
ISSN: 2460 – 7223

Proceeding of 7th ICITB 2021 26

Method for Detection and Mitigation Cross Site

Scripting Attack on Multi-Websites

1st Hartono

Master of Information Technology Department

Institute of Technology and Business Darmajaya

Lampung, Indonesia

harton.2021210011@mail.darmajaya.ac.id

2nd Joko Triloka

Master of Information Technology Department

Institute of Technology and Business Darmajaya

Lampung, Indonesia

joko.triloka@darmajaya.ac.id

Abstract—Cross-Site Scripting (XSS) attack exploits scripting

security bugs and issues on the website. XSS attack focuses and

occurred on client browser application or frontend. It consists

of three types of attacks: stored, reflected, and document object

manipulation. The XSS attacks can cause fatal and dangerous

problems, such as theft of user data, account takeovers, and

illegal access to banking transactions or important data. Studies

on XSS detection and mitigation have been carried out by some

researchers, but it still leaves some problems, such as there is no

connected mitigation to respond to the attack, using only a

single-layer security mechanism and fewer payload data to test,

weak measurement of the defense effectiveness from XSS

attack, and the use of insufficient experiment and data testing.

In addition, the method used in previous research still fails to

solve all types of XSS attack. Most of the previous research also

separates the method of attack detection and its mitigation.

Therefore, this study proposes not only for detection but also

for mitigation to overcome XSS attacks. The proposed method

in this study is divided into two parts: detection and mitigation

method. The proposed detection method is by using machine

learning, based on lexical analysis. Then, the proposed

mitigation method is the multi-layer security method which

consists of five layers of the security. The proposed method has

been structured systemati-cally and procedurally. In previous

research, the partial methods proposed in this paper has been

effectively implemented. There-fore, the proposed method is

regarded as appropriate method to detect and mitigate XSS

attack.

Keywords—XSS, cross site scripting, mitigation system, machine

learning, cyber-attack, lexical analysis

I. INTRODUCTION

Cross-Site Scripting (XSS) attacks can cause very serious

problems. Based on some cases that previously occurred,

XSS attacks can be used to do data theft, account takeover,

manipulate users’ decisions, or become pre-initial attack to

do further attacks [1]. A big company like eBay and Amazon

for example has been recorded to have experienced an XSS

attack. This method exploits a security vulnerability on the

scripting or sanitation side [2]. In other words, XSS will be

executed through the client's browser. XSS security

vulnerabilities occur when applications or software do not

sanitize or validate input, variables, or parameters properly.

That vulnerability allows attackers to send JavaScript code

using browser requests. To send the malicious code, the

attacker can send the code using forms, URL, or document

object manipulation (DOM).

XSS attack is not actually the new method of cyber-

attack. This type of attack has long been discovered, and not

as new term in cyber security [2]. However, in fact, based on

Open Web Application Security Project (OWASP) Top-10

Web Vulnerabilities 2017, XSS becomes one of vulnerability

which is often found on most of cyber-attack in the world

[3]. In addition, XSS vulnerabilities also still found OWASP

Top-10 Web Vulnerabilities 2021 (statistics-based proposal)

[4]. The appearance of XSS attacks on the data certainly

shows that XSS attacks occur and develop consistently. XSS

security vulnerabilities are still considered a common

problem, so attackers can take advantage of this attack to

carry out further attacks. In fact, as already explained, this

XSS attack can cause serious problems. Therefore, it is

important to formulate and develop more effective method to

overcome this type of attack. The detail of OWASP Top-10

web vulnerabilities could be seen on table 1.

TABLE 1. OWASP TOP-10 WEB VULNERABILITIES 2017 AND 2021

OWASP Top-10 2017 OWASP Top-10 2021 Proposal

A1 Injections A1 Injections

A2 Broken Authentication A2 Broken Authentication

A3 Sensitive Data Exposure A3 Cross-Site Scripting (XSS)

A4 XML External Entities

(XXE)

A4 Sensitive Data Exposure

A5 Broken Access Control A5 Insecure Deserialization

A6 Security Misconfiguration A6 Broken Access Control

A7 Cross-Site Scripting

(XSS)

A7 Insufficient Logging &

Monitoring

A8 Insecure Deserialization A8 Server-Side Request

Forgery (SSRF)

A9 Known Vulnerabilities A9 Known Vulnerabilities

A10 Insufficient Log &

Monitoring

A10 Security Misconfiguration

Based on data from the Indonesia National Cyber and

Crypto Agency (usually called BSSN), there were around

12.9 million cyber threat attempts to Indonesia during 2018.

A total of 513,900 of the total attacks were malware. Not

only that, during January - April 2020, BSSN recorded that

there were around 88,414,296 cyber-attack activities in

Indonesia [5]. With that high attack statistic level, each

attack used very complex and varied methods and

techniques. Unfortunately, no single Indonesian institution

has complete data about the attack description. Therefore, it

27

is not easy to give exact prediction about what methods used

by attackers. To detect and mitigate the attack and in relation

to the XSS attack, some research data published by cyber-

security company and researchers may be used as

represented reference to predict the attackers’ methods.

 As mentioned, XSS attack has appeared in OWASP

Top-10 web vulnerabilities [6]. This type of attack become

one of common cyber-attack method used by several

attackers. In addition, international cyber-security

companies, Rapid7 and Netwrix also put XSS attack method

as one of top most common types of cyber-attack [7-8]. They

also explain several impacts when attacker exploit XSS

vulnerability. In this case, since XSS mentioned as top-most

common types of cyber-attack and web vulnerabilities, it is

indisputable fact that XSS attack should get attention and

cannot be underestimated. Therefore, based on those facts,

detection and mitigation method or mechanism become an

important thing to continuously developed and studied.

II. PREVIOUS RESEARCH

Several research have discussed XSS attack detection and

mitigation method. In general, the study of XSS attacks

discusses how to develop accurate attack detection and take

preventive actions against XSS attacks. Most recent studies

that discuss XSS detection are still use limited sample of

XSS attack datasets and have lack procedure in testing the

effectiveness of detection. Those studies did not use

powerful attack application to test whether the detection was

successful implemented or not. In addition to detection, the

study also discusses how to defend or prevent XSS attacks.

Research [9] used machine learning with hybrid features to

detect XSS attack. The use of hybrid features in XSS

detection is quite accurate, but there is no mitigation

mechanism explained and developed. Still related to the

machine learning based detection method, research [10]

explore artificial intelligence (AI) term to detect XSS attack.

The term is multilayer perceptron technique. The same as

previous research, it was only focused on how to build or

develop accurate XSS detection. Using multi-layer

perceptron to detect XSS attack pattern is not easy to

implement, it may need more or high computer resource only

for detecting XSS attack. In addition, it was not also easy to

embed the detection engine in web application architecture.

Most studies on the prevention of XSS attacks have not

been carried out comprehensively. The experiment done by

research [11] for example, the defensive method was

implemented in very simple web application with 8 pages

only. The similar case also occurred on research [12], XSS

attack simulation or testing is only based on single pieces of

JavaScript code so the result of experiment may not be

reliable and representative. The data used are also limited,

taken from small scope of cases. It is related to the research

[13]. This research use Code Igniter XSS filtering library to

filter or sanitize user requests. Unfortunately, there was still

no sufficient explanation or measurement about the

effectiveness of XSS filtering in solving all types of XSS

attack: stored, reflected, and DOM. Similar to previous

researches, the research [14] only focus on how to detect

XSS attack by using OWASP Security Shepherd. Mitigation

and defensive system were not implemented yet.

Based on several previous research explained, there are

still five common weakness and problem found, they are:

 the use of limited data in detecting XSS attack.

 weak implementation of XSS attack simulation.

 lack of use attack application or technique to simulate

XSS attack to the proposed or developed method.

 the use of very common JavaScript code to examine the

effectiveness detection method, so the level of

effectiveness is not easy to be concluded.

 unintegrated detection and mitigation method.

 unable to protect multi-websites.

 there is no detailed specification of target website, such

as description about security level, provided

vulnerabilities, other web vulnerabilities interference.

 the use of single layer security technique.

 not all XSS attack types are solved.

III. CROSS SITE SCRIPTING

XSS attacks exploit the user's browser or frontend. To

perform this attack, the attacker will use JavaScript code

which run on client browser. If the website has an XSS

vulnerability, the JavaScript code can be executed, against

the business process of the application [15]. The code can be

submitted via search box, form value, and DOM. To check

whether the website has XSS vulnerability or not, the

attacker simply does some experiments or trial and error.

When the test XSS attack is successful, the attacker will

devise a scenario to carry out further attacks. The motivation

for the attack will certainly vary, depending on the attacker's

motives. In more advanced method and techniques, XSS

vulnerabilities can be scanned by certain software.

XSS attack has three types of methods, they are (1)

stored XSS, (2) reflected XSS, and (3) Document Object

Manipulation or DOM based XSS [16]. The essential

difference between these types is in how attacker implement

the attack procedures and technique. In case of real attack

implementation, although there are only three types of XSS

attack, there are many techniques that can be used to exploit

XSS vulnerabilities. That’s why it is urgent and important to

develop detection system to detect varied XSS attack pattern

accurately.

Stored XSS occurs when the attacker sends and saves

malicious JavaScript code to the database, file, or filename.

The system saves the code because of a lack of sanitation

and validation. When the user or victim accesses the page

containing the code, the browser will execute XSS code. In

contrast to the stored, reflected XSS can be executed without

saving the code into the database. It acts like a mirror or

reflection. Most type of this XSS attack occurs in the search

box, filter widgets, or URL. Reflected XSS is more

frequently used by attackers because they can see the result

faster than stored XSS. DOM XSS can be implemented by

modifying DOM in the victim’s browser. DOM XSS is more

difficult to detect, but also difficult to implement. To see the

clear differences between each type of XSS attack, see the

following XSS code example in table 2.

ISSN: 2460 – 7223

28

TABLE 2. THE DIFFERENCES BETWEEN TYPE OF XSS ATTACK

 XSS Type Code Explanation and Example

1 Stored XSS

The malicious XSS code is saved on the database and

executed when user or victim access the page contained
that saved malicious code.

<!DOCTYPE html>

<html lang="en">

 <head>
 <title></title>

 <link rel="stylesheet" href="css/main.css" />

 </head>
 <body>

 <p><script> malicious XSS code </script></p>
</body>
</html>

2
Reflected
XSS

Most of search box or page will show the search

keyword on the result page. The attacker can use the

search box to send malicious XSS code.

Sample of malicious XSS code:

<script>alert(document.cookie)</script>

When the keyword submitted, the URL will be the
following pattern:

http://www.victim.site/search.php?keyword=<script>al

ert(document.cookie)</script>

3 DOM XSS

This type of XSS can be done by modifying DOM
element in a web page. Modifying URL parameter on

navigation menu for example.

http://www.victim.site/page.html?default=<script>alert

(document.cookie)</script>

To describe why XSS can be one of dangerous attack

method and how this attack method is implemented, it is

needed to explain simple XSS attack scenario. This is how

attacker do account takeover using stored XSS technique.

Before explaining the scenario, it is important to know that

this is very simple and common scenario of XSS attack

procedure. Those scenarios are (1) attacker send XSS

malicious code and save it to the victims website, (2) the

malicious code will redirect user or web visitor to the

phishing page prepared by attacker, (3) the phishing is a

login page and the victim is asked to login to the page, (4)

because the attacker makes the page similar to original one,

the victim login to the phishing page, (5) attacker steal the

credential or account of victim (username/e-mail and

password), (6) attacker login to the original page using

victim’s account and change the password and other

identification, and (7) attacker uses victim authority to do

further illegal actions. See figure 1 to check overall scenario.

Figure 1. Simple XSS Attack Scenario in Account Takeover

IV. METHODS

The method proposed in this study is divided into 2 parts.

First, the machine learning method to detect XSS attacks. To

detect more accurately, the detection uses machine learning

model. The second proposed method is a multi-layer security

to mitigate or prevent XSS attack. Therefore, to ease the

explanation, the proposed method will be divided into two

separated explanations. To get an idea of the overall method

proposed in this paper, see Figure 2.

Figure 2. XSS Attack Detection and Mitigation Scenario

Both detection and mitigation method have mutualistic

relationship. When the detection engine detects XSS attack,

the system can notify the web administrator and activate or

trigger the mitigation engine. In addition to build wall

system defense, mitigation engine collects XSS attack

pattern to NoSQL database (JSON) as feedback. The

detection engine can use the database for optimizing further

detection result. Meanwhile, in case of web administrators’

action, they might take certain action to avoid the attack,

such as restrict attacker IP or Mac Address (if identified),

take data protection acts, or carry out manual mitigation.

With these two forms of notification, the web application

gets more option to customize security level and action.

A. Machine Learning Detection

The proposed method used to detect XSS attack in this

study is machine learning model. XSS attack patterns are

string-based attacks packaged in the form of JavaScript code.

The composition string of XSS code can be written very

complex and varied, so the application or system must have a

comprehensive attack code detection method. It is a must to

have complete dataset to develop comprehensive detection.

The use of machine learning is to ease the detection of

complex attack string pattern. In addition, the detection also

can be carried out independently, without involving multiple

administrator actions. Therefore, the detection can be carried

out more effectively.

In case of machine learning implementation, XSS dataset

can be taken from GitHub and Kaggle. Figures 2 and 3 show

two datasets that have different scope or source. XSS code in

Github dataset taken from URL or request parameters, and

Kaggle taken from HTML source. To get more accurate

machine learning model, the dataset is separated into two

29

datasets, for training and testing purpose. To ease the process

of detection implementation, Turicreate can be used as

engine. This library can ease the implementation of detection

using machine learning. Turicreate has complete and

powerful machine learning or even AI features. Related to

XSS pattern detection, it has a text classifier feature. The

feature can be used to classify the text or XXS codes into

recognized pattern with the use of lexical analysis. Thus, it is

assumed as an effective engine to build the method of XSS

attack code detection [17]. This Apple machine learning

engine can do lexical analysis or computation so the

detection method can accurately predict whether the query or

code is malicious or not.

 Meanwhile, to check the effectiveness and the stability

of the detection method, Zap or OWASP Zed Attack Proxy

application could be used because it has XSS attack features.

Zap is used to send the payload, so the machine can test and

learn the attack string pattern used during the payload. To get

more description about dataset, see figure 3 and 4 to see

dataset sample.

Figure 3. XSS Dataset From Requests Parameters (Github)

Figure 4. XSS Dataset From HTML/Page Source (Kaggle)

The establishment procedures of XSS detection in this

study are divided into three stages: machine learning

preparation, detection integration, and detection

implementation. The machine learning preparation has seven

steps as follows: (1) data preparation; (2) data pre-

processing; (3) data modeling; (4) data training (5) data

testing; (6) performance evaluation; and (7) performance

optimization. To optimize the performance, n-gram value set

to the text analytic. It is done to see the accuracy level based

on n-gram value. N-gram is a term in Natural Language

Processing (NLP). It can be defined as continuous sequences

of words, symbols, tokens in a sentence or document. In

more technical terms, n-gram can be also assumed as

neighboring sequences of items in a sentence. When

optimized n-gram has been formulated, model can detect the

XSS code patterns, and the interpretation can be the table

TABLE 3. XSS PATTERN INTERPRETATION BASED ON N-GRAM

XSS Pattern n-gram 1 n-gram 2 n-gram 3

Pattern 1 False True True

Pattern 2 True True False

Pattern 3 True True True

Pattern 4 True True False

Pattern 5 True True True

True means the detection is valid, and false is invalid. It

means that n-gram value can affect to the accuracy of

detection. In addition, there are some procedures taken to get

more accurate result, such as separating data modelling into

training and testing, and evaluating performance of machine

learning model. It is also important to use a comprehensive

XSS dataset with very complete data features, so the

detection engine can be more accurate. Related to machine

learning detection procedures, see figure 5.

Figure 5. Machine Learning Detection Procedures

As shown on the figure 5, data processing has three

subprocess, as follows data cleaning, features selection, and

target description. After machine learning is ready to be

implemented in real payload, the detection and mitigation

methods need to be integrated. In this case, the detection

become a trigger to create an admin notification and activate

the mitigation. The detection engine do prediction XSS cyber

threat [18], and the mitigation engine build secured defense

system. To clearly get description, see the figure 6.

To develop integrated and synchronized detection and

multi-layer security engine, the detection engine can be

embedded in web application, as a service or task. In

addition, it can also be placed on web server mod security or

HTTP layer. It is also important to know that each security

layer has built-in attack detection, although it has not built

with machine learning mechanism. See figure 6 below to

check the integration of detection and mitigation mechanism.

Figure 6. Integration of Detection and Mitigation Mechanism

After machine learning model is embedded as detection

engine, Zap and Arachni is implemented to establish XSS

attack simulation to sample websites run on web server.

Those application have very comprehensive XSS attack

features so the pentester, researcher, or web administrator

can evaluate web security level, especially for evaluating

XSS attack pattern. Those applications can also run multi-

threaded tasking and service, so the process of XSS attack

can be rapidly fast and powerful. Payload attack

implemented by Zap and Arachni can produce detailed

attack statistic or report. Since the mechanism is supported

by attack report, it can be used to compare security level

effectiveness between the propose and previous methods. In

ISSN: 2460 – 7223

30

addition, it can also be used as proof that the proposed

method has accurate detection and reliable defensive system

that can solve security problems found. It is also to measure

the effectiveness level of proposed method. See figure 7 to

see the implementation of XSS attack using Zap and

Arachni.

Figure 7. Attack Simulation Detection and Mitigation Zap and Arachni

B. Lexical Analysis or Computation Technique

In context of this study, lexical analysis is the method to

extract and classify sentences into structured-identified value

[19]. This analysis technique is used to ensure whether the

input (payload) is XSS malicious code or not. Therefore,

sentences in lexical analysis assumed as codes or URL used

by attacker to insert XSS code. Lexical analysis is used to

extract features from XSS dataset. This type of analysis

extracts XSS codes into several parameters or characteristics.

The text will be extracted as ASCI so the machine learning

engine can classify whether the string is XSS codes or not. In

case of detecting XSS code pattern, lexical analysis is simple

but powerful method. With this analysis model, the process

of detecting XSS malicious code can be easily done, without

consuming many computation resources. Since the analysis

model only take a few resources, it can be embedded in

several layers. As seen on figure 8, the XSS attack detection

will use lexical analysis.

Figure 8. Lexical Analysis for Feature Extraction and Analysis

C. Multi-Layer Security for Mitigation

Multi-layer security is a mechanism to comprehensively

secure a website or application. This security is called

comprehensive because it can handle all websites that are on

a web server. This security is built to meet the various

characteristics and security needs of each level of website

security. This mechanism can also cover various web

architectures if it is on the same web server. This mechanism

is compiled from various research results on cyber security.

Multi-layer security consists of five security layers, they are

(1) OWASP ModSecurity; (2) Framework/CMS Default

Security Features; (3) HTTP Middleware; (4) Templating

Engine; and (5) Data Sanitizer or filter. See figure 9 to get more

clearly description.

Figure 9. Multi-Layer Security Method to Mitigate Multi-Website

Layer 1 or OWASP ModSecurity or OWASP Web

Application Firewall Mod Security is a service, contains a

set of rules run on a web server and act as a firewall [20].

This service supports the top-level firewall provided by the

web server, computer server, and network gears. OWASP

ModSecurity acts based on the rule set by default or

customized by the web server administrator. Since it runs on

a web server, OWASP ModSecurity can guarantee

protection for all websites available on the web server. Not

only XSS attack, this ModSecurity provides comprehensive

protection against several common attack types, they are:

 SQL Injection

 Local File Inclusion

 Remote File Inclusion

 PHP Code Injection

 PHP Code Injection

 Java Code Injection

 HTTProxy

 Shellshock

 OS Shell Injection

 Session Fixation

 Bot Detection

 Metadata/Error Leakages

Layer 2 or Framework/CMS default security features is a

term to refer to the default security features of a web

framework or content management system used by web

developers. In this case, the common security features

provided by web framework or CMS (Content Management

System) are filtering and validation, captcha challenges, and

CSRF protection. The list of popular and commonly used

web framework and CMS can be seen on table 4 and 5.

31

TABLE 4. TOP-7 COMMON USED WEB FRAMEWORK [21-22]

Web

Framework
Language Official Website

1 Django Python https://www.djangoproject.com/

2 Laravel PHP https://laravel.com/

3 Ruby of Rails Ruby https://rubyonrails.org/

4 ASP.NET ASP https://dotnet.microsoft.com/apps/aspnet

5 CodeIgniter PHP https://codeigniter.com/

6 Yii PHP https://www.yiiframework.com/

7 Express JavaScript https://expressjs.com/

TABLE 5. TOP-5 MOST USED CMS [23]

 Web Framework Language Percentage Domains

1 Wordpress PHP 77,9% 691,237

2 Drupal PHP 5,6% 49,834

3 Joomla PHP 3,7% 33,029

4 Squarespace PHP 2.6 22,694

5 Moodle PHP - -

HTTP middleware can be defined differently, depend on

web framework concept. In Java for example, middleware is

called filter or C# calls it delegate handler. Basically, HTTP

middleware can be assumed as a function to be used as a

controller, watcher, sanitizer, or manipulator in HTTP

transportation, such as request and response. See figure 10 to

see the concept of HTTP middleware. Templating engine is a

parser or converter used to provide readable templating

system and to sanitize data output. Before showing data to

the user, templating engine sanitize the data. The last layer is

data sanitizer. This function is used to sanitize data from or

to user. This function is called on form processing, database

pre-save, etc.

Figure 10. HTTP Middleware Concept in ASP [24]

D. Method Evaluation and Comparison

The most appropriate way to measure and evaluate the

accuracy of XSS attack detection and the effectiveness of

attack mitigation method is by implementing the XSS attack

simulation with real attack codes and scenario. In this case,

Zap and Arachni is powerful application for simulating and

researching the demand of XSS attack. In addition, to get

emphasized method, the proposed method should be

compared with previous methods used by other researchers.

E. Complementary Layers in Protecting Multi-Website

It is important to comprehend that the biggest multi-layer

security scope is a web server, and the smallest is web

application or even micro service application. In this case,

every layer has its’ own task to protect web application or

components. It also means that to protect a web application,

multi-layer security is not always in the form of a complete

layer, especially for web application built with very secure

web framework or code by experienced programmer. Some

of security layers may not need to work, because web

application can handle the security problem. In protecting

web application, this multi-layer security method has several

scenarios, see table 6 below.

TABLE 6. THE SECURITY LAYERS IN PROTECTING MULTI-WEBSITES

Layers and Web

Application Capability

Web/App

Security Level
Multi-Layer Actions

1

Web application and server

has activated all security
layers

high

XSS attack can be
handled

by all security layers

simultaneously.

2 Web application has secured
HTTP middleware, data

sanitation, and powerful
templating engine.

high

XSS attack can be

handled
by web application itself.

3 Web application has no

secured HTTP

middleware/data
sanitation/powerful

templating engine features

medium

XSS attack can be

handled by OWASP

ModSecurity, data
sanitizer, and templating

engine

4 Web application does not
provide secured HTTP

middleware, data sanitation,

and templating engine.

low
XSS attack solved by

OWASP ModSecurity

5 Web application is not
protected by OWASP

ModSecurity

low
XSS attack can be
handled

by web application itself.

V. CONCLUSION

The proposed method is divided into detection and

mitigation method. XSS attack patterns and combinations

vary widely. This attack can also evolve, along with the

attacker's abilities. To overcome the diversity of XSS attacks

pattern, the proposed method for detecting XSS attacks

involves machine learning model. Model analysis used is

lexical analysis or computation that can classify text into

several classified. The classified text can be easily identified,

so the detection process can be effectively done.

In addition to the use of machine learning with lexical

analysis, XSS attack mitigation method is implemented with

multi-layer security mechanism. This method utilizes five

layers of security so that XSS attacks are not easy to be

implemented. This security method is carefully structured, so

the probability of a successful XSS attack, both stored,

reflected, and DOM, is very difficult to achieve.

Based on considerations mentioned in previous

explanation and research, the integration between detection

and mitigation method to overcome XSS attack is assumed

and believed as effective method. This is reasonable

statement because the detection and layer items have been

measured and researched. In other word, the detection and

mitigation method proposed here have been implemented by

some researchers. Related to previous research, this proposed

method is to develop previous segmented-existing methods

with more reliable and comprehensive configuration and

advanced customization. The-refore, these two methods are

eligible to be proposed.

ISSN: 2460 – 7223

32

VI. REFERENCES

[1] B. B. Gupta, S. Gupta, S. Gangwar, M. Kumar, and P. K.

Meena, ‘Cross-Site Scripting (XSS) Abuse and Defense:

Exploitation on Several Testing Bed Environments and Its

Defense’, J. Inf. Priv. Secur., vol. 11, no. 2, pp. 118–136,

Apr. 2015, doi: 10.1080/15536548.2015.1044865.

[2] S. Gupta and B. B. Gupta, ‘Cross-Site Scripting (XSS)

attacks and defense mechanisms: classification and state-of-

the-art’, Int. J. Syst. Assur. Eng. Manag., vol. 8, no. 1, pp.

512–530, Jan. 2017, doi: 10.1007/s13198-015-0376-0.

[3] D. Wichers and J. Williams, ‘Owasp top-10 2017’, OWASP

Found., 2017.

[4] ‘OWASP Top-10 2021, statistically calculated proposal.’,

Wallarm Blog. https://lab.wallarm.com/owasp-top-10-2021-

proposal-based-on-a-statistical-data/ (accessed Jun. 19,

2021).

[5] ‘Rekap Serangan Siber (Januari – April 2020) | bssn.go.id’.

https://bssn.go.id/rekap-serangan-siber-januari-april-2020/

(accessed Jul. 19, 2021).

[6] H. M. Søhoel, ‘OWASP top ten - What is the state of

practice among start-ups?’, p. 94.

[7] ‘Types of Cyber Attacks | Hacking Attacks & Techniques’,

Rapid7. https://www.rapid7.com/fundamentals/types-of-

attacks/ (accessed Oct. 29, 2021).

[8] ‘Top 10 Most Common Types of Cyber Attacks’,

https://blog.netwrix.com/.

https://blog.netwrix.com/2018/05/15/top-10-most-common-

types-of-cyber-attacks/ (accessed Oct. 29, 2021).

[9] D. A. Prasetio, K. Kusrini, and M. R. Arief, ‘Cross-site

Scripting Attack Detection Using Machine Learning with

Hybrid Features’, J. INFOTEL, vol. 13, no. 1, pp. 1–6, Feb.

2021, doi: 10.20895/infotel.v13i1.606.

[10] F. M. M. Mokbal, W. Dan, A. Imran, L. Jiuchuan, F.

Akhtar, and W. Xiaoxi, ‘MLPXSS: An Integrated XSS-

Based Attack Detection Scheme in Web Applications Using

Multilayer Perceptron Technique’, IEEE Access, vol. 7, pp.

100567–100580, 2019, doi:

10.1109/ACCESS.2019.2927417.

[11] Y. Putra, Y. Yunus, and S. Sumijan, ‘Meningkatkan

Keamanan Web Menggunakan Algoritma Advanced

Encryption Standard (AES) Terhadap Seragan Cross Site

Scripting’, J. Sistim Inf. Dan Teknol., Sep. 2020, doi:

10.37034/jsisfotek.v3i2.110.

[12] M. F. Kurniawan and W. Setianto, ‘OPTIMASI METODE

OTOMATISASI PENGHILANGAN KERENTANAN

TERHADAP SERANGAN XSS PADA APLIKASI WEB’,

no. 2, p. 8, 2020.

[13] A. Anggara and R. Somya, ‘Pengembangan Sistem

Informasi Manajemen Persediaan Barang Dagang Berbasis

Web menggunakan Library XSS Filtering’, p. 7, 2021.

[14] R. M. Wibowo and A. Sulaksono, ‘Web Vulnerability

Through Cross Site Scripting (XSS) Detection with

OWASP Security Shepherd’, Indones. J. Inf. Syst., vol. 3,

no. 2, p. 149, Feb. 2021, doi: 10.24002/ijis.v3i2.4192.

[15] M. Shema, Hacking web apps: detecting and preventing

web application security problems. Amsterdam ; Boston:

Syngress, 2012.

[16] ‘XSS Attacks Cross Site Scripting Exploits and Defense’, p.

482.

[17] Turi Create. Apple, 2021. Accessed: Oct. 29, 2021.

[Online]. Available: https://github.com/apple/turicreate

[18] A. Kok, I. Ilic Mestric, G. Valiyev, and M. Street, ‘Cyber

Threat Prediction with Machine Learning’, Inf. Secur. Int.

J., vol. 47, no. 2, pp. 203–220, 2020, doi:

10.11610/isij.4714.

[19] J. Thanaki, Python Natural Language Processing. Packt

Publishing Ltd, 2017.

[20] M. Akbar and M. A. F. Ridha, ‘SQL Injection and Cross

Site Scripting Prevention Using OWASP Web Application

Firewall’, p. 7.

[21] ‘8 Framework PHP Terbaik untuk Developer’, Hostinger

Tutorial, Mar. 03, 2019.

https://www.hostinger.co.id/tutorial/framework-php

(accessed Oct. 30, 2021).

[22] A. C. Nisa, ‘10 Web Development Framework Terbaik

Yang Mesti Kamu Pelajari Di 2021’, Feb. 16, 2021.

https://www.exabytes.co.id/blog/web-development-

framework-terbaik-2021/ (accessed Oct. 30, 2021).

[23] ‘CMS Comparison - Most Popular CMS 2021 (Statistic)’.

https://www.experte.com/website/cms-software (accessed

Oct. 30, 2021).

[24] Rick-Anderson, ‘ASP.NET Core Middleware’.

https://docs.microsoft.com/en-

us/aspnet/core/fundamentals/middleware/ (accessed Oct. 30,

2021).

