as the threshold.

% INPUT

% I = Grayscale image to be segmented

% threshold = Positive integer representing the threshold of regions

% neighbours = Positive integer representing the neighbours computation (

% 4 or 8)

% OUTPUT

% segmented_image = Segmented image

% region_total = Total region generated

% e = Computation time

%

% EXAMPLE OF USAGE

% Suppose one wants to segment an image, I, using region growing method

% with 50 threshold, and 4-connected neighbourhood.

% The callback of this function can be as follows:

% region_growing(I, 50 , 4)

%

% This function will utilize dynamic array to store the queue. Another

% function utilizing static array is also implemented. The reason is to see

% the comparisan of computation time between them.

%%

% Start the cpu clock

t = cputime;

% Extract image size

[i_height, i_width] = size(I);

i_size = i_height * i_width;

% Initiate a temporary matrix for output image, and the regions details.

I_temp=zeros(i_height, i_width);

region_total = 1;

region_size = 1;

% Set the seed point

seed_point = [1,1];

% Initatiate mean to be the intensity of the seed point

u_ri= double(I(seed_point(1), seed_point(2)));

%Initiate a queue to store the execution sequence

queue = [];

queue_last = 1;

queue(1,:) = seed_point;

% Set the neighbours matrix

if(neighbours == 8)

 neighbours = [-1 0; -1 1;0 1; 1 1;1 0; 1 -1;-1 0;-1 -1];

else

 neighbours = [-1 0; 0 1; 1 0; -1 0];

end

% Start growing the region sequentially

for im_counter_w = 1 : i_width

 for im_counter_h = 1 : i_height%Calculate the computation time

 % Check whether the pixel has ever been evaluated before

 if(I_temp(im_counter_h, im_counter_w) == 0)

 % Check whether the pixel is within the same region

 same_region = abs (double(I(im_counter_h, im_counter_w)) - double(u_ri)) <= threshold;

 % Generate a new queue if the region is not the same

 if ~same_region

 %Clear up the queue, and initiate all the parameter again

 %for the new region

 queue = [];

 queue(1,:) = [im_counter_h, im_counter_w];

 region_size = 1;

 queue_last = 1;

 u_ri = I(im_counter_h, im_counter_w);

 % Increase number of region

 region_total = region_total + 1;

 else

 % If it is the same region, labelled the pixel

 I_temp(im_counter_h, im_counter_w) = region_total;

 end

 % Start exploring the neighbour until it reaches the end of the

 % queue or the region size is the same as the image size

 while queue_last <= region_size && region_size <= i_size

 % Get the index of the next pixel from the queue

 i = queue(queue_last, 1);

 j = queue(queue_last, 2);

 % Labelled this pixel to be on the same region

 I_temp(i,j) = region_total;

 % Start exploring the neighbours

 for n = 1 : size(neighbours)

 neighbour_position = [i j] + neighbours(n,:);

 %Check if it is stil within image

 if neighbour_position(1)>= 1 && neighbour_position(2)>=1....

 && neighbour_position(1) <= i_height && neighbour_position(2)<= i_width

 % Check whether it falls within the same region

 neighbour_intensity = I(neighbour_position(1), neighbour_position(2));

 same_region = abs (double(neighbour_intensity) - double(u_ri)) <= threshold;

 %If it is in the same region and it is not labelled

 %yet

 if same_region

 if(I_temp(neighbour_position(1),neighbour_position(2)) == 0)

 % Update the queue list

 queue = [queue; [neighbour_position(1),neighbour_position(2)]];

 % Labelled the pixel

 I_temp(neighbour_position(1), neighbour_position(2)) = region_total;

 % Update the mean value and increase the

 % region size

 u_ri = (double(u_ri*region_size) + double(neighbour_intensity)) / (region_size+1);

 region_size = region_size + 1;

 end

 end

 end

 end

 %Go to the next qeue

 queue_last = queue_last +1 ;

 end

 end

 end

end

%Labelled the image

segmented_image = label2rgb(uint8(I_temp));

%Calculate the computation time

e = cputime - t;

end

