

55

LAMPIRAN

Lampiran Listing Program Arduino

#include <Wire.h> // I2C library, required for MLX90614

#include <LiquidCrystal_I2C.h>

#define I2C_ADDR 0x27 //I2C adress, you should use the code to scan the adress first (0x27) here

#define BACKLIGHT_PIN 3 // Declaring LCD Pins

#define En_pin 2

#define Rw_pin 1

#define Rs_pin 0

#define D4_pin 4

#define D5_pin 5

#define D6_pin 6

#define D7_pin 7

LiquidCrystal_I2C lcd(I2C_ADDR,En_pin,Rw_pin,Rs_pin,D4_pin,D5_pin,D6_pin,D7_pin);

int relayfan = 12;

int relaysedot = 11;

int relayuap = 10;

int smokeA1 = A1;

int smokeA2 = A2;

void setup() {

 Serial.begin(9600);

 lcd.begin(16,2);

 lcd.setBacklightPin(BACKLIGHT_PIN,POSITIVE);

 lcd.setBacklight(HIGH); //Lighting backlight

 pinMode(relayfan, OUTPUT);

 pinMode(relaysedot, OUTPUT);

 pinMode(relayuap , OUTPUT);

 pinMode(smokeA1, INPUT);

 pinMode(smokeA2, INPUT);

digitalWrite(relayuap , HIGH);

digitalWrite(relaysedot, HIGH);

digitalWrite(relayfan, HIGH);

}

void loop() {

 int analogSensor = analogRead(smokeA1);

 int analogSensor1 = analogRead(smokeA2);

 Serial.print("Pin A1: ");

 Serial.println(analogSensor);

 Serial.print("Pin A2: ");

 Serial.println(analogSensor1);

 lcd.setCursor(0,0);

 lcd.print("Sensor 1: ");

 lcd.print(analogSensor);

 lcd.print("PPM");

 lcd.setCursor(0,1);

 lcd.print("sensor 2: ");

 lcd.print(analogSensor1);

 lcd.print("PPM");

 // Checks if it has reached the threshold value

 if ((analogSensor1 >= 160)||(analogSensor >= 160))

 {Serial.print("fan hidup: ");

 digitalWrite(relaysedot, LOW);

 digitalWrite(relayfan, LOW);

 digitalWrite(relayuap , LOW);

 }

 else if ((analogSensor1 >= 120 && analogSensor1 <= 160)||(analogSensor >= 120 && analogSensor

<= 160))

 {Serial.print("uap hidup: ");

 digitalWrite(relayuap , LOW);

 digitalWrite(relaysedot, LOW);

 digitalWrite(relayfan, HIGH);

 }

else if ((analogSensor1 <= 120)||(analogSensor <= 120))

 {

 digitalWrite(relayuap , HIGH);

 digitalWrite(relaysedot, HIGH);

 digitalWrite(relayfan, HIGH);

 }

 delay(500);

}

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a
USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to
support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC
adapter or battery to get started. The Uno differs from all preceding boards in that it does not use the FTDI
USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno and version
1.0 will be the reference versions of Arduno, moving forward. The Uno is the latest in a series of USB
Arduino boards, and the reference model for the Arduino platform; for a comparison with previous versions,
see the index of Arduino boards.

http://arduino.cc/en/Main/Boards
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf

EAGLE files: arduino-duemilanove-uno-design.zip Schematic: arduino-uno-schematic.pdf

Microcontroller ATmega328
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB of which 0.5 KB used by
bootloader

SRAM 2 KB
EEPROM 1 KB
Clock Speed 16 MHz

The Arduino Uno can be powered via the USB connection or with an external power supply. The power
source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter
can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a
battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V
pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage
regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

• VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to
5 volts from the USB connection or other regulated power source). You can supply voltage through
this pin, or, if supplying voltage via the power jack, access it through this pin.

• 5V. The regulated power supply used to power the microcontroller and other components on the
board. This can come either from VIN via an on-board regulator, or be supplied by USB or another
regulated 5V supply.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
• GND. Ground pins.

The Atmega328 has 32 KB of flash memory for storing code (of which 0,5 KB is used for the bootloader); It
has also 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(), digitalWrite(), and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and
has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have
specialized functions:

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. TThese pins are
connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip .

• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a
rising or falling edge, or a change in value. See the attachInterrupt() function for details.

• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which,

although provided by the underlying hardware, is not currently included in the Arduino language.

• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is
on, when the pin is LOW, it's off.

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode
http://www.arduino.cc/en/Reference/EEPROM

The Uno has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By
default they measure from ground to 5 volts, though is it possible to change the upper end of their range
using the AREF pin and the analogReference() function. Additionally, some pins have specialized
functionality:

• I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library.

There are a couple of other pins on the board:

• AREF. Reference voltage for the analog inputs. Used with analogReference().
• Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to

shields which block the one on the board.

See also the mapping between Arduino pins and Atmega328 ports.

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other
microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on
digital pins 0 (RX) and 1 (TX). An ATmega8U2 on the board channels this serial communication over USB
and appears as a virtual com port to software on the computer. The '8U2 firmware uses the standard USB
COM drivers, and no external driver is needed. However, on Windows, an *.inf file is required..

The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the
Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-
serial chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentation for details. To use the SPI communication,
please see the ATmega328 datasheet.

The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno w/
ATmega328" from the Tools > Board menu (according to the microcontroller on your board). For details,
see the reference and tutorials.

The ATmega328 on the Arduino Uno comes preburned with a bootloader that allows you to upload new code
to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

The ATmega8U2 firmware source code is available . The ATmega8U2 is loaded with a DFU bootloader,
which can be activated by connecting the solder jumper on the back of the board (near the map of Italy) and
then resetting the 8U2. You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac
OS X and Linux) to load a new firmware. Or you can use the ISP header with an external programmer
(overwriting the DFU bootloader).

http://dfu-programmer.sourceforge.net/
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886
http://dev.arduino.cc/wiki/uno/Hacking/Programmer
http://www.atmel.com/dyn/resources/prod_documents/avr061.zip
http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf
http://arduino.cc/en/Tutorial/Bootloader
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Reference/Wire
http://www.arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Hacking/PinMapping168
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReference

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is designed in a
way that allows it to be reset by software running on a connected computer. One of the hardware flow control
lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega328 via a 100 nanofarad
capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The
Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the
Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR
can be well-coordinated with the start of the upload.

This setup has other implications. When the Uno is connected to either a computer running Mac OS X or
Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or
so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything
besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Uno has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection
until the short or overload is removed.

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1213719666/all

Arduino can sense the environment by receiving input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is
programmed using the Arduino programming language (based on Wiring) and the Arduino
development environment (based on Processing). Arduino projects can be stand-alone or they can
communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You’ll have to follow different instructions for your personal
OS. Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Now you’re actually ready to “burn” your
first program on the arduino board. To
select “blink led”, the physical translation
of the well known programming “hello
world”, select

File>Sketchbook>
Arduino-0017>Examples>
Digital>Blink

Once you have your skecth you’ll
see something very close to the
screenshot on the right.

In Tools>Board select

Now you have to go to
Tools>SerialPort
and select the right serial port, the
one arduino is attached to.

http://arduino.cc/en/Guide/HomePage
http://www.processing.org/
http://wiring.org.co/
http://arduino.cc/en/Reference/HomePage

1. Warranties

1.1 The producer warrants that its products will conform to the Specifications. This warranty lasts for one (1) years from the date of the sale. The
producer shall not be liable for any defects that are caused by neglect, misuse or mistreatment by the Customer, including improper installation or testing,
or for any products that have been altered or modified in any way by a Customer. Moreover, The producer shall not be liable for any defects that result from
Customer's design, specifications or instructions for such products. Testing and other quality control techniques are used to the extent the producer deems
necessary.

1.2 If any products fail to conform to the warranty set forth above, the producer's sole liability shall be to replace such products. The producer's liability
shall be limited to products that are determined by the producer not to conform to such warranty. If the producer elects to replace such products, the
producer shall have a reasonable time to replacements. Replaced products shall be warranted for a new full warranty period.

1.3 EXCEPT AS SET FORTH ABOVE, PRODUCTS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." THE PRODUCER DISCLAIMS ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

1.4 Customer agrees that prior to using any systems that include the producer products, Customer will test such systems and the functionality of the
products as used in such systems. The producer may provide technical, applications or design advice, quality characterization, reliability data or other
services. Customer acknowledges and agrees that providing these services shall not expand or otherwise alter the producer's warranties, as set forth
above, and no additional obligations or liabilities shall arise from the producer providing such services.

1.5 The Arduino products are not authorized for use in safety-critical applications where a failure of the product would reasonably be expected to cause
severe personal injury or death. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Arduino products are neither designed nor intended for use in military or aerospace applications or
environments and for automotive applications or environment. Customer acknowledges and agrees that any such use of Arduino products which is solely
at the Customer's risk, and that Customer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

1.6 Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its
products and any use of Arduino products in Customer's applications, notwithstanding any applications-related information or support that may be
provided by the producer.

2. Indemnification

The Customer acknowledges and agrees to defend, indemnify and hold harmless the producer from and against any and all third-party losses, damages,
liabilities and expenses it incurs to the extent directly caused by: (i) an actual breach by a Customer of the representation and warranties made under this
terms and conditions or (ii) the gross negligence or willful misconduct by the Customer.

3. Consequential Damages Waiver

In no event the producer shall be liable to the Customer or any third parties for any special, collateral, indirect, punitive, incidental, consequential or
exemplary damages in connection with or arising out of the products provided hereunder, regardless of whether the producer has been advised of the
possibility of such damages. This section will survive the termination of the warranty period.

4. Changes to specifications

The producer may make changes to specifications and product descriptions at any time, without notice. The Customer must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined." The producer reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The product information on the Web Site or Materials is
subject to change without notice. Do not finalize a design with this information.

The producer of Arduino has joined the Impatto Zero®
policy of LifeGate.it. For each Arduino board produced is
created / looked after half squared Km of Costa Rica’s
forest’s.

1

Grove - Gas Sensor (MQ2)

User Manual

Version： 1.0

Release date： 2015/9/22

Wiki: http://seeedstudio.com/wiki/Twig_-_Gas_Sensor%28MQ2%29

Bazaar: http://www.seeedstudio.com/depot/Grove-Gas-SensorMQ2-

p-937.html

http://seeedstudio.com/wiki/Twig_-_Gas_Sensor%28MQ2%29
http://www.seeedstudio.com/depot/Grove-Gas-SensorMQ2-p-937.html
http://www.seeedstudio.com/depot/Grove-Gas-SensorMQ2-p-937.html

2

Document Revision History

Revision Date Author Description

1.0 Sep 22, 2015 Jiankai.li Create file

3

Contents

Document Revision History ··· 2

1. Introduction ··· 2

2. Features ·· 3

3. Application Ideas ··· 4

4. Mechanic Dimensions ··· 5

 Electronic Characteristics ·· 5

5. Usage ·· 6

 Suggest Reading for Starter ··· 6

 Hardware Installation ·· 6

 How to use ··· 7

6. Version Tracker ·· 10

7. Resources ··· 11

8. Related Projects ··· 12

 Gas Sensor Demo ·· 12

9. Licensing ··· 错误!未定义书签。

1

Disclaimer

For physical injuries and possessions loss caused by those reasons which are not related to

product quality, such as operating without following manual guide, natural disasters or force

majeure, we take no responsibility for that.

Under the supervision of Seeed Technology Inc., this manual has been compiled and published

which covered the latest product description and specification. The content of this manual is

subject to change without notice.

Copyright

The design of this product (including software) and its accessories is under tutelage of laws. Any

action to violate relevant right of our product will be penalized through law. Please consciously

observe relevant local laws in the use of this product.

2

1. Introduction

The Grove - Gas Sensor(MQ2) module is useful for gas leakage detecting(in home and industry).

It can detect H2, LPG, CH4, CO, Alcohol, Smoke, Propane. Based on its fast response time.

Measurements can be taken as soon as possible. Also the sensitivity can be adjusted by the

potentiometer.

http://seeedstudio.com/wiki/File:Twig-Gas_Sensor.bmp

3

2. Features

 Wide detecting scope

 Stable and long life

 Fast response and High sensitivity

4

3. Application Ideas

 Gas leakage detecting

 Toys

5

4. Mechanic Dimensions

 Electronic Characteristics

Items Parameter name Min Type Max Unit

System Characteristics

VCC Working Voltage 4.9 5 5.1 V

 PH
 Heating

consumption
0.5 - 800 mW

 RL Load resistance can adjust

 RH Heater resistance - 33 - Ω

 Rs Sensing Resistance 3 - 30 kΩ

6

5. Usage

 Suggest Reading for Starter

 Download Arduino and install Arduino driver

 Getting Started with Seeeduino

 How to choose a Gas Sensor

 What's LEL

 Hardware Installation

Grove products have a eco system and all have a same connector which can plug onto the Base

Shield. Connect this module to the A0 port of Base Shield, however, you can also connect Gas

sensor to Arduino without Base Shield by jumper wires.

Arduino UNO Gas Sensor

5V VCC

GND GND

NC NC

Analog A0 SIG

You can gain the present voltage through the SIG pin of sensor. The higher the concentration of

the gas, the bigger the output voltage of the SIG pin. Sensitivity can be regulated by rotating the

potentiometer. Please note the best preheat time of the sensor is above 24 hours. For the detailed

information about the MQ-2 sensor please refer to the datasheet.

http://www.seeedstudio.com/wiki/Download_Arduino_and_install_Arduino_driver
http://www.seeedstudio.com/wiki/Getting_Started_with_Seeeduino
http://www.seeedstudio.com/wiki/How_to_choose_A_Gas_Sensor
http://en.wikipedia.org/wiki/Flammability_limit
http://www.seeedstudio.com/wiki/index.php?title=Base_shield_v2&uselang=en
http://www.seeedstudio.com/wiki/index.php?title=Base_shield_v2&uselang=en

7

 How to use

There're two steps you need to do before getting the concentration of gas.

First, connect the module with Grove Shield using A0 like the picture above. And put the sensor in

a clear air and use the program below.

void setup() {

 Serial.begin(9600);

}

void loop() {

 float sensor_volt;

 float RS_air; // Get the value of RS via in a clear air

 float R0; // Get the value of R0 via in H2

 float sensorValue;

/*--- Get a average data by testing 100 times ---*/

 for(int x = 0 ; x < 100 ; x++)

 {

 sensorValue = sensorValue + analogRead(A0);

 }

 sensorValue = sensorValue/100.0;

/*---*/

 sensor_volt = sensorValue/1024*5.0;

 RS_air = (5.0-sensor_volt)/sensor_volt; // omit *RL

 R0 = RS_air/10.0; // The ratio of RS/R0 is 10 in a clear air

 Serial.print("sensor_volt = ");

 Serial.print(sensor_volt);

 Serial.println("V");

 Serial.print("R0 = ");

http://seeedstudio.com/wiki/File:Read_Gas_Sensor_data.jpg

8

 Serial.println(R0);

 delay(1000);

}

Then, open the monitor of Arduino IDE, you can see some data are printed, write down the value

of R0 and you need to use it in the following program. During this step, you may pay a while time

to test the value of R0.

Second, put the sensor in one gas where the environment you want to test in. However, don't forget

to replace the R0 below with value of R0 tested above.

void setup() {

 Serial.begin(9600);

}

void loop() {

 float sensor_volt;

 float RS_gas; // Get value of RS in a GAS

 float ratio; // Get ratio RS_GAS/RS_air

 int sensorValue = analogRead(A0);

 sensor_volt=(float)sensorValue/1024*5.0;

 RS_gas = (5.0-sensor_volt)/sensor_volt; // omit *RL

 /*-Replace the name "R0" with the value of R0 in the demo of First Test -*/

 ratio = RS_gas/R0; // ratio = RS/R0

 /*---*/

 Serial.print("sensor_volt = ");

 Serial.println(sensor_volt);

 Serial.print("RS_ratio = ");

 Serial.println(RS_gas);

 Serial.print("Rs/R0 = ");

 Serial.println(ratio);

 Serial.print("\n\n");

 delay(1000);

}

Now, we can get the concentration of gas from the below figure

9

According to the figure, we can see that the minimum concentration we can

test is 100ppm and the maximum is 10000ppm, in a other word, we can get a

concentration of gas between 0.01% and 1%. However, we can't provide a

formula because the relation between ratio and concentration is nonlinear.

http://seeedstudio.com/wiki/File:Gas_sensor_1.png

10

6. Version Tracker

Revision Descriptions Release

v0.9b Initial public release 16,Aug,2011

v1.4 Replace some components 27,Aug,2014

11

7. Resources

 File:Gas Sensor Eagle files.zip

 File:Gas Sensor Schematic.pdf

 File:MQ-2.pdf

http://seeedstudio.com/wiki/File:Gas_Sensor_Eagle_files.zip
http://seeedstudio.com/wiki/File:Gas_Sensor_Schematic.pdf
http://seeedstudio.com/wiki/File:MQ-2.pdf

12

8. Related Projects

If you want to make some awesome projects by Gas Sensor(MQ2) , here's some projects for

reference.

 Gas Sensor Demo

This is a demo about Air Quality Box make by Gas Sensor.

I want to make it.

http://www.seeedstudio.com/recipe/35-air-quality-box.html
http://seeedstudio.com/wiki/File:Overview0.png

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Seeed Studio:

 101020055

http://www.mouser.com/seeedstudio
http://www.mouser.com/access/?pn=101020055

1 www.handsontec.com

Handson Technology

User Guide

2 Channel 5V Optical Isolated Relay Module

This is a LOW Level 5V 2-channel relay interface board, and each channel needs a 15-20mA
driver current. It can be used to control various appliances and equipment with large current.
It is equipped with high-current relays that work under AC250V 10A or DC30V 10A. It has
a standard interface that can be controlled directly by microcontroller. This module is
optically isolated from high voltage side for safety requirement and also prevent ground loop
when interface to microcontroller.

Brief Data:

• Relay Maximum output: DC 30V/10A, AC 250V/10A.

• 2 Channel Relay Module with Opto-coupler. LOW Level Trigger expansion board, which is
compatible with Arduino control board.

• Standard interface that can be controlled directly by microcontroller (8051, AVR, *PIC, DSP,
ARM, ARM, MSP430, TTL logic).

• Relay of high quality low noise relays SPDT. A common terminal, a normally open, one
normally closed terminal.

• Opto-Coupler isolation, for high voltage safety and prevent ground loop with microcontroller.

2 www.handsontec.com

It is sometimes possible to use this relay boards with 3.3V signals, if the JD-VCC (Relay Power) is provided
from a +5V supply and the VCC to JD-VCC jumper is removed. That 5V relay supply could be totally
isolated from the 3.3V device, or have a common ground if opto-isolation is not needed. If used with
isolated 3.3V signals, VCC (To the input of the opto-isolator, next to the IN pins) should be connected to the
3.3V device's +3.3V supply.

NOTE: Some Raspberry-Pi users have found that some relays are reliable and others do not actuate
sometimes. It may be necessary to change the value of R1 from 1000 ohms to something like 220 ohms, or
supply +5V to the VCC connection.

Schematic:

VCC and RY-VCC are also the power supply of the relay module. When you need to drive a large power
load, you can take the jumper cap off and connect an extra power to RY-VCC to supply the relay; connect
VCC to 5V of the MCU board to supply input signals.

NOTES: If you want complete optical isolation, connect "Vcc" to Arduino +5 volts but do NOT connect
Arduino Ground. Remove the Vcc to JD-Vcc jumper. Connect a separate +5 supply to "JD-Vcc" and board
Gnd. This will supply power to the transistor drivers and relay coils.

If relay isolation is enough for your application, connect Arduino +5 and Gnd, and leave Vcc to JD-Vcc
jumper in place.

3 www.handsontec.com

NOTE: The digital input s from Arduino are Active LOW: The relay actuates and LED lights when the input
pin is LOW, and turns off on HIGH.

Module Layout:

Supply voltage to the coil and some currents will pass through the coil thus generating the electromagnetic
effect. So the armature overcomes the tension of the spring and is attracted to the core, thus closing the
moving contact of the armature and the normally open (NO) contact or you may say releasing the former
and the normally closed (NC) contact. After the coil is de-energized, the electromagnetic force disappears
and the armature moves back to the original position, releasing the moving contact and normally closed
contact. The closing and releasing of the contacts results in power on and off of the circuit.

Operating Principle:

See the picture below: A is an electromagnet, B armature, C spring, D moving contact, and E fixed contacts.
There are two fixed contacts, a normally closed one and a normally open one. When the coil is not energized,
the normally open contact is the one that is off, while the normally closed one is the other that is on.

IN1: Signal triggering terminal 1 of relay module

Input:

VCC : Connected to positive supply voltage (supply power according to relay voltage)

GND : Connected to supply ground.

4 www.handsontec.com

IN2: Signal triggering terminal 2 of relay module

Output:

Each module of the relay has one NC (normally close), one NO (normally open) and one COM (Common)
terminal. So there are 2 NC, 2 NO and 2 COM of the channel relay in total. NC stands for the normal close
port contact and the state without power. NO stands for the normal open port contact and the state with
power. COM means the common port. You can choose NC port or NO port according to whether power or
not.

Testing Setup:

When a low level is supplied to signal terminal of the 2-channel relay, the LED at the output terminal will
light up. Otherwise, it will turn off. If a periodic high and low level is supplied to the signal terminal, you
can see the LED will cycle between on and off.

For Arduino：

Step 1：

Connect the signal terminal IN1、IN2 of 2-channel relay to digital pin 4 & 5 of the Arduino Uno or
ATMega2560 board, and connect an LED at the output terminal.

IN1> 4

IN2> 5

Step 2:

Upload the sketch "text_code" to the Arduino Uno or ATMega2560 board.Then you can see the LED cycle
between on and off.

The actual figure is shown below:

For raspberry Pi:

5 www.handsontec.com

Step1:

Connect the signal terminal IN2、IN1 of 2-channel relay to port 17、18 of the Raspberry Pi, and connect an
LED at the output terminal.

IN2 > 17

IN1 > 18

Step 2:

Run the “test_code”. Then you can see the LED cycle between on and off.

Sketch for Arduino:

/**
 Name：_2_channel_relay
 Description: control the 2 channel relay module to ON or OFF
 Website: www.handsontec.com
 Email: techsupport@handsontec.com
***/

//the relays connect to
int IN1 = 4;
int IN2 = 5;

#define ON 0
#define OFF 1

void setup()
{
 relay_init();//initialize the relay
}

void loop() {
 relay_SetStatus(ON, OFF);//turn on RELAY_1

6 www.handsontec.com

 delay(2000);//delay 2s
 relay_SetStatus(OFF, ON);//turn on RELAY_2
 delay(2000);//delay 2s
}
void relay_init(void)//initialize the relay
{
 //set all the relays OUTPUT
 pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
 relay_SetStatus(OFF, OFF); //turn off all the relay
}
//set the status of relays
void relay_SetStatus(unsigned char status_1, unsigned char status_2)
{
 digitalWrite(IN1, status_1);
 digitalWrite(IN2, status_2);
}

Code for Raspberry Pi:

#!/usr/bin/env python
'''
**
* Filename : 2_channel_relay.py
* Description : a sample script for 2-Channel High trigger Relay
* E-mail : techsupport@handsontec.com
* Website : www.handsontec.com
* Detail : New file
**
'''
import RPi.GPIO as GPIO
from time import sleep

Relay_channel = [17, 18]

def setup():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(Relay_channel, GPIO.OUT, initial=GPIO.LOW)
 print "|===|"
 print "| 2-Channel High trigger Relay Sample |"
 print "|---|"
 print "| |"
 print "| Turn 2 channels on off in orders |"
 print "| |"
 print "| 17 ===> IN2 |"
 print "| 18 ===> IN1 |"
 print "| |"
 print "| |"
 print "|===|"

def main():
 while True:
 for i in range(0, len(Relay_channel)):
 print '...Relay channel %d on' % i+1
 GPIO.output(Relay_channel[i], GPIO.HIGH)
 sleep(0.5)
 print '...Relay channel %d off' % i+1
 GPIO.output(Relay_channel[i], GPIO.LOW)
 sleep(0.5)

def destroy():
 GPIO.output(Relay_channel, GPIO.LOW)
 GPIO.cleanup()

7 www.handsontec.com

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

W
IN

ST
AR

 D
ISP

LA
Y

Co
., L

td.

Gambar. 1 Tampilan Keseluruhan Alat

Gambar. 2 Bentuk Fisik LCD

Gambar. 3 Bentuk Fisik KIPAS 1

Gambar. 4 Bentuk Fisik KIPAS 2

