

1

LAMPIRAN - 1

Listing Program

#include <Adafruit_VC0706.h>

#include <SPI.h>

#include <SD.h>

#include <SoftwareSerial.h>

#include <ESP8266WiFi.h>

#include <WiFiClientSecure.h>

#include <UniversalTelegramBot.h>

#include <DFPlayer_Mini_Mp3.h> //memasukan library DFPlayermini

#define min(a,b) ((a)<(b)?(a):(b))

const char* ssid = "andre";

const char* password = "112345678";

const char* host = "api.telegram.org";

const int httpsPort = 443;

const char* token = "1344956820:AAHmTPffWoTiV94JlRvDibrc1MdHofvG9MA";

const char* chat_id = "1118834794";

const char* boundry = "<delimitador_conteudo>";

WiFiClientSecure client;

2

UniversalTelegramBot bot(token, client);

int Bot_mtbs = 1000;

long Bot_lasttime;

#define chipSelect D0

#define doorlock 2

int state = 0;

int statusMode = 0;

SoftwareSerial cameraconnection = SoftwareSerial(0,4);

Adafruit_VC0706 cam = Adafruit_VC0706(&cameraconnection);

void setup()

{client.setInsecure();

 pinMode(D0, OUTPUT);

 pinMode(5, INPUT_PULLUP);

 pinMode(doorlock, OUTPUT);

 digitalWrite(doorlock,HIGH);

 Serial.begin(115200);

 Serial.begin(9600);

 Serial.println("VC0706 Camera snapshot test");

 mp3_set_serial (Serial); //baud komunikasi pada 9600

 delay(1);

 mp3_set_volume (90);

3

 if (!SD.begin(chipSelect)) {

 Serial.println("Card failed, or not present");

 return;

 }

 else {

 Serial.println("MASUK");

 }

 initWifiConnection();

 statusMode = 0;

}

void loop()

{ utama();

 if (millis() > Bot_lasttime + Bot_mtbs) {

 int numNewMessages = bot.getUpdates(bot.last_message_received + 1);

 while(numNewMessages) {

 Serial.println("RESPON BAIK");

 handleNewMessages(numNewMessages);

 numNewMessages = bot.getUpdates(bot.last_message_received + 1);

 }

 Bot_lasttime = millis();

 }

}

4

void utama() {

 int bacaSensor = digitalRead(5);

 if(statusMode==0){

 if (bacaSensor == HIGH) {

 Serial.println("BAHAYA! PINTU TERBUKA!");

 bot.sendMessage(chat_id,"BAHAYA! PINTU TERBUKA!");

 capture();

 delay(100);

 mp3_play (1);

 }

 else if (bacaSensor == LOW) {

 Serial.println("PINTU AMAN!");

 }

 }

 if(statusMode==1){

 if (bacaSensor == HIGH) {

 Serial.println("BAHAYA! PINTU TERBUKA!");

 }

 else if (bacaSensor == LOW) {

 Serial.println("PINTU AMAN!");

 }

 }

 delay(100);

5

}

void capture(){

 if (cam.begin()) {

 Serial.println("Camera Found:");

 } else {

 Serial.println("KAMERA BERMASALAH!");

 // bot.sendMessage(chat_id,"KAMERA BERMASALAH");

 return;

 }

 char *reply = cam.getVersion();

 if (reply == 0) {

 Serial.print("Failed to get version");

 //disini

 } else {

 Serial.println("-----------------");

 Serial.print(reply);

 Serial.println("-----------------");

 }

 cam.setImageSize(VC0706_640x480); // small

 uint8_t imgsize = cam.getImageSize();

 Serial.print("Image size: ");

 if (imgsize == VC0706_640x480) Serial.println("640x480");

6

 if (imgsize == VC0706_320x240) Serial.println("320x240");

 if (imgsize == VC0706_160x120) Serial.println("160x120");

 Serial.println("Snap in 3 secs...");

 delay(4000);

 if (! cam.takePicture())

 Serial.println("Failed to snap!");

 else

 Serial.println("Picture taken!");

 char filename[13];

 strcpy(filename, "IMAGE00.JPG");

 SD.remove(filename);

 for (int i = 0; i < 100; i++) {

 filename[5] = '0' + i/10;

 filename[6] = '0' + i%10;

 if (! SD.exists(filename)) {

 break;

 }

 }

 Serial.print("Saving ");

 Serial.println(filename);

 File imgFile = SD.open(filename, FILE_WRITE);

 uint16_t jpglen = cam.frameLength();

7

 Serial.print("Storing ");

 Serial.print(jpglen, DEC);

 Serial.print(" byte image.");

 int32_t time = millis();

 byte wCount = 0;

 while (jpglen > 0) {

 uint8_t *buffer;

 uint8_t bytesToRead = min(32, jpglen);

 buffer = cam.readPicture(bytesToRead);

 imgFile.write(buffer, bytesToRead);

 if(++wCount >= 64) {

 Serial.print('.');

 wCount = 0;

 }

 jpglen -= bytesToRead;

 delay(10);

 }

 imgFile.close();

 time = millis() - time;

 Serial.println("done!");

8

// Serial.print(time); Serial.println(" ms elapsed");

 sendPhotoToTelegram(filename);

}

void initWifiConnection()

{

 Serial.println();

 Serial.printf("Connecting to Wifi [%s]...\r\n", ssid);

 WiFi.mode(WIFI_STA);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi Connected");

}

void receiveDataFromTelegram()

{

 // Espera por tempo de resposta do Servidor

 unsigned long timeout = millis();

 while (client.available() == 0) {

 if (millis() - timeout > 5000) {

 Serial.println("Response From Telegram!");

 client.stop();

9

 return;

 }

 }

 Serial.println();

 Serial.println("Receiving from telegram...");

 int responseContentLength = 0;

 while (client.available()) {

 String line = client.readStringUntil('\r');

 client.read(); // lê o caracter '\n'

 Serial.println(line);

 if (line.startsWith("Content-Length:")) {

 int index = line.indexOf(':');

 responseContentLength = line.substring(index + 1).toInt();

 }

 if (line.length() == 0)

 break;

 }

 while (responseContentLength > 0)

 {

10

 char ch = client.read();

 Serial.print(ch);

 responseContentLength--;

 }

 Serial.println();

 Serial.println("closing connection");

}

void handleNewMessages(int numNewMessages) {

 Serial.println("handleNewMessages");

 Serial.println(String(numNewMessages));

 for (int i=0; i<numNewMessages; i++) {

 String chat_id = String(bot.messages[i].chat_id);

 String chat_id_1 = String(bot.messages[i].chat_id);

 String text = bot.messages[i].text;

 if (text == "/pantau") { //instruksi untuk memanggil foto

 capture();

 }

 if (text == "/ON"){

 Serial.println("HIDUPKAN KEAMANAN RUMAH");

 bot.sendMessage(chat_id,"KEAMANAN RUMAH AKTIP");

 statusMode = 0;

}

11

 if (text == "/OFF"){

 Serial.println("MATIKAN KEAMANAN RUMAH");

 bot.sendMessage(chat_id,"KEAMANAN RUMAH TIDAK AKTIF");

 statusMode = 1;

 }

 if (text == "/KunciRumah"){

 digitalWrite(doorlock,LOW);

 Serial.println("RELAY ON");

 bot.sendMessage(chat_id,"RUMAH DIKUNCI");

}

 if (text == "/MatikanKunciRumah"){

 digitalWrite(doorlock,HIGH);

 Serial.println("RELAY OFF");

 bot.sendMessage(chat_id,"RUMAH TIDAK DIKUNCI");

 }

 if (text == "/mulai") { // Text Pembuka saat Program dijalankan

 String welcome = "TABIK PUN!\n\n";

 welcome += "SISTEM KEAMANAN RUMAH DENGAN MENGGUNAKAN SENSOR

MEGHNET BERBASIS INTERNET OFF THING \n\n";

 welcome += "OLEH : ANDRE EFENDI\n\n";

 welcome += "SILAHKAN PILIH PERINTAH DI BAWAH INI : \n\n";

 welcome += "/mulai : PANDUAN\n";

 welcome += "/pantau : MELIHAT SITUASI RUMAH\n";

 welcome += "/ON : KEAMANAN RUMAH AKTIP\n";

 welcome += "/OFF : KEAMANAN RUMAH TIDAK AKTIF\n\n";

 welcome += "/KunciRumah : RUMAH DIKUNCI\n";

 welcome += "/MatikanKunciRumah : RUMAH TIDAK DIKUNCI\n\n";

12

 bot.sendMessage(chat_id, welcome, "Markdown");

 }

 }

}

void sendPhotoToTelegram(String filename)

{

 Serial.printf("Connecting Telegram %s:%d... ", host, httpsPort);

 if (!client.connect(host, httpsPort)) {

 Serial.println("Failde To Conenct!");

 return;

 }

 sendDataToTelegram(filename);

 receiveDataFromTelegram();

}

void sendDataToTelegram(String file_name)

{

 String start_request = "";

 String end_request = "";

// String chat_id = String(bot.messages[0].chat_id);

// String chat_id_1 = String(bot.messages[0].chat_id);

 start_request = start_request + "--" + boundry + "\r\n";

13

 start_request = start_request + "content-disposition: form-data; name=\"chat_id\"" + "\r\n";

 start_request = start_request + "\r\n";

 start_request = start_request + chat_id +"\r\n";

 start_request = start_request + "--" + boundry + "\r\n";

 start_request = start_request + "content-disposition: form-data; name=\"photo\";

filename=\"foto.jpg\"\r\n";

 start_request = start_request + "Content-Type: image/jpeg\r\n";

 start_request = start_request + "\r\n";

 end_request = end_request + "\r\n";

 end_request = end_request + "--" + boundry + "--" + "\r\n";

// String file_name = "IMAGE00.jpg";

 Serial.print("Sending ");

 Serial.println(file_name);

 File file = SD.open(file_name);

 int contentLength = (int)file.size() + start_request.length() + end_request.length();

 String headers = String("POST /bot") + token + "/sendPhoto HTTP/1.1\r\n";

 headers = headers + "Host: " + host + "\r\n";

 headers = headers + "User-Agent: ESP8266" + String(ESP.getChipId()) + "\r\n";

 headers = headers + "Accept: */*\r\n";

 headers = headers + "Content-Type: multipart/form-data; boundary=" + boundry + "\r\n";

 headers = headers + "Content-Length: " + contentLength + "\r\n";

14

 headers = headers + "\r\n";

 headers = headers + "\r\n";

 Serial.println();

 Serial.println("Mengirim data ke Telegram ...");

 Serial.print(headers);

 client.print(headers);

 client.flush();

 Serial.print(start_request);

 client.print(start_request);

 client.flush();

 Serial.println("sendFile");

 sendFile(&file);

 file.close();

 client.flush();

 Serial.print(end_request);

 client.print(end_request);

 client.flush();

}

void sendFile(Stream* stream)

15

{

 size_t bytesReaded;

 size_t bytesSent;

 do {

 uint8_t buff[1024];

 bytesSent = 0;

 bytesReaded = stream->readBytes(buff, sizeof(buff));

 if (bytesReaded) {

 bytesSent = client.write(buff, bytesReaded);

 client.flush();

 }

 } while ((bytesSent == bytesReaded) && (bytesSent > 0));

}

16

LAMPIRAN - 2

Gambar Bentuk Fisik Alat

17

18

LAMPIRAN - 3

Data Alat

1. NodeMcu ESP8266

The ESP8266 is the name of a micro controller designed by Espressif Systems. The

ESP8266 itself is a self-contained WiFi networking solution offering as a

bridge from existing micro controller to WiFi and is also capable of running self-

contained applications.

This module comes with a built in USB connector and a rich assortment of pin-

outs. With a micro USB cable, you can connect NodeMCU devkit to your laptop

and flash it without any trouble, just like Arduino. It is also immediately breadboard

friendly

a) Specification:

 Voltage:3.3V.

 Wi-Fi Direct (P2P), soft-AP.

 Current consumption: 10uA~170mA.

 Flash memory attachable: 16MB max (512K normal).

 Integrated TCP/IP protocol stack.

 Processor: Tensilica L106 32-bit.

 Processor speed: 80~160MHz.

 RAM: 32K + 80K.

 GPIOs: 17 (multiplexed with other functions). mode

 +19.5dBm output power in 802.11b

 Analog to Digital: 1 input with 1024 step resolution.

 802.11 support: b/g/n.

 Maximum concurrent TCP connections: 5.

b) Pin Definition:

19

c) Using Arduino IDE

The most basic way to use the ESP8266 module is to use serial commands, as

the chip is basically a WiFi/Serial transceiver. However, this is not convenient.

What we recommend is using the very cool Arduino ESP8266 project, which is a

modified version of the Arduino IDE that you need to install on your computer.

This makes it very convenient to use the ESP8266 chip as we will be using the

well-known Arduino IDE. Following the below step to install ESP8266 library to

work in Arduino IDE environment.

1. Install the Arduino IDE 1.6.4 or greater

Download Arduino IDE from Arduino.cc (1.6.4 or greater) - don't use 1.6.2 or

lower version! You can use your existing IDE if you have already installed it.

You can also try downloading the ready-to-go package from the ESP8266-

Arduino project, if the proxy is giving you problems.

2. Install the ESP8266 Board Package

Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into

Additional Board Manager URLs field in the Arduino v1.6.4+ preferences.

http://arduino.esp8266.com/stable/package_esp8266com_index.json

20

Click ‘File’ -> ‘Preferences’ to access this panel.

Next, use the Board manager to install the ESP8266 package.

21

Click ‘Tools’ -> ‘Board:’ -> ‘Board Manager…’ to access this panel.

Scroll down to ‘ esp8266 by ESP8266 Community ’ and click “Install” button to

install the ESP8266 library package. Once installation completed, close and re-

open Arduino IDE for ESP8266 library to take effect.

3. Setup ESP8266 Support

When you've restarted Arduino IDE, select ‘Generic ESP8266 Module’ from the

‘Tools’ -> ‘Board:’ dropdown menu.

22

Select 80 MHz as the CPU frequency (you can try 160 MHz overclock later)

Select ‘115200’ baud upload speed is a good place to start - later on you can try

higher speeds but 115200 is a good safe place to start.

23

Go to your Windows ‘Device Manager’ to find out which Com Port ‘USB-Serial

CH340’ is assigned to. Select the matching COM/serial port for your CH340 USB-

Serial interface.

 Find out which Com Port

is assign for CH340

Select the correct Com Port as

indicated on ‘Device Manager”

4. Blink Test

24

We'll begin with the simple blink test.

Enter this into the sketch window (and save since you'll have to). Connect a LED

as shown in Figure3-1.

Now you'll need to put the board into bootload mode. You'll have to do this before

each upload. There is no timeout for bootload mode, so you don't have to rush!

 Hold down the ‘Flash’ button.

 While holding down ‘ Flash’, press the ‘RST’ button.

 Release ‘RST’, then release ‘Flash’

 When you release the ‘RST’ button, the blue indication will blink once, this means

its ready to bootload.

Once the ESP board is in bootload mode, upload the sketch via the IDE, Figure 3-2.

void setup() {

pinMode(5, OUTPUT); // GPIO05, Digital Pin D1

}

void loop() {

digitalWrite(5, HIGH);

delay(900);

digitalWrite(5, LOW);

delay(500);

}

25

Figure3-1: Connection diagram for the blinking test

Figure 3.2: Uploading the sketch to ESP8266 NodeMCU module.

The sketch will start immediately - you'll see the LED blinking. Hooray!

5. Connecting via WiFi

OK once you've got the LED blinking, let’s go straight to the fun part, connecting

to a webserver. Create a new sketch with this code:

26

Don’t forget to update:

const char* ssid = "yourssid";

const char* password = "yourpassword";

to your WiFi access point and password, then upload the same way: get into

bootload mode, then upload code via IDE.

const char* host = "www.handsontec.com";

void setup() { Serial.begin(115200); delay(100);

// We start by connecting to a WiFi network Serial.println();

Serial.println(); Serial.print("Connecting to "); Serial.println(ssid);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(500); Serial.print(".");

}

/*

* Simple HTTP get webclient test

const char* ssid = "handson";

const char* password = "abc1234";

// key in your own SSID

http://www.handsontec.com/

27

Serial.println(""); Serial.println("WiFi connected"); Serial.println("IP address: ");

Serial.println(WiFi.localIP());

}

int value = 0;

void loop() {

delay(5000);

++value;

Serial.print("connecting to "); Serial.println(host);

// Use WiFiClient class to create TCP connections WiFiClient client;

const int httpPort = 80;

if (!client.connect(host, httpPort)) { Serial.println("connection failed"); return;

}

// We now create a URI for the request String url = "/projects/index.html";

Serial.print("Requesting URL: "); Serial.println(url);

// This will send the request to the server client.print(String("GET ") + url + "

HTTP/1.1\r\n" +

"Host: " + host + "\r\n" +

"Connection: close\r\n\r\n");

delay(500);

28

// Read all the lines of the reply from server and print them to Serial

while(client.available()){

String line = client.readStringUntil('\r'); Serial.print(line);

}

Serial.println(); Serial.println("closing connection");

}

Open up the IDE serial console at 115200 baud to see the connection and webpage

printout!

29

That's it, pretty easy right ! This section is just to get you started and test out your

module.

Why flashing your ESP8266 module with NodeMCU?

NodeMCU is a firmware that allows you to program the ESP8266 modules with

LUA script. And you’ll find it very similar to the way you program your Arduino.

With just a few lines of code you can establish a WiFi connection, control the

ESP8266 GPIOs, turning your ESP8266 into a web server and a lot more.

In this tutorial we are going to use another ESP8266 module with pin header

adapter board which is breadboard friendly.

ESP8266 Module Breadboard Friendly with Header Connector

4.1 Parts Required:

30

 ESP8266 Module Breadboard Friendly

 PL2303HX USB-UART Converter Cable

 Some Male-to-Female Jumper Wires

4.2 Pin Assignment:

4.3 Wiring:

E

S

P

8

2

6

6

P

i

n

Description

C

H

_

P

D

Pull high, connect to Vcc +3.3V

V

c

c

Power Supply +3.3V

T

X

D

Connect to RXD (white) of PL2303HX USB-

Serial converter cable R

X

D

Connect to TXD (Green) of PL2303HX USB-

Serial converter cable G

P

I

O

0

Pull low, connect to GND pin

G

N

D

Power Supply ground

4.4 Downloading NodeMCU Flasher for Windows

31

After wiring your circuit, you have to download the NodeMCU flasher. This is a .exe file

that you can download using one of the following links:

 Win32 Windows Flasher

 Win64 Windows Flasher

You can find all the information about NodeMCU flasher here.

4.5 Flashing your ESP8266 using Windows

Open the flasher that you just downloaded and a window should appear (as shown

in the following figure).

Press the button “Flash” and it should start the flashing process immediately,

showing the Module MAC address if successful connected.

32

After finishing this flashing process, it should appear a green circle with a check

icon at lower left corner.

Your ESP8266 module is now loaded with NodeMCU firmware.

d) Getting Started with the ESPlorer IDE
ESPlorer is an IDE (Integrated Development Environment) for ESP8266 devices.

It’s a multi platform IDE, can be used in any OS environment, this simply means

that it runs on Windows, Mac OS X or Linux.

Supported platforms:

 Windows(x86, x86-64)

 Linux(x86, x86-64, ARM soft & hard float)

 Solaris(x86, x86-64)

33

 Mac OS X(x86, x86-64, PPC, PPC64)

This software allows you to establish a serial communications with your

ESP8266 module, send commands, and upload code and much more.

Requirements:

 You need to have JAVA installed in your computer. If you don’t have, go to this

website: http://java.com/download, download and install the latest version. It

requires JAVA (SE version 7 and above) installed.

 In order to complete the sample project presented in this Guide you need to flash

your ESP8266 with NodeMCU firmware. Refer to chapter-4 in this guide on how

to flash the NodeMCU firmware.

Main Resources:

 ESPlorer Homepage: http://esp8266.ru/esplorer/

 GitHub Repository: https://github.com/4refr0nt/ESPlorer

5.1 Installing ESPlorer

Now let’s download the ESPlorer IDE, visit the following URL:

http://esp8266.ru/esplorer/#download

Grab the folder that you just downloaded. It should be named “ESPlorer.zip”

and unzip it. Inside that folder you should see the following files:

Execute the “ESPlorer.jar” file and the ESPlorer IDE should open after a few seconds

(the “ESPlorer.jar” file is what you need to open every time you want to work with the

ESPlorer IDE).

Note: If you’re on Mac OS X or Linux you simply use this command line in

your terminal to run the ESPlorer: sudo java –jar ESPlorer.jar.

When the ESPlorer first opens, that’s what you should see:

http://java.com/download
http://esp8266.ru/esplorer/
http://esp8266.ru/esplorer/#download

34

Here’s a rundown of the features the ESPlorer IDE includes:

 Syntax highlighting LUA and Python code.

 Code editor color themes: default, dark, Eclipse, IDEA, Visual Studio.

 Undo/Redo editors features.

 Code Autocomplete (Ctrl+Space).

 Smart send data to ESP8266 (without dumb send with fixed line delay), check

correct answer from ESP8266 after every lines.

 Code snippets.

 Detailed logging.

 And a lot more…

The ESPlorer IDE has a couple of main sections, let’s break it down each one.

In the top left corner you can see all the regular options that you find in any

software. Create a New file, Open a new file, Save file, Save file as, Undo, Redo,

etc.

35

In the top right corner you have all the options you need to establish a serial

communication (you’re going to learn how to use them later in this Guide).

This next screenshot shows your Code Window, that’s where you write your

scripts (your scripts are highlighted with your code syntax).

Below the Code Window, you have 12 buttons that offer you all the functions you

could possible need to interact with your ESP8266. Here’s the ones you’ll use

most: “Save to ESP” and “Send to ESP”.

36

This screenshot shows the Output Window which tells you exactly what’s going

on in your ESP8266. You can see errors and use prints in your code to debug

your projects.

5.2 Schematics

To upload code to your ESP8266, you should connect your ESP8266 to your

PL2303HX USB-UART Programming Cable like the figure below:

37

5.3 Writing Your Lua Script

Below is your script to blink an LED.

Right now you don’t need to worry how this code works, but how you can upload it

to your ESP8266.

Having your ESP8266+PL2303HX Programmer connected to your computer, go to

the ESPlorer IDE:

lighton=0

pin=4

gpio.mode(pin,gpio.OUTPUT)

tmr.alarm(1,2000,1,function()

if lighton==0 then

lighton=1

gpio.write(pin,gpio.HIGH)

else

lighton=0

gpio.write(pin,gpio.LOW)

end

end)

38

Look at the top right corner of your ESPlorer IDE and follow these instructions:

1. Press the Refresh button.

2. Select the COM port for your FTDI programmer.

3. Select your baudrate.

4. Click Open.

Then in the top left corner of your ESPlorer IDE, follow these instructions:

1. Select NodeMCU

2. Select Scripts

3. Create a new filled called “init.lua”

39

Copy your Lua script to the code window (as you can see in the Figure below):

The next step is to save your code to your ESP8266!

At the left bottom corner click the button “Save to ESP”.

In your output window, it should start showing exactly which commands are being

sent to your ESP8266 and it should look similar to the Figure below.

40

Note: If you want to delete your “init.lua” file, you can do that easily. Simply type

file.remove(“init.lua”) and press the button “Send” (see Figure above). Or you can

type the command file.format() to remove all the files saved in your ESP8266. You

can type any commands and send them to your ESP8266 through that window.

After uploading your code to your ESP8266, unplug your ESP8266 from your

computer and power up the ESP8288 module.

Congratulations, you’ve made it! The blue LED at the upper right corner should be

blinking every 2 seconds! NodeMCU GPIO for Lua

The GPIO(General Purpose Input/Output) allows us to access to pins of ESP8266 ,

41

all the pins of ESP8266 accessed using the command GPIO, all the access is based

on the I/O index number on the NoddMCU dev kits, not the internal GPIO pin, for

example, the pin ‘D7’ on the NodeMCU dev kit is mapped to the internal GPIO pin

13, if you want to turn ‘High’ or ‘Low’ that particular pin you need to called the

pin number ‘7’, not the internal GPIO of the pin. When you are programming with

generic ESP8266 this confusion will arise which pin needs to be called during

programming, if you are using NodeMCU devkit, it has come prepared for working

with Lua interpreter which can easily program by looking the pin names associated

on the Lua board. If you are using generic ESP8266 device or any other vendor

boards please refer to the table below to know which IO index is associated to

the internal GPIO of ESP8266.

N

o

d

e

m

c

u

d

e

v

k

i

t

ESP8266

Pin

N

o

d

e

m

c

u

d

e

v

k

it

ESP826

6 Pin

D

0

GPIO16 D

7

GPIO13

D

1

GPIO5 D

8

GPIO15

D

2

GPIO4 D

9

GPIO3

D

3

GPIO0 D

1

0

GPIO1

D

4

GPIO2 D

1

1

GPIO9

D

5

GPIO14 D

1

2

GPIO10

D

6

GPIO12

D0 or GPIO16 can be used only as a read and write pin, no other options like

PWM/I2C are supported by this pin.

In our example in chapter 5 on blinking the blue LED, the blue LED in connected

to GPIO2, it is defined as Pin4 (D4) in Lua script.

e) Web Resources:
 ESP8266 Lua Nodemcu WIFI Module

 ESP8266 Breadboard Friendly Module

 ESP8266 Remote Serial WIFI Module

 PL2303HX USB-UART Converter Cable

42

2. Kamera VC0706

TTL Serial Camera

Created by lady ada

 Last updated on 2019-11-01 08:44:02 PM UTC

This tutorial is for our new TTL serial camera module with NTSC video output. These modules are a nice

addition to a microcontroller project when you want to take a photo or control a video stream. The

modules have a few features built in, such as the ability to change the brightness/saturation/hue of

images, auto-contrast and auto-brightness adjustment, and motion detection.

43

Since it is a little confusing how this is both a snapshot and video camera, we'd like to explain it in detail now.

The module was initially designed for surveillance purposes. Its meant to constantly stream TV-resolution

video out of the Video pin (this is NTSC monochrome format) and also take commands from the serial port.

The serial port commands can request that the module freeze the video and then download a JPEG color

image. So for example, normally its just displaying video to a security monitor. When motion is detected, it

would take a photo and save it to a disk for later analysis.

The module is admittedly not extremely high resolution - the maximum image size it can take is 640x480

pixels. And it is sensitive to infrared light, which alters the color rendition somewhat. The reason for all this is

that it's meant for surveillance, not for nature photography. However, as far as we can tell, this is the best

module on the market.

Module size: 32mm x 32mm Image sensor: CMOS 1/4 inch CMOS Pixels: 0.3M

Pixel size: 5.6um*5.6um

Output format: Standard JPEG/M-JPEG

White balance: Automatic Exposure: Automatic Gain: Automatic

Shutter: Electronic rolling shutter

SNR: 45DB

Dynamic Range: 60DB

Max analog gain: 16DB

Frame speed: 640*480 30fps Scan mode: Progressive scan Viewing angle: 60 degrees

Monitoring distance: 10 meters, maximum 15meters (adjustable)

Image size: VGA (640*480), QVGA (320*240), QQVGA (160*120)

Baud rate: Default 38400 (the datasheet claims you can change the baud rate with a command but it does

not work reliably)

Current draw: 75mA

Operating voltage: DC +5V

Communication: 3.3V TTL (Three wire TX, RX, GND)

Sample Images

Here are two example images, one of outside during a cloudy day, and one inside on a sunny day.

44

The module comes without any connector so you'll need to solder wires into the connection pads. The good

news is the pads are not too close togehter (about 2mm) and you can use any stranded or solid-core wire.

If you aren't planning to use the video output abilities, you can use 4 wires. We will use red for the +5V pin,

black for the Ground pin, white for the RX pin (data into the module) and green for the TX pin (data from the

module)

If you'd like to get NTSC video out to connect to a TV or monitor, solder another black wire to the second Ground

pin, and a yellow wire to the CVBS pin.

45

If you have the weatherproof version of this camera, it comes prewired with the following: Red is connected to +5Vin

Black is connected to Ground

Green is RX

 White is TX

 Yellow is NTSC Video signal out

Brown is NTSC Video ground.

The quickest way to test out the modules is to use the NTSC video out connection. That way, when you adjust

the view & focus you can immediately see the results. Paired with the next section (using the Comm Tool), its

the ideal method of introducing yourself to the module.

Most TV's and monitors require an RCA jack or plug input. We just soldered a spare RCA jack to the camera,

with black being the case ground and yellow signal. You can get RCA cables and accessories in any

hobby/electronics shop like Radio Shack.

Unfortunately, it is not possible to change the camera from NTSC to PAL - its hardcoded by a pin

soldered to the board and there's no easy way to extract it and change it (we tried!)

Plug in the NTSC cable to your monitor, and connect the red and black power wires to +5V supply - you

should get monochrome video output on the monitor immediately!

We have some NTSC television modules in the Adafruit shop you can use to test with (https://adafru.it/aM5)

46

To use the Comm Tool, a windows utility, we need to set up a serial link to the camera. There's two ways we

suggest doing this. One is to use something like an FTDI friend or other USB/TTL serial converter. If you

have an Arduino you can 'hijack' the serial chip (FTDI chip or similar) by uploading a blank sketch to the

Arduino:

If you're using a Leonardo, Micro, Yun, or other ATmega32U4-based controller, use this Leo_passthru sketch

instead of the "blank" sketch.

Now, wire it up as follows: Module SD Card Mini

// empty sketch

void setup()

{

}

void loop()

{

}

//Leo_passthru

// Allows Leonardo to pass serial data between

// fingerprint reader and Windows.

//

// Red connects to +5V

// Black connects to Ground

// Green goes to Digital 0

// White goes to Digital 1

47

a) General Description

The eekoo The SD/microSD is a memory card that is specifically designed to meet

the security, capacity, performance and enviroment requirements inherent in newly

emerging audio and video consumer electronic devices.

microSD cards are based on a 8-pin interface designed to operate in a maximum

operating frequency of 100 MHz. The interface for microSD card products allows

for easy integration into any design, regardless of which type of microprocessor is used.

In addition to the interface, microSD card products offer

an alternate communicationprotocol based on the SPI standard.

b) Product Features

● Up to 128GB of data storage

● High transmission speed (Class 10)

● SD - protocol compatible

● Supports SPI Mode

● Voltage range of 2.7 to 3.6V

● Correction of memory field errors

● Card removal during read operation will never harm the content

● Memory field error correction

● Dimension : 15mm(L) x 11mm(W) x 1mm(H)

c) System Block Diagram

d) Product Specifications
d.1 Reliability and Durability Specifications

Temperature

Operating: -25℃ to 85℃

Storage: -40℃(168h) to 85℃(500h)

48

moisture and

corrosion

Operating: 25°C / 95% rel. humidity

Non-Operating: 40°C / 93% rel. hum./500h

salt water spray:

3% NaCl/35C; 24h acc. MIL STD Method

1009

Durability 10,000 mating cycles

Bending 10N

Torque 0.10N*m. ±2.5∘max

Drop Test 1.5m free fall

Visual

Inspection/Shape and

Form

No warp age; no mold slim; complete form;

no

cavities; surface smoothness≦-0.1mm/ cm2

within contour; no cracks; no pollution (oil,

dust, etc.)

d.2 System Reliability and Maintenance

MTBF >1,000,000 hours

Preventive

Maintenance

None

Data Reliability < 1 non-recoverable error in 1014 bits read

Endurance 3,000~10,000 write/erase cycles

d.3 Electrical Static Discharge (ESD) requirement

ESD

Protec

tion

Contact

Discharge:

Air

Discharge;

±4KV, Human body

model according to

IEC61000-4-2.EN55024

±8KV, Human body

model according to

IEC61000-4-2.EN55024

e) Interface Description
e.1 General Description of Pins and Registers

49

The Micro SDHC has nine exposed contacts on one side. The host is connected to the SD

Memory Card using a eight pin connector.

Pin Assignment in SD Bus Mode Pad Definition

P

I

N

Na

me

Ty

pe

Micro SD

Description 1 DA

T2

I/

O

Card Detect/ Data

Lin [Bit 3] 2 CD/

DA

T3

I/

O

Card Detect / Data

Line 3 CM

D

P

P

Command /

Response 4 VD

D

S Supply voltage

5 CL

K

I Clock

6 VSS S Supply Voltage

Ground 7 DA

T0

I/

O

Data Line [Bit 0]

8 DA

T1

I/

O

Data Line [Bit 1]

Note:

1) S=power supply; I=input; O=output using push-pull drivers.

2) The extended DAT lines (DAT1-DAT3) are input on power up; they start to

operate as DAT lines after the SET _BUS_WIDTH command.

3) After power up, this line is input with 50Kohm pull-up (can be used for card

detection or SPI mode selection).

The pull-up should be disconnected by the user, during regular data transfer, with

SET_CLR_CARD_DETECT(ACMD42) command.

Pin Assignment in SPI Bus Mode Pad Definition

P

I

N

Na

me

Ty

pe

Micro SD

Description 1 RS

V

I Reserved

2 CS I Chip Select (neg true)

3 DI S Data In

4 VD

D

S Supply Voltage

5 SC

LK

I Clock

6 VSS S Supply Voltage

Ground 7 DO O Data Out

8 RS

V

I Reserved

Micro SD memory Card Pin Assignment

e.2 SD Bus Topology

The SD bus has six communication lines and three supply lines:

· CMD: Command is bi-directional signal.(Host and card drivers are operating in push pull

mode.)

· DAT0-3: Data lines are bi-directional signals. (Host and card drivers are operating in push

50

pull mode.).

· CLK: Clock is a host to cards signal. (CLK operates in push pull mode.)

· VDD: VDD is the power supply line for all cards.

· VSS [1:2]: VSS are two ground lines.

‧The following figure shows the bus topology of several cards with one host in SD Bus

mode.

Micro SD Memory Card System Bus Topology

During the initialization process, commands are sent to each card individually, allowing

the application to detect the cards and assign logical addresses to the physical slots. Data

is always sent to each card individually. However, to simplify the handling of the card

stack, after initialization, all commands may be sent concurrently to all cards. Addressing

information is provided in the command packet. Power Protection

Card can be inserted into or removed from the bus without damage. If one of the supply

pins (VDD or Vss) is not connected properly, then the current is drawn through a data

line to supply the card. Data transfer operations are protected by CRC codes; therefore,

any bit changes induced by card insertion and removal can be detected by the Micro SD

bus master. The inserted card must be properly reset also when CLK carries a clock

frequency fpp.

If the hot insertion feature is implemented in the host, than the host has to withstand a

shortcut between VDD and Vss without damage.

e.3 SPI Bus Topology

The memory Card SPI interface is compatible with SPI hosts available on the market. As

any other SPI device the Micro SD Memory Card SPI channel consists of the following

4 signals:

1) CS: Host to card Chip Select signal.

2) SCLK: Host to card clock signal.

3) Data In: Host to card data signal.

4) Data Out: Card to host data signal.

Another SPI common characteristic, which is implemented in the Memory Card as well,

is byte transfers. All data tokens are multiples of 8 bit bytes and always byte aligned to

th9e CS signal.

The SPI standard defines the physical link only and not the complete data transfer

protocol. In SPI Bus mode, the Micro SD Memory Card uses a subset of the Micro SD

Memory Card protocol and command set. The Micro SD Memory Card identification and

addressing algorithms are replaced by a hardware Chip Select (CS) signal.

A card (slave) is selected, for every command, by asserting (active low) the CS signal.The

51

CS signal must be continuously active for the duration of the SPI transaction (command,

response and data). The only exception is card programming time. At this time the host

can de-assert the CS signal without affecting the programming process.

The bi-directional CMD and DAT lines are replaced by uni-directional data In and data

Out signals. This eliminates the ability of executing commands while data is being read

or written. An exception is the multi read/write operations. The Stop Transmission

command can be sent during data read. In the multi block write operation a Stop

Transmission token is sent as the first byte of the data block.

f) Mechanical Form Factor

g) Contact Information

Shenzhen eekoo Electronics Co.,Ltd

Add: Room 1504,Block C,Jialin House,No.2001,Shennan Avenue,Futian

District,Shenzhen China

Tel : +86-0755-8860 8670

Website: www.eekoo.com.cn eShop:eekoo.tmall.com

http://www.eekoo.com.cn/

52

3. DF Player Mini

a) Summary

1.1 .Brief Instruction

DFPLayer Mini module is a serial MP3 module provides the perfect integrated MP3,

WMV hardware decoding. While the software supports TF card driver, supports

FAT16, FAT32 file system. Through simple serial commands to specify music

playing, as well as how to play music and other functions, without the cumbersome

underlying operating, easy to use, stable and reliable are the most important features

of this module.

1.2 .Features

 Support Mp3 and WMV decoding

 Support sampling rate of

8KHz,11.025KHz,12KHz,16KHz,22.05KHz,24KHz,32KHz,44.1KHz,48KHz

 24-bit DAC output, dynamic range support 90dB, SNR supports 85dB

 Supports FAT16, FAT32 file system, maximum support 32GB TF card

 A variety of control modes, serial mode, AD key control mode

 The broadcast language spots feature, you can pause the background music

being played

 Built-in 3W amplifier

 The audio data is sorted by folder; supports up to 100 folders, each folder can be

assigned to 1000 songs

 30 levels volume adjustable, 10 levels EQ adjustable.

1.3 .Application

 Car navigation voice broadcast

 Road transport inspectors, toll stations voice prompts

 Railway station, bus safety inspection voice prompts

 Electricity, communications, financial business hall voice prompts

 Vehicle into and out of the channel verify that the voice prompts

 The public security border control channel voice prompts

 Multi-channel voice alarm or equipment operating guide voice

 The electric tourist car safe driving voice notices

 Electromechanical equipment failure alarm

 Fire alarm voice prompts

 The automatic broadcast equipment, regular broadcast.

b) Module Application Instruction

53

b.1. Specification Description

Item Description

MP3Format

1、Support 11172-3 and ISO13813-3 layer3 audio decoding

2、Support sampling rate (KHZ):8/11.025/12/16/22.05/24/32/44.1/48

3、Support Normal、Jazz、Classic、Pop、Rock etc

UART Port Standard Serial; TTL Level; Baud rate adjustable(default baud rate is

9600)
Working

Voltage

DC3.2~5.0V; Type :DC4.2V

Standby

Current

20mA

Operating

Temperature
-40~+70

Humidity 5% ~95%

Table 2.1 Specification Description

2.2 .Pin Descrition

Figure 2.

54

No Pin Description Note

1 VCC Input Voltage DC3.2~5.0V;Type: DC4.2V

2 RX UART serial input

3 TX UART serial output

4 DAC_R Audio output right channel Drive earphone and amplifier

5 DAC_L Audio output left channel Drive earphone and amplifier

6 SPK2 Speaker- Drive speaker less than 3W

7 GND Ground Power GND

8 SPK1 Speaker+ Drive speaker less than 3W

9 IO1 Trigger port 1 Short press to play previous（long press

10 GND Ground Power GND

11 IO2 Trigger port 2 Short press to play next（long press to

increase volume）

12 ADKEY1 AD Port 1 Trigger play first segment

13 ADKEY2 AD Port 2 Trigger play fifth segment

14 USB+ USB+ DP USB Port

15 USB- USB- DM USB Port

16 BUSY Playing Status Low means playing \High means no

55

Table 2.2 Pin Description

3. Serial Communication Protocol

Serial port as a common communication in the industrial control field, we conducted

an industrial level of optimization, adding frame checksum, retransmission, error

handling, and other measures to significantly strengthen the stability and reliability

of communication, and can expansion more powerful RS485 for networking

functions on this basis, serial communication baud rate can set as your own, the

default baud rate is 9600

3.1. Serial Communication Format

Support for asynchronous serial communication mode via PC serial sending commands

Communication Standard:9600 bps

Data bits :1 Checkout :none Flow Control :none

Forma

t：$S

V

E

R

L

e

n

C

M

D

F

e

e

d

b

a

c

k

p

a

r

a

1

p

a

r

a

2

c

h

e

c

k

s

u

m

$

O
$S Start byte

0x7E

Each command feedback begin with

$

, that is 0x7E
VER Version Version Information

Len the number of

bytes after

“Len”

Checksums are not counted

CMD Commands
Indicate the specific operations, such as play /

pause, etc.

Feedb

ack

Command

feedback

If need for feedback, 1: feedback, 0: no

feedback

para1 Parameter 1 Query high data byte

para2 Parameter 2 Query low data byte

check

sum

Checksum
Accumulation and verification [not include

start bit $]

$O End bit End bit 0xEF

For example, if we specify play NORFLASH, you need to send: 7E FF 06 09 00 00

04 FF DD EF Data length is 6, which are 6 bytes [FF 06 09 00 00 04]. Not counting

the start, end, and verification.

3.2 .Serial Communication Commands

1).Directly send commands, no parameters returned

CMD Function Description Parameters(16 bit)

0x01 Next

0x02 Previous

56

0x03 Specify tracking(NUM) 0-2999

0x04 Increase volume

0x05 Decrease volume

0x06 Specify volume 0-30

0x07 Specify EQ(0/1/2/3/4/5) Normal/Pop/Rock/Jazz/Classic/Base

0x08 Specify playback mode (0/1/2/3) Repeat/folder repeat/single repeat/

random

0x09 Specify playback

source(0/1/2/3/4)

U/TF/AUX/SLEEP/FLASH

0x0A Enter into standby – low power

loss

0x0B Normal working

0x0C Reset module

0x0D Playback

0x0E Pause

0x0F Specify folder to playback 1~10(need to set by user)

0x10 Volume adjust set
{DH＝1:Open volume adjust }{DL: set

volume

2).Query the System Parameters

Commands Function Description Parameters(16 bit)

0x3C STAY

0x3D STAY

0x3E STAY

0x3F Send initialization parameters
0 - 0x0F(each bit represent one device of

the low-four bits)

0x40 Returns an error, request retransmission

0x41 Reply

0x42 Query the current status

0x43 Query the current volume

0x44 Query the current EQ

0x45 Query the current playback mode

0x46 Query the current software version

57

0x47 Query the total number of TF card files

0x48 Query the total number of U-disk files

0x49 Query the total number of flash files

0x4A Keep on

0x4B Queries the current track of TF card

0x4C Queries the current track of U-Disk

0x4D Queries the current track of Flash

3.3. Returned Data of Module

3.3.1. Returned Data of Module Power-on

1).The module power on, require a certain of the time initialization, this time is determined by U-

disk, TF card, flash, etc. device 's file numbers, general situation in the 1.5 ~ 3Sec. If module

initialization data has not been

sent out within the time, indicating that the module initialization error, please reset the module's

power supply, and detect hardware connecting;

2).The module initialization data including online devices, such as sending 7E FF 06 3F 00 00 01 xx

xx EF, DL

= 0x01 describe only the U-disk online during power-on, Other data are seen as the table below:

U-Disk

on-line

7E FF 06 3F 00 00 01 xx xx EF Each device are or

relationship

TF

Card

on-line

7E FF 06 3F 00 00 02 xx xx EF

PC on-

line

7E FF 06 3F 00 00 04 xx xx EF

FLASH

on-line

7E FF 06 3F 00 00 08 xx xx EF

U-disk & TF

Card

on-line

7E FF 06 3F 00 00 03 xx xx EF

58

3).MCU will not send corresponding control commands until module initialization sending

commands or the module will not process the commands sent by MCU, and will also affect the

normal initialization of the module.

3.3.2 .Returned Data of Track Finished Playing

U-Disk finish

playback 1st

track

7E FF 06 3C 00 00

01 xx xx EF

U-Disk finish

playback

2nd

track

7E FF 06 3C 00 00

02 xx xx EF

TF card finish

playback 1st

track

7E FF 06 3D 00 00

01 xx xx EF

TF card finish playback

2nd track
7E FF 06 3D 00 00

02 xx xx EF

Flash finish

playback 1st

track

7E FF 06 3E 00 00

01 xx xx EF

Flash finish

playback

2nd

track

7E FF 06 3E 00 00

02 xx xx EF

1.The module will enter into pause status automatically after being specified

playing, if customers need such application, they can specify track to play ,the

module will enter into pause status after finishing playing ,and wait for the

commands sent by MCU.

2 In addition, we opened a dedicated I/O as decoding and pausing status indication.

See Pin 16, Busy 1).Output high level at playback status;

2).Output low level at pause status and module sleep;

3. For continuous playback applications, it can be achieved as below, if it

finishes the first tracking of the TF card, it will return

7E FF 06 3D 00 00 01 xx xx EF

3D ---- U-disk command

00 01 ---- expressed finished playing tracks.

If the external MCU receives this command, please wait 100ms. And then sending

the playback command [7E FF 06 0D 00 00 00 FF EE EF], because inside the

module it will first initialize the next track information. In this case, the module

can be played continuously.

4. If the currently finish playing the first song, the track pointer automatically

point to second song, If you send a "play the next one” command, then the module

will playback the third song. And, if the module finishes playing the last one, the

player will automatically jump to the first pointer, and pause.

5. After specifying device, the module play pointer will point to device root

directory of the first track, and enters the pause state, and wait MCU sending track

59

playing command.

3.3.3 .Returned Data of Module Responds

1). in order to strengthen the stability of the data communication, we have increased

response processing; ACKB byte is set whether need to reply to response. So that to

ensure each communication get handshake signals, which will indicate the module

has been successfully received data sent by the MCU and process immediately.

2).For general applications, customers can freely choose, without this response

processing is also ok.

3.3.4 .Returned Data of Module Error

Module is busy 7E FF 06 40 00 00 00 xx xx

EF
A frame data are not all received 7E FF 06 40 00 00 01 xx xx

EF
Verification error 7E FF 06 40 00 00 02 xx xx

EF

1). In order to strengthen the stability of the data communication, we added

data error handling mechanism. Module will responds information after receiving

error data format.

2). In the case of relatively harsh environment, it is strongly recommended that

customers process this command. If the application environment in general, you no

need handle it;

3).The module returns busy, basically when module power-on initialization

will return, because the modules need to initialize the file system.

3.3.5. Push-in and Pull-out information of Device

Push in U-disk 7E FF 06 3A 00 00 01 xx

xx EF
Push in TF card 7E FF 06 3A 00 00 02 xx

xx EF
Pull out U-disk 7E FF 06 3B 00 00 01 xx

xx EF
Pull out TF card 7E FF 06 3B 00 00 02 xx

xx EF

1).For the flexibility of the module, we particularly add command feedback of push-

in and pull-out device. Let user know the working status of the module.

2).When push-in device, we default playback the first track of device root directory

as audition, if users do not need this feature, you can wait 100ms after receiving

the message of push –in serial device ,and then send pause command.

3.4 Serial Commands

3.4.1. Commands of Specify Track Play

Our instructions are given in support of the specified track is playing, the song selection ranges from

0 to 2999. Actually can support more, because it involves the reasons to the file system, support for

the song too much, it will cause the system to operate slowly, and usually the application does not

FLASH finish play the 1st track 7E FF 06 3E 00 00 01 xx xx EF

60

need to support so many files. If the customer has unconventional applications, please communicate

with us in advance.

1).For example, select the first song played, serial transmission section: 7E FF 06 03 00 00 01 FF E6 EF 7E --

- START command

FF --- Version Information

06 --- Data length (not including parity) 03 --- Representative No.

1 --- If need to acknowledge [0x01: need answering, 0x00: do not need to return the response] 00 --- Tracks

high byte [DH]

2 --- Tracks low byte [DL], represented here is the first song played FF --- Checksum high byte

E6 --- Checksum low byte EF --- End Command

2).For selections, if choose the 100th song, first convert 100 to hexadecimal, the default is double-

byte, it is 0x0064.

DH = 0x00; DL = 0x64

3).If you choose to play the 1000th, first convert 1000 to hexadecimal, the default is double-byte, it

is 0x03E8 DH = 0x03; DL = 0xE8

4).And so on to the other operations, as in the embedded area in hexadecimal is the most convenient

method of operating.

3.4.2 .Commands of Specify Volume

1). Our system power-on default volume is 30, if you want to set the volume,

then directly send the corresponding commands.

2).For example, specify the volume to 15, serial port to send commands: 7E FF 06

06 00 00 0F FF D5 EF 3).DH = 0x00; DL = 0x0F, 15 is converted to hexadecimal

0x000F, can refer to the instructions of playing track section.

3.4.3 .Specify Device Play

1).The module default support four types of playback devices, the device must be on

line, so it can specify playback. The software will automatically detect without user

attention.

2).Refer the table as below to select the appropriate command to send

3).Module will automatically enter the Suspend state after the specified device,

waiting for the user to specify a track playing. It will take about 200ms from

specifying device to the module initialize file information. Please wait for 200ms

and then send the specified track command.

Specify

playback device

–U-disk

7E FF 06 09 00 00 01

xx xx EF

xx xx：

Verification Specify playback device –

TF Card

7E FF 06 09 00 00 02

xx xx EF

Specify

playback device

-SLEEP

7E FF 06 09 00 00 05

xx xx EF

61

3.4.4. Specify File to Play

Specify folder 01 of 001.mp3 7E FF 06 0F 00 01 01 xx xx EF

Specify folder 11 of 100.mp3 7E FF 06 0F 00 0B 64 xx xx EF

Specify folder 99 of 255.mp3 7E FF 06 0F 00 63 FF xx xx EF

1).Specify the folder playback is developed extensions, default folders are named

as "01", "11" in this way because our module does not support Chinese characters

identify the name of the folder name, in order to stabilize the system switching

speeds and songs under each folder default maximum support up to 255 songs, up to

99 folders classification, if customers have special requirements, they need to

classify according to the English name, we also can be achieved, but name only is

"GUSHI", "ERGE" and other English name

2).For example, specify "01" folder 100.MP3 file, serial port to send commands :

7E FF 06 0F 00 01 64 xx xx EF

DH: represents the name of the folder, the default support for 99 documents become

01 - 99 named DL: on behalf of the tracks, the default maximum of 255 songs that

0x01 ~ 0xFF

Please refer to the above set rules for setting tracks

3).to the standard of the module, you must specify both the folder and file name, to

lock a file. Individually specified folder or specify the file name alone is also possible,

but the document management will be worse.

4).The following diagram illustrates both the folders and file names are specified

Figure 3.1folder name

3.5. Key Ports

Figure 3.2 file name

We use the AD module keys, instead of the traditional method of matrix keyboard

connection, it is to take advantage of increasingly powerful MCU AD functionality,

Our module default configuration 2 AD port,

62

20 key resistance distribution, if used in strong electromagnetic interference

or strong inductive, capacitive load of the occasion, please refer to our "Notes."

1).Refer diagram

2)、20 function keys allocati

Figure 3.3 ad key refer

63

4、Application Circuit

4.1 Serial Communication Connect

Module's serial port is 3.3V TTL level, so the default interface level is 3.3V. If the

MCU system is 5V. It is recommended connect a 1K resistor in series.

Key Short Push Long Push Description

K1 Play Mode Switch to interrupt / non interrupted

K2
Playback device

switches
 U/TF/SPI/Sleep

K3 Operating Mode All cycle

K4 Play/Pause

K5 Previous Vol+

K6 Next Vol-

K7 4 Repeat play tracking 4 Long push always to repeat play

K8 3 Repeat play tracking 3 Long push always to repeat play

K9 2 Repeat play tracking 2 Long push always to repeat play

K10 1 Repeat play tracking 1 Long push always to repeat play

K11 5 Repeat play tracking 5 Long push always to repeat play

K12 6 Repeat play tracking 6 Long push always to repeat play

K13 7 Repeat play tracking 7 Long push always to repeat play

K14 8 Repeat play tracking 8 Long push always to repeat play

K15 9 Repeat play tracking 9 Long push always to repeat play

K16 10 Repeat play tracking 10 Long push always to repeat play

K17 11 Repeat play tracking 11 Long push always to repeat play

K18 12 Repeat play tracking 12 Long push always to repeat play

K19 13 Repeat play tracking 13 Long push always to repeat play

K20 14 Repeat play tracking 14 Long push always to repeat play

64

Figure 4.1 Serial Connect (3.3V)

4.2. Other

Refer

Diagram

Figure 4.2 Serial Connect (5v)

65

Figure 4.3 headset connect module

Between the headset and the module can string a 100R resistor, make a limiting

Figure 4.4 speaker connect module

66

Figure 4.5 Ad key connect refer

5、MP3-TF-16P Size (unit: mm)

Figure 5.1 pcb size

6、Note*

I/O Input Specification

Item Description Min Type Max Unit Test

Condition

VIL Low-Level

Input Voltage

-0.3 - 0.3*VDD V VDD=3.3V

VIH High-Level

Input Voltage

0.7VDD - VDD+0.3 V VDD=3.3V

I/O Output Specification

Item Description Min Type Max Unit Test

Condition

VOL Low-Level

Output Voltage

- - 0.33 V VDD=3.3V

VOH High-Level

Output Voltage

2.7 - - V VDD=3.3V

1. The module's external interfaces are 3.3V TTL level, so please note the level conversion

during the hardware circuit design, also in strong interference environment, electromagnetic

67

compatibility note some protective measures, GPIO using opt coupler isolation, increasing TVS

etc.

2, ADKEY key values are in accordance with the general use of the environment, if the strong

inductive or capacitive load environment, please note that the module power supply is recommended

to use a separate isolated power supply, another matched beads and inductors for power filtering,

we must ensure that the input power as much as possible the stability and clean. If you really can

not be guaranteed, please contact us to reduce the number of keys to redefine wider voltage

distribution.

3. For general Serial communication, please pay attention to level conversion. If strong

interference environment, or long distance RS485 applications, then please note that signal

isolation, in strict accordance with industry standard design communication circuits.

68

4. Mickro SD

1. General Description

The eekoo The SD/microSD is a memory card that is specifically designed to meet the

security, capacity, performance and enviroment requirements inherent in newly

 emerging audio and video consumer electronic devices.

microSD cards are based on a 8-pin interface designed to operate in a maximum operating

frequency of 100 MHz. The interface for microSD card products allows for easy integration

into any design, regardless of which type of microprocessor is used. In addition to the interface,

microSD card products offer

an alternate communicationprotocol based on the SPI standard.

2. Product Features

● Up to 128GB of data storage

● High transmission speed (Class 10)

● SD - protocol compatible

● Supports SPI Mode

● Voltage range of 2.7 to 3.6V

● Correction of memory field errors

● Card removal during read operation will never harm the content

● Memory field error correction

● Dimension : 15mm(L) x 11mm(W) x 1mm(H)

3. System Block Diagram

4. Product Specifications

a. Reliability and Durability Specifications

Temperature
Operating: -25℃ to 85℃

Storage: -40℃(168h) to 85℃(500h)

69

moisture and corrosion

Operating: 25°C / 95% rel. humidity

Non-Operating: 40°C / 93% rel. hum./500h

salt water spray:

3% NaCl/35C; 24h acc. MIL STD Method 1009

Durability 10,000 mating cycles

Bending 10N

Torque 0.10N*m. ±2.5∘max

Drop Test 1.5m free fall

Visual Inspection/Shape and Form
No warp age; no mold slim; complete form; no

cavities; surface smoothness≦-0.1mm/ cm2

within contour; no cracks; no pollution (oil,

dust, etc.)

b. System Reliability and Maintenance

MTBF >1,000,000 hours

Preventive Maintenance None

Data Reliability < 1 non-recoverable error in 1014 bits read

Endurance 3,000~10,000 write/erase cycles

c. Electrical Static Discharge (ESD) requirement

ESD Protection

Contact

Discharge: Air

Discharge;

±4KV, Human body model

according to IEC61000-4-

2.EN55024

±8KV, Human body model

according to IEC61000-4-

2.EN55024

70

5. Interface Description

a. General Description of Pins and Registers

The Micro SDHC has nine exposed contacts on one side. The host is connected to the SD Memory

Card using a eight pin connector.

Pin Assignment in SD Bus Mode Pad Definition

PIN# Name Type Micro SD Description

1 DAT2 I/O Card Detect/ Data Lin [Bit 3]

2 CD/DAT3 I/O Card Detect / Data Line

3 CMD PP Command / Response

4 VDD S Supply voltage

5 CLK I Clock

6 VSS S Supply Voltage Ground

7 DAT0 I/O Data Line [Bit 0]

8 DAT1 I/O Data Line [Bit 1]

Note:

4) S=power supply; I=input; O=output using push-pull drivers.

5) The extended DAT lines (DAT1-DAT3) are input on power up; they start to

operate as DAT lines after the SET _BUS_WIDTH command.

6) After power up, this line is input with 50Kohm pull-up (can be used for card detection or SPI

mode selection).

The pull-up should be disconnected by the user, during regular data transfer, with

SET_CLR_CARD_DETECT(ACMD42) command.

Pin Assignment in SPI Bus Mode Pad Definition

PIN# Name Type Micro SD Description

1 RSV I Reserved

2 CS I Chip Select (neg true)

3 DI S Data In

4 VDD S Supply Voltage

5 SCLK I Clock

6 VSS S Supply Voltage Ground

7 DO O Data Out

8 RSV I Reserved

1

Micro SD memory Card Pin Assignment

b. SD Bus Topology

The SD bus has six communication lines and three supply lines:

· CMD: Command is bi-directional signal.(Host and card drivers are

operating in push pull mode.)

· DAT0-3: Data lines are bi-directional signals. (Host and card drivers are

operating in push pull mode.).

· CLK: Clock is a host to cards signal. (CLK operates in push pull mode.)

· VDD: VDD is the power supply line for all cards.

· VSS [1:2]: VSS are two ground lines.

‧The following figure shows the bus topology of several cards with one host

in SD Bus mode.

2

Micro SD Memory Card System Bus Topology

During the initialization process, commands are sent to each card

individually, allowing the application to detect the cards and assign logical

addresses to the physical slots. Data is always sent to each card

individually. However, to simplify the handling of the card stack, after

initialization, all commands may be sent concurrently to all cards.

Addressing information is provided in the command packet.

c. Power Protection

Card can be inserted into or removed from the bus without damage. If one

of the supply pins (VDD or Vss) is not connected properly, then the current

is drawn through a data line to supply the card. Data transfer operations are

protected by CRC codes; therefore, any bit changes induced by card

insertion and removal can be detected by the Micro SD bus master. The

inserted card must be properly reset also when CLK carries a clock

frequency fpp.

If the hot insertion feature is implemented in the host, than the host has to

withstand a shortcut between VDD and Vss without damage.

d. SPI Bus Topology

The memory Card SPI interface is compatible with SPI hosts available on the

market. As any other SPI device the Micro SD Memory Card SPI channel

consists of the following 4 signals:

5) CS: Host to card Chip Select signal.

6) SCLK: Host to card clock signal.

7) Data In: Host to card data signal.

8) Data Out: Card to host data signal.

Another SPI common characteristic, which is implemented in the Memory

Card as well, is byte transfers. All data tokens are multiples of 8 bit bytes and

always byte aligned to the CS signal.

The SPI standard defines the physical link only and not the complete data

transfer protocol. In SPI Bus mode, the Micro SD Memory Card uses a

3

subset of the Micro SD Memory Card protocol and command set. The Micro

SD Memory Card identification and addressing algorithms are replaced by a

hardware Chip Select (CS) signal.

A card (slave) is selected, for every command, by asserting (active low) the

CS signal.The CS signal must be continuously active for the duration of the

SPI transaction (command, response and data). The only exception is card

programming time. At this time the host can de-assert the CS signal without

affecting the programming process.

The bi-directional CMD and DAT lines are replaced by uni-directional data In

and data Out signals. This eliminates the ability of executing commands

while data is being read or written. An exception is the multi read/write

operations. The Stop Transmission command can be sent during data read. In

the multi block write operation a Stop Transmission token is sent as the first

byte of the data block.

