BAB II

TINJAUAN PUSTAKA

2.1 Pengertian Dasar

2.1.1 Pengertian Sistem dan Informasi

(Anggraeni & Irviani, 2017) Sistem adalah kumpulan orang yang saling bekerja sama dengan ketentuan aturan sistematis dan terstruktur untuk membentuk satu kesatuan yang melaksanakan suatu fungsi untuk mencapai tujuan.

Informasi adalah data yang diolah menjadi lebih berguna dan berarti bagi penerimanya, serta untuk mengurangi ketidakpastian dalam pengambilan keputusan mengenai suatu keadaan.

2.1.2 Pengertian Sistem Informasi

(Ariyanti, 2020) Sistem informasi merupakan kumpulan dari beberapa orang yang bekerja sama untuk mencapai tujuan tertentu. Dalam pengertian lain juga menyebutkan yaitu suatu kombinasi terartur perorangan, hardware (perangkat keras), software (piranti lunak), jaringan komputer dan komunikasi data dan basis data dalam mengumpulkan, menyebarkan, dan merubah informasi dalam suatu bentuk organisasi.

2.2 Sistem Pendukung Keputusan

2.2.1 Pengertian Sistem Pendukung Keputusan

(Saleh & Yulawati, 2019) SPK sebagai sebuah sistem berbasis komputer yang membantu dalam proses pengambilan keputusan. SPK sebagai sistem informasi berbasis komputer yang adaptif, interaktif, fleksibel, yang secara khusus dikembangkan untuk mendukung solusi dari pemasalahan manajemen yang tidak terstruktur untuk meningkatkan kualitas pengambilan keputusan. Dengan demikian dapat ditarik satu definisi tentang SPK yaitu sebuah sistem berbasis komputer yang adaptif, fleksibel, dan interaktif yang digunakan untuk memecahkan masalah-masalah tidak terstruktur sehingga meningkatkan nilai keputusan yang diambil.

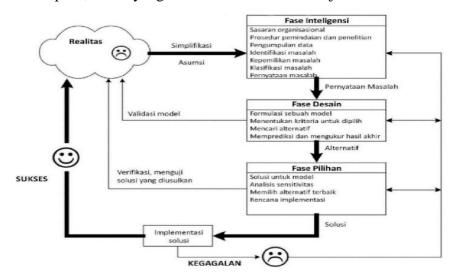
2.2.2 Fase Dalam Proses Pengambilan Keputusan

(Saleh & Fedrik, 2016) Proses pengambilan keputusan ini terdiri dari 4 fase utama, yaitu:

1) Fase Inteligensi

Tahap ini merupakan proses penelusuran dan pendeteksian dari lingkup problematika serta proses pengenalan masalah. Data masukan diperoleh, diproses dan diuji dalam rangka mengindentifikasi masalah.

2) Fase Desain


Tahap ini merupakan proses menemukan, mengembangkan dan menganalisis alternatif tindakan yang bias dilakukan. Tahap ini meliputi proses untuk memahami permasalahan, menurunkan solusi dan menguji kelayakan solusi.

3) Fase Pilihan

Pada tahap ini dilakukan proses pemilihan diantara berbagai alternatif tindakan yang mungkin dijalankan. Proses pemilihan ini meliputi mencari, mengevaluasi dan merekomendasikan solusi yang tepat dari model. Solusi dari suatu model adalah suatu set nilai untuk variable keputusan dalam suatu alternatif yang dipilih.

4) Fase Implementasi

Pada tahap ini, solusi yang telah disarankan mulai dijalankan.

Gambar 2.1 Fase dalam Pengambilan Keputusan

2.2.3 Karakteristik utama dari Sistem Pendukung Keputusan

(Sunoto, Ismawan, & Nulhakim, 2017) Karakteristik utama dari Sistem Pendukung Keputusan yaitu:

- 1. Sistem Pendukung Keputusan menggabungkan data dan model menjadi satu bagian.
- 2. Sistem Pendukung Keputusan dirancang untuk membantu para manajer (pengambil keputusan) dalam proses pengambil keputusan dari masalah yang bersifat semi struktural (tidak terstruktur).
- 3. Sistem Pendukung Keputusan lebih cenderung dipandang sebagai penunjang penilaian manajer dan sama sekali bukan untuk menggantikannya.
- 4. Teknik Sistem Pengambil Keputusan dikembangkan untuk meningkatkan efektivitas dari pengambil keputusan. Aplikasi dari Sistem Pengambil Keputusan baru dapat dikatakan berhasil atau bermanfaat.

2.3 Metode AHP

(Hutagalung & Azlan, 2020) Metode Analitycal Hierarchy Process (AHP) dikembangkan oleh Thomas L. Saaty, seorang ahli matematika. Metode ini adalah sebuah kerangka untuk mengambil keputusan dengan efektif atas persoalan yang kompleks dengan menyederhanakan dan mempercepat proses pengambilan keputusan dengan memecahkan persoalan tersebut kedalam bagian-bagiannya.

(Parhusip, D.O, & Jaekwoso, 2017) AHP merupakan suatu Model pendukung keputusan yang akan menguraikan masalah factor atau multi kriteria menjadi hiraerki sebagai suatu representasi dari sebuah permasalahan dalam suatu struktur multi level dimana level pertama adalah tujuan yang diikuti level factor,kriteria, sub kriteria dan seterusnya ke bawah hingga level terakhir dari alternafit

2.3.1 Langkah Kerja Metode AHP

(Deon , Poningsih, & Jalaluddin, 2019) Beberapa langkah kerja dalam penerapan metode AHP ini, yaitu antara lain:

1. Mendefinisikan struktur hirarki masalah

Permasalahan didekomposisi ke dalam bentuk pohon hirarki yang menunjukkan hubungan antara permasalahan, kriteria, dan alternatif solusi.

 Melakukan pembobotan kriteria pada setiap tingkat hirarki
 Penilaian Kriteria yang berada pada setiap tingkat hirarki diberikan penilaian kepentingan relatif antara satu kriteria dengan kriteria lainnya.

Tabel 2.1 Skala Penilaian Perbandingan Berpasangan AHP

Intensitas Kepentingan	Keterangan
1	Kedua elemen sama pentingnya
3	Elemen yang satu sedikit lebih penting dari pada elemen yang lainya
5	Elemen yang satu lebih penting dari pada yang lainya
7	Satu elemen jelas lebih mutlak penting dari pada elemen lainya
9	Satu elemen mutlak penting dari pada elemen lainya
2,4,6,8	Nilai-nilai antara dua nilai pertimbangan-pertimbangan yang berdekatan

3. Menghitung pembobotan kriteria dan konsistensi pembobotan Tahapan ini menghitung prioritas pembobotan dengan mencari nilai eigenvector dari matriks A.

Metode AHP mengijinkan terjadinya inkonsistensi penilaian kriteria, tetapi inkonsistensi penilaian tersebut tidak boleh melebihi nilai rasio konsistensi sebesar 10%. Rasio konsistensi ini dapat diperoleh dengan langkah sebagai berikut [3,5,6]:

Menghitung max dari setiap matriks berorde n dengan cara menjumlahkan hasil perkalian antara jumlah bobot seluruh kriteria pada masing-masing kolom matriks dengan nilai eigenvector utama dari matriks.

Menghitung nilai indeks konsistensi untuk setiap matriks ber-orde n dengan menggunakan rumus:

$$CI = \frac{\lambda \max - 1}{n - 1}$$

Keterangan:

N = banyaknya kriteria

 λ maks = rata-rata nilai lambda

Menentukan rasio konsistensi (CR) dengan rumus sebagai berikut:

$$CR = \frac{CI}{RI}$$

Keterangan:

CR = Rasio Konsistensi

CI = Indeks Konsistensi

RI = Indeks Random Index

Tabel 2.2 Nilai Random Index

N	RI
1	0,00
2	0,00
3	0,58
4	0,90
5	2,23
6	1,24
7	1,32
8	1,41
9	1,45
10	1,49

4. Menghitung pembobotan alternatif

Pada tahap ini dilakukan pembobotan alternatif untuk setiap kriteria dalam matriks. Proses untuk melakukan pembobotan alternatif ini sama dengan proses yang dilakukan untuk menghitung pembobotan kriteria.

5. Menampilkan urutan alternatif yang dipertimbangkan dan memilih alternative

Tahapan ini menghitung nilai yang diperoleh pada pembobotan alternatif untuk setiap kriteria dengan alternatif yang tersedia. Jumlah nilai terbesar merupakan pilihan yang terbaik.

2.4 Pengertian Minat dan Bakat

Minat adalah suatu proses pengembangan dalam menumpukan seluruh kemampuan untuk mengarahakan individuu kepada suatu kegiatan yang diminati. Bakat adalah kemampuan dasar seseorang untuk belajar dalam tempo yang relative pendek dibandingkan orang lain, namun hasilnya justru lebih baik, Bakat juga serinf sebagai talenta.

2.5 Pengertian Duta

(Sitinjak, Hasibuan, & Syahputra, 2019) Duta adalah seseorang yang dipilih untuk tugas tertentu yang bertugas untuk mewakili organisasi ataupun mempromosikan suatu bidang tertentu. Duta juga dapat diartikan sebagai tokoh yang menjadi icon dalam masyarakat yang memahami benar segala aspek baik dalam objeknya maupun subjeknya.

2.6 Pengertian Organisasi

Organisasi adalah sekelompok orang yang bekerja dalam struktur dan koordinasi tertentu dalam mencapai serangkaian tujuan tertentu. Organisasi adalah suatu koordinasi rasional kegiatan sejumlah orang untuk mencapai tujuan umum melalui pembagian pekerjaan dan fungsi lewat hirarki otoritas dan tanggungjawab (Schein).

Organisasi adalah sistem hubungan yang terstruktur yang mengkoordinasikan usaha suatu kelompok orang untuk mencapai tujuan tertentu (Kochler).

2.7 Pengertian Flowchart

(Dewi & Rini, 2017) flowchart merupakan penggambaran dari grafik dari langkah-langkah atau bagian yang memperlihatkan urutan-urutan prosedur dari suatu program dan hubungan antara proses beserta bentuknya".

Tabel 2.3 Simbol –Simbol Flowchart

Nama	T7 . 4
Simbol	Keterangan
	Simbol untuk mempersiapkan
Predefined	penyimpanan yang akan digunakan
Process	sebagai tempat pengolahan didalam
	storage
	Simbol untuk permulaan atau akhir
Terminal	darti suatu program
Manual Input	Simbol untuk pemasukan data secara
	manual on-line keyboard
Arus / Flow	Penghubung antara prosedur / proses
	Simbol keluar / masuk prosedur atau
Connector	proses dalam lembar / halaman yang
	sama
Off-line	Simbol keluar / masuk prosedur atau
Connector	proses dalam lembar / halaman yang
	lain
Input-Output	Simbol yang menyatakan proses input
	dan output tanpa tergantung dengan
	jenis peralatannya
Document	Simbol yang menyatakan input berasal
	dari dokumen dalam bentuk kertas
	atau output di cetak dikertas
	Predefined Process Terminal Manual Input Arus / Flow Connector Off-line Connector Input-Output

2.8 Use Case Model

(Yuliawati, Saleh, & Indera, 2018) *Use case* diartikan sebagai urutan langkahlangkah yang secara tindakan saling terkait (skenario), baik terotomatisasi

maupun secara manual, untuk tujuan melengkapi satu tugas bisnis tunggal. Diagram use case bersifat statis, diagram ini memperlihatkan himpunan use-case dan aktor-aktor (suatu jenis khusus dari kelas).

Berikut adalah simbol-simbol yang ada pada diagram use case:

Tabel 2.4 Simbol-simbol Use Case Diagram

No.	Simbol	Deskripsi
1.	Use case/Nama use case	Gambaran fungsinalitas dari suatu
		sistem, sehingga pengguna mengerti kegunaan sistem yang akan dibangun.
2.	Aktor/actor	Mendefinisikan entitas diluar sistem
	2	yang memakai system
3.	Relasi	Menceritakan hubungan antara aktor
		dan use case sehingga diagram dapat dipaham

2.9 Activity Diagram

(Yuliawati, Saleh, & Indera, 2018) Aktivitas merupakan kumpulan aksi- aksi. Aksi-aksi melakukan langkah sekali saja tidak boleh dipecah menjadi beberapa langkah lagi. Sebagai contoh fungsi matematika, pemanggilan prilaku, pemrosesan data. Aktivitas dapat mengakses atribut dan operasi dan operasi classifier, tiap objek yang terhubung dan parameter-parameter jika aktivitas memiliki hubungan dengan prilaku

Tabel 2.5 Simbol-simbol Activity Diagram

No.	Simbol	Deskripsi
1.	Status awal	Status awal aktivitas sistem, sebuah
		diagram aktivitas memiliki sebuah status awal.
2.	Aktivitas Aktivitas	Merupakan langkah atau aksiaksi yang terjadi
3.	Percabangan/decision	Memperlihatkan dimana keputusan perlu diambil selama terjadi selama terjadi aliran kerja.
4.	Penggabungan/join	Asosiasi penggabungan dimana lebih dari satu aktivitas digabungkan menjadi satu.
5.	Status akhir	Memperlihatkan dimana aliran itu berakhir

2.10 Class Diagram

(Ariansyah, Fajriyah, & Prasetyo, 2017) Diagram kelas atau Class Diagram menggambarkan struktur sistem dari segi pendefinisian kelas-kelas yang akan dibuat untuk membangun sistem. Kelas memiliki apa yang disebut atribut dan metode atau operasi.

- 1. Atribut merupakan variabel-variabel yang memiliki oleh suatu kelas.
- 2. Operasi atau metode adalah fungsi-fungsi yang dimiliki oleh suatu kelas.

Tabel 2.6 Simbol-simbol Class Diagram

No.	Simbol	Deskripsi
1.	ClassName -memberName -memberName	Kelas pada struktur sistem
2.	Antarmuka/interface	Sama dengan konsep <i>interface</i> dalam pemrograman berorientasi objek
3.	Asosiasi/association	Relasi antar kelas dengan makna umum, asosiasi biasanya juga disertai dengan <i>multiplicity</i>
4.	Asosiasi berarah/ directed association	Relasi antar kelas dengan makna kelas yang satu digunakan oleh kelas yang lain, asosiasi biasanya juga disertai dengan <i>multiplicity</i>
5.	Generalisasi	Relasi antar kelas dengan makna generalisasi – spesialisasi (umum - khusus)
6.	Kebergantungan/dependensi	Relasiantar kelas dengan makna kebergantungan antar kelas
7.	Agregasi/aggregation	Relasiantar kelas dengan makna semua-bagian (whole-part)

2.11 Kamus Data

(Sukamto, Rosa, & Shalahuddin, 2018), mengemukakan bahwa kamus data (*data dictionary*) dipergunakan untuk memperjelas aliran data yang digambarkan pada *DFD*. Kamus data adalah kumpulan daftar elemen data yang mengalir pada sistem perangkat lunak sehingga masukan (*input*) data keluaran (*output*) dapat dipahami secara umum.

2.12 Alat Pengembangan Sistem

2.12.1 PHP

(Novendri, Saputra, & Firman, 2019) Bahasa pemrograman PHP merupakan bahasa pemrograman untuk membuat website yang bersifat server-side scripting, PHP bersifat dinamis. PHP adalah salah satu bahasan pemrograman skrip yang dirancang untuk membagun aplikasi web. Ketika dipanggil dari web browser, program yang ditulis dengan PHP akan di-parsing di dalam web server oleh interprenter PHP dan diterjemahkan ke dalam dokumen HTML, yang selanjutnya akan ditampilkan kembali web server

2.12.2 MySQL

(Febriani & Permadi, 2017) MySQL adalah sebuah program database server yang mampu menerima dan mengirimkan datanya dengan sangat cepat, multi user serta menggunakan perintah standar SQL (Structured Query Language). MySQL juga telah mendukung bahasa pemrograman berfitur API seperti Java sehingga memudahkan para programmer java untuk berkoneksi dengan menggunakan MySQL.

2.12.3 XAMPP

(Mearaj et al., 2019) Fungsinya sebagai server yang berdiri sendiri (*localhost*), yang terdiri dari program Apache HTTP Server, database MySQL, dan penerjemah bahasa yang ditulis dalam pemrograman PHP dan Perl. Nama XAMPP adalah singkatan dari X (empat sistem operasi apapun), Apache, MySQL, PHP dan Perl. Program ini tersedia dalam GNU *General Public License* dan gratis

2.12.4 Visual Studio Code

(Permana & Romadhon, 2019) *Visual Studio Code* (VS Code) ini adalah sebuah teks *editor* ringan dan handal yang dibuat oleh *Microsoft* untuk sistem operasi *multiplatform*, artinya tersedia juga untuk versi *Linux*, *Mac*, dan *Windows*. Teks *editor* ini secara langsung mendukung bahasa pemrograman *JavaScript*, *Typescript*, *dan Node.js*, serta bahasa pemrograman lainnya dengan bantuan *plugin* yang dapat dipasang *via marketplace* Visual Studio Code (seperti *C*++, *C#*, *Python*, *Go*, *Java*, dst). Banyak sekali fitur-fitur yang disediakan oleh Visual Studio Code, diantaranya *Intellisense*, *Git Integration*, *Debugging*, dan fitur ekstensi yang menambah kemampuan teks *editor*.

2.13 Referensi Penelitian Terkait

Penelitian terkait merupakan sebagai landasan bahan acuan untuk pembelajaran penelitian yang dengan sistem penunjang keputusan dengan metode AHP sebagai berikut :

Tabel 2.7 Referensi Terkait

1.	Judul	Prototype Sistem Penunjang Keputusan Penentuan
		Kelayakan Gudang Penerimaan Pupuk Pusri dengan
		Metode SAW.
	Jurnal	Expert – Jurnal Management Sistem Informasi dan
		Teknologi
	Volume &	Volume 06, Nomor 02, Hal 52-59
	Halaman	
	Tahun	2016
	Penulis	Sushanty Saleh , Toni Fedrik
	Pembahasan	Sistem Penunjang Keputusan Penentuan Kelayakan
		Gudang dengan hasil perhitungan metode SAW dapat
		membantu dalam penentuan kelayakan gudang
		berdasarkan kreteria kriteria ukuran, kapasitas,
		kebersihan dan perawatan .
2.	Judul	Model Sistem Penunjang Keputusan Penentuan
		Jurusan Bagi Siswa SMA menggunakan Metode
		TOPSIS (STUDI KASUS YADIKA NATAR)
	Jurnal	Jurnal Informatika
	Volume &	Vol.16, No.02, Hal 160-169
	Halaman	
	Tahun	2016
	Penulis	SUSHANTY SALEH
	Pembahasan	Menerapkan metode TOPSIS dalam penentuan Jurusan
		pada siswa/I direkomendasikan untuk masuk kejurusan
		IPA dan bobot kriteria adalah faktor mempengaruhi
		spk dalam penentuan Jurusan.

Tabel 2.7 Referensi Terkait (Lanjutan)

3.	Judul	Sistem Pendukung Keputusan Penerima Bantuan		
		Bedah Rumah Menggunakan Metode Analitycal		
		Hierarchy Prosess (AHP) Dan Multi Objective		
		Optimization On The Basis Of Ratio Analysis		
	Jurnal	Jurnal Informatika		
	Volume &	Vol. 20, No.2 Hal 189-198		
	Halaman			
	Tahun	2020		
	Penulis	M. Abu Jihad Plaza R1, Chandra Irawan		
	Pembahasan	Menerapkan dua metode yaitu (AHP) untuk		
		perhitungan bobot tiap kriteria dan MOORA		
		digunakan untuk nilai perangkingan. dengan kriteria		
		yaitu jumlah tanggungan, status rumah, kondisi rumah,		
		status BSPS, penghasilan dan persiapan membangun		
		rumah dengan hasil layak atau tidak layak menerima		
		beda rumah.		
4.	Judul	IMPLEMENTASI SIMPLE ADDITIVE		
		WEIGHTING (SAW) DALAM SPK GURU		
		BERPRESTASI SMP GLOBAL SURYA		
	Jurnal	JUPITER		
	Volume &	Vol. 10, No 2, Hal 69-76		
	Halaman			
	Tahun	2018		
	Penulis	Ochi Marshella Febriani , Arie Setya Putra		
	Pembahasan	membangun system dengan metode SPK yaitu SAW.		
		Sistem ini dapat menampilkan hasil perangkingan guru		
		berprestasi berdasarkan hasil peritungan metode SAW		
5.	Judul	Implementasi Metode TOPSIS Untuk Penentuan		
		Finalis Duta Wisata Joko Roro Kabupaten Malang		
		(Studi Kasus : Paguyuban Joko Roro)		

Tabel 2.7 Referensi Terkait (Lanjutan)

	Jurnal	Jurnal Pengembangan Teknologi Informasi dan Ilmu
		Komputer
	Volume &	Jurnal Pengembangan Teknologi Informasi dan Ilmu
	Halaman	Komputer
	Tahun	2018
	Penulis	Krisna Andryan Syahputra Effendi , Edy Santoso , dan
		Nurul Hidayat
	Pembahasan	Keputusan menggunakan metode TOPSIS untuk
		membantu pihak paguyuban dalam
		mempertimbangkan hasil penetapan finalis duta wisata
		Joko Roro Kabupaten Malang.
6.	Judul	Implementasi Metode Analitychal Hierachy Process
		Untuk Pengambilan Keputusan Penilaian Murid
		Berprestasi (Studi Kasus Smp Islam Kebumen)
	Jurnal	Jurnal Sistem Informasi & Manajemen Basis Data
		(SIMADA)
	Volume &	Vol. 3 No. 2, Hal 80-90
	Halaman	
	Tahun	2020
	Penulis	Dita Novita Sari, Lailaturrohmah , Ahmad Khumaidi ,
		Siti Mukodimah , Trisnawati
	Pembahasan	Keputusan Siswa Berprestasi menggunakan metode
		AHP dengan kriteria yaitu nilai rata-rata raport, nilai
		minimal, total nilai, kehadiran, kepribadian, hafalan al-
		qur'an, serta piagam prestasi. Dari hasil perhitungan
		prioritas dapat dihasilkan rangking siswa berprestasi.