APLIKASI DETEKSI PENYAKIT TANAMAN JAGUNG BERBASIS ANDROID MENGGUNAKAN ALGORITMA CNN DAN MODEL TERLATIH TENSORFLOW LITE

Ferdiyanto, Novriyan and Sutedi, Sutedi (2025) APLIKASI DETEKSI PENYAKIT TANAMAN JAGUNG BERBASIS ANDROID MENGGUNAKAN ALGORITMA CNN DAN MODEL TERLATIH TENSORFLOW LITE. Skripsi thesis, Institut Informatika dan Bisnis Darmajaya.

[img] Text
1. Cover.pdf

Download (199kB)
[img] Text
2. Halaman Pernyataan.pdf

Download (312kB)
[img] Text
3. Halaman Persetujuan.pdf

Download (532kB)
[img] Text
4. Halaman Pengesahan.pdf

Download (607kB)
[img] Text
5. Riwayat Hidup.pdf

Download (152kB)
[img] Text
6. Halaman Persembahan.pdf

Download (148kB)
[img] Text
7. Halaman Motto.pdf

Download (197kB)
[img] Text
8. Intisari.pdf

Download (142kB)
[img] Text
9. Abstract.pdf

Download (663kB)
[img] Text
10. Prakata.pdf

Download (686kB)
[img] Text
11. Daftar Isi.pdf

Download (256kB)
[img] Text
12. Daftar Tabel.pdf

Download (198kB)
[img] Text
13. Daftar Gambar.pdf

Download (215kB)
[img] Text
14. Bab 1.pdf

Download (218kB)
[img] Text
15. Bab 2.pdf

Download (466kB)
[img] Text
16. Bab 3.pdf

Download (1MB)
[img] Text
17. Bab 4.pdf

Download (3MB)
[img] Text
18. Bab 5.pdf

Download (201kB)
[img] Text
19. Daftar Pustaka.pdf

Download (217kB)
[img] Text
20. Lampiran.pdf

Download (249kB)

Abstract

Corn serves as a strategic commodity in Indonesia's agricultural sector, playing a crucial role as a source of food, animal feed, and industrial raw materials. However, corn production in several regions, such as Lampung, experienced a decline due to plant diseases. These diseases could be identified through symptoms visible on the leaves, such as leaf blight, common rust, and gray leaf spot. To assist farmers in detecting these diseases quickly and accurately, this study developed an Android-based application using a Convolutional Neural Network (CNN) algorithm with a pre-trained TensorFlow Lite model. The dataset consisted of four categories with 4,000 images—1,000 images per category: Healthy, Blight, Common Rust, and Gray Leaf Spot. The CNN model was evaluated using metrics such as accuracy, precision, recall, and F1- score, yielding an accuracy of 94.82% for the 70:30 training-testing ratio and 95.16% for the 80:20 ratio. The application enabled farmers to identify corn diseases simply by capturing an image, allowing faster and more effective response measures.

Item Type: Thesis (Skripsi)
Subjects: Ilmu Komputer
eSkripsi
Divisions: Skripsi/TA & PKPM/KP - Fakultas Ilmu Komputer > Sistem Informasi
Depositing User: Novriyan Ferdiyanto
Date Deposited: 27 Aug 2025 08:00
Last Modified: 27 Aug 2025 08:00
URI: http://repo.darmajaya.ac.id/id/eprint/21061

Actions (login required)

View Item View Item