DITARIK: PENERAPAN METODE K-MEANS CLUSTERING PADA DATA TINGKAT PENGANGGURAN TERBUKA TAHUN 2016-2018 DAN 2019-2021

Muharni, Sita and Andriyanto, Sigit (2022) DITARIK: PENERAPAN METODE K-MEANS CLUSTERING PADA DATA TINGKAT PENGANGGURAN TERBUKA TAHUN 2016-2018 DAN 2019-2021. Jurnal Informatika, 22 (1).

[img] Text
9.pdf

Download (726kB)

Abstract

ABSTRACT The problem of unemployment impacts poverty, crime, and inequality in living standards. The government must anticipate this impact through various government policies. Knowledge plays a vital role in supporting decision-making and formulating government policies related to unemployment. Several researchers have been mining data to gain new knowledge from Indonesia's Open Unemployment Rate (TPT) data. The available data needs to be continuously mined to gain new knowledge. This study aims to mine Indonesian TPT data from 2016-to 2021. More specifically, this study looks at changes in the 2016-2018 TPT data cluster compared to the 2019-2021 TPT data cluster. The data mining method is clustering analysis using the k-means algorithm. Research result; based on k-means clustering analysis usung TPT dqta 2016-1018 dan 2019-2021, only Riau province rose to cluster 1 (low TPT), and only West Sumatra province fell to cluster 2 (High TPT).

Item Type: Article
Subjects: Ilmu Komputer
Divisions: Jurnal > Jurnal Ilmu Komputer
Depositing User: Editor
Date Deposited: 11 Aug 2022 04:32
Last Modified: 02 Feb 2023 07:45
URI: http://repo.darmajaya.ac.id/id/eprint/8022

Actions (login required)

View Item View Item